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Let us consider the quasilinear elliptic problem
−div

(
∇u√

1 + |∇u|2

)
= λa(x)f(u) in Ω,

u = 0 on ∂Ω,

(1)

where the diffusion is driven by the mean curvature operator −div
(
∇u/

√
1 + |∇u|2

)
. In equation

(1), λ > 0 is a parameter measuring diffusivity and

(H1) Ω ⊂ RN is a bounded domain, with a C2 boundary ∂Ω in case N ≥ 2;

(H2) a : Ω → R is a continuous function such that max
Ω

a > 0;

(H3) f : R → R is a continuous function satisfying, for some constant L > 0, f(0) = f(L) = 0, and
f(s) > 0 for every s ∈ ]0, L[ .

Assumption (H2) on the weight a introduces spatial heterogeneities within the model and
allows that a changes sign in Ω. Assumption (H3) basically requires that the reaction term af
is of logistic-type. As it is well-known, logistic maps play a pivotal role in the modeling theory
of various disciplines, with special prominence in biology, ecology, genetics. Unlike the classical
theory based on the Fick–Fourier’s law, where the flux depends linearly on ∇u, here the diffusion
is governed by the bounded flux ∇u/

√
1 + |∇u|2, which is approximately linear for small gradients

but approaches saturation for large ones.
Following our recent paper [3], we aim here to synthetically describe and clarify the effects of

a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. This study
is motivated by the investigations on reaction processes with saturating diffusion started in [4], in
order to correct the non-physical gradient-flux relations at high gradients. This specific mechanism
of diffusion, of which the mean curvature operator provides a paradigmatic example, may determine
spatial patterns exhibiting abrupt transitions at the boundary or between adjacent profiles, up to
the formation of discontinuities. This makes the mathematical analysis of the problem (1) more
delicate and sophisticated than the study of the corresponding semilinear model, the use of some
tools of geometric measure theory being in particular required. Indeed, it is an established fact that
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the space of bounded variation functions is the natural setting for dealing with this problem. The
precise notion of bounded variation solution of (1) used in this paper has been basically introduced
in [1] and is recalled below for completeness.

Notation. For every v ∈ BV (Ω), Dv = Dav dx + Dsv is the Lebesgue–Nikodym decomposition
of the Radon measure Dv in its absolutely continuous part Dav dx and its singular part Dsv
with respect to the N -dimensional Lebesgue measure dx in RN , |Dv| denotes the total variation
of the measure Dv, and Dv

|Dv| stands for the density of Dv with respect to its total variation.
Further, |Ω| is the Lebesgue measure of Ω, while HN−1 represents the (N−1)-dimensional Hausdorff
measure, and |∂Ω| is the HN−1-measure of ∂Ω. Moreover, for all functions u, v : Ω → R, we write:
u ≥ v if ess inf(u − v) ≥ 0; u > v if u ≥ v and ess sup(u − v) > 0; u ≫ v if, for a.e. x ∈ Ω,
u(x)− v(x) ≥ dist(x, ∂Ω).

Definition. By a bounded variation solution of (1) we mean a function u ∈ BV (Ω), with f(u) ∈
LN (Ω), which satisfies∫

Ω

DauDaϕ√
1 + |Dau|2

dx+

∫
Ω

Du

|Du|
Dϕ

|Dϕ|
|Dsϕ|+

∫
∂Ω

sgn(u)ϕ dHN−1 = λ

∫
Ω

af(u)ϕ dx (2)

for every ϕ ∈ BV (Ω) such that |Dsϕ| is absolutely continuous with respect to |Dsu| and ϕ(x) = 0
HN−1-a.e. on the set {x ∈ ∂Ω : u(x) = 0}. A bounded variation solution u is said positive if u > 0.

Remark 1. If a bounded variation solution u of (1) belongs to W 2,p(Ω) ∩ W 1,p
0 (Ω) for some

p > N , then it satisfies the differential equation in (1) for a.e. x ∈ Ω and the boundary condition
for all x ∈ ∂Ω. Therefore, u is a strong solution of (1). The Lp-regularity theory then entails
that u ∈ W 2,q(Ω) for all q > N . Conversely, it is evident that any strong solution is a bounded
variation solution. Note that bounded variation solutions, unlike the strong ones, may not satisfy
the Dirichlet boundary conditions.

Remark 2. It is clear that, for any given λ > 0, u = 0 is a bounded variation solution of (1),
while u = L is not. Indeed, if L were a solution, taking ϕ = 1 as test function in (2) would yield∫
∂Ω

1 dHN−1 = |∂Ω| = 0, which is a contradiction.

We are now going to present the main results obtained in [3]. Here, for the sake of clarity, our
statements are set out in a simplified form, while referring to [3] for some variants or extensions
that rely on slightly more general but less neat conditions.

The first result only exploits the structural assumptions (H1), (H2), and (H3). It provides us
with the existence of a number λ∗ ≥ 0 such that, for all λ > λ∗, the problem (1) has a maximum
solution uλ, with 0 < uλ < L. The asymptotic behavior of uλ, as λ → +∞, is described too, and
the bifurcation of the solutions from the trivial line {(λ, 0) : λ ≥ 0} at the point (0, 0) is ascertained
in the case λ∗ = 0. Figure 1 illustrates two admissible bifurcations diagrams.

Theorem 1. Assume (H1), (H2) and (H3). Then there exists λ∗ ≥ 0 such that for all λ ∈ ]λ∗,+∞[
the problem (1) admits a maximum bounded variation solution uλ, with 0 < uλ < L, which satisfies

lim
λ→+∞

(ess supuλ) = L. (3)

Moreover, if λ∗ = 0, then
lim

λ→0+
∥uλ∥BV = 0. (4)
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Figure 1. Admissible bifurcation diagrams for the problem (1) under the structural
assumptions (H1), (H2), and (H3), in case λ∗ > 0 (left) or λ∗ = 0 (right). Dashed curves
indicate bounded variation solutions.

The specific features displayed by the bifurcation diagrams of the problem (1) are determined
by the slope at 0 of the function f , as expressed by the following conditions:

(H4) there exists lim
s→0+

f(s)
s = +∞

(H5) there exists lim
s→0+

f(s)
s = κ ∈ ]0,+∞[

(H6) there exists lim
s→0+

f(s)
s = 0

(sublinear growth at 0);

(linear growth at 0);

(superlinear growth at 0).

When f has a sublinear growth at zero, a bifurcation from the trivial line occurs at the point
(0, 0), and the existence of positive bounded variation solutions of the problem (1) is guaranteed
for all λ > 0. In addition, positive strong solutions exist provided that λ is small enough.

Theorem 2. Assume (H1), (H2), (H3), and (H4). Then for all λ > 0 the problem (1) admits at
least one bounded variation solution uλ ∈ BV (Ω), with 0 < uλ < L, which satisfies (3) and (4).
Moreover, there exists λ∗ > 0 such that, for all λ ∈ ]0, λ∗[ , solutions uλ can be selected so that
uλ ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for any p > N , it is a strong solution and it satisfies

lim
λ→0+

∥uλ∥W 2,p = 0. (5)

When f grows linearly at zero the bifurcation occurs from the trivial line at the point (λ1, 0),
where λ1 is the principal eigenvalue of the linear weighted problem{

−∆φ = λa(x)κφ in Ω,

u = 0 on ∂Ω.

Here, Ω satisfies (H1), κ comes from (H5), and a satisfies (H2). It is a classical fact that λ1 is
positive and simple, with a positive eigenfunction φ1. The Lp-regularity theory and a standard
bootstrap argument entail that φ1 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for all p > N , while the strong maximum
principle and the Hopf boundary point lemma yield φ1 ≫ 0. In this case the solvability of the
problem (1) is guaranteed for all λ > λ1. In addition, for λ close to λ1 strong solutions do exist.

Theorem 3. Assume (H1), (H2), (H3), and (H5). Then for all λ > λ1 the problem (1) admits at
least one bounded variation solution uλ, with 0 < uλ < L, which satisfies (3). Moreover, suppose
that

(H7) f is of class C2
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and fix any p > N . Then there exists a neighborhood U of (λ1, 0) in R×W 2,p(Ω) ∩W 1,p
0 (Ω) such

that solutions uλ can be selected so that (λ, uλ) ∈ U , uλ is a strong solution and it satisfies

lim
λ→λ1

∥uλ∥W 2,p = 0 and lim
λ→λ1

uλ
∥uλ∥C1

= φ1. (6)

Finally, there exists η > 0 such that the following assertions hold:

(i) if f ′′(0) < 0, then for all λ ∈ ]λ1, λ1 + η[ there is at least one strong solution uλ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) satisfying (6);

(ii) if f ′′(0) > 0, then for all λ ∈ ]λ1 − η, λ1[ there is at least one strong solution uλ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) satisfying (6).

Remark 3. For the standard logistic model f(s) = s(L− s), the condition f ′′(0) = −2 < 0 holds
and therefore the bifurcation is supercritical.

When f exhibits a superlinear growth at zero, the existence of multiple solutions can be detected
if, for instance, conditions (H2) and (H6) are strengthened as follows. Let us set

Ω+ =
{
x ∈ Ω : a(x) > 0

}
, Ω− =

{
x ∈ Ω : a(x) < 0

}
, Ω0 =

{
x ∈ Ω : a(x) = 0

}
,

and replace (H2) with

(H8) a ∈ C2(Ω), Ω+ ̸= ∅, Ω− ̸= ∅, Ω0 = Ω+ ∩ Ω− ⊂ Ω, and ∇a(x) ̸= 0 for all x ∈ Ω0,

as well as (H6) with

(H9) there exists q > 1, with q < N+2
N−2 if N ≥ 3, such that

lim
s→0+

f(s)

sq
= 1.

Then, for λ sufficiently large, the problem (1) has at least two positive bounded variation solutions,
the smaller being strong.

Theorem 4. Assume (H1), (H3), (H8), and (H9). Then there exists λ∗ ≥ 0 such that for all
λ ∈ ]λ∗,+∞[ , the problem (1) admits at least one bounded variation solution uλ and one strong
solution vλ ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω), for any p > N , such that 0 ≪ vλ < uλ < L. In addition, uλ
satisfies (3), while vλ satisfies

lim
λ→+∞

∥vλ∥W 2,p = 0. (7)

Figure 2 illustrates three qualitatively different bifurcation diagrams corresponding, respectively,
to Theorems 2, 3, and 4.

Unexpectedly enough, the existence of multiple solutions can always be detected in the standard
logistic model, whenever the carrying capacity L is sufficiently large, even in the case where the
weight function a is a positive constant (cf. Remark 4 below). We state such a multiplicity result
for the simplest one-dimensional prototype of the problem (1), that is,

−
(

u′√
1 + (u′)2

)′
= λaf(u) in ]0, 1[ ,

u(0) = 0, u(1) = 0.

(8)

Theorem 5. Assume (H3),
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Figure 2. Admissible qualitative bifurcation diagrams for the problem (1), according
to the growth of f at 0: either sublinear (left), or linear (center), or superlinear (right).
Dashed curves indicate bounded variation solutions, solid curves represent strong solu-
tions.

(H10) a ∈ C0([0, 1]) satisfies a > 0,

and

(H11) there exist r,R ∈ ]0, L[ , with r < R, such that

2F (r)

r2

(
1 +

√
1 + r2

)
<

F (R)

R
,

where F (s) =
s∫
0

f(t) dt is the potential of f . Then there exist λ♯ and λ♯, with 0 ≤ λ♯ < λ♯, such

that for all λ ∈ ]λ♯, λ
♯[ the problem (8) admits at least two bounded variation solutions uλ, vλ such

that 0 < uλ < vλ < L.

It is worth stressing that the assumptions of Theorem 5 do not prevent f from being concave
in [0, L]: this fact witnesses the peculiarity of this multiplicity result, which is specific of the
quasilinear problem (1) and has no similarity with the semilinear case, where the concavity of f
always guarantees the uniqueness of the positive solution, as proven in [2] even for sign-changing
weights a.

Remark 4. For the standard logistic model, where f(s) = s(L− s), condition (H11) is satisfied if,
for instance, L > 32

3 ≈ 10.67.
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Figure 3. On the left, an admissible bifurcation diagram is depicted with reference
to Example 1: the dashed curve indicates bounded variation solutions, the solid curve
represents strong solutions. On the right, the profiles of the three detected solutions at
λ = λ are shown: in green the regular ones, in red the singular one.
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Example 1. A numerical study of the problem (8), with a = 1, f(s) = s(L − s) and L =
11 > 32

3 , reveals the existence of three positive solutions in a (small) right neighborhood of the
bifurcation point λ1 = π2

L ≈ 0.8972, in particular at λ = 0.8975, and of two positive solutions in
a left neighborhood of λ1. This is in complete agreement with (i) the bifurcation result stated in
Theorem 3 and Remark 3, which predicts the bifurcation branch emanates from λ1 pointing to the
right; (ii) the multiplicity conclusions of Theorem 5, which guarantee the existence of two solutions
in an interval of the λ-axis located on the left of λ1. Hence an S-shaped bifurcation diagram is
expected as shown by the picture on the left in Figure 3.
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