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The purpose of the present study is to develop a Machine Learning (ML) approach to the
solution of the partial differential equations (PDEs). Due to this being our first attempt in this
direction, in this note, we consider the simple heat equation.

In the domain Ω = (0, 1) × (0, T ), T = const > 0, let us consider the initial-boundary value
problem for the heat equation:

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t), (x, t) ∈ Ω,

U(−1, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [−1, 1],

(1)

where a is a positive constant and U0 is a given function.
Our aim is to find the approximate solution u(t, x) at t > 0 of problem (1). Introducing the

uniform grid for the time variable tn = τ · n, τ = T/N and applying Euler scheme, we get

un(x) = un−1(x) + aτ
d2un−1(x)

dx2
+ τfn(x), n = 1, . . . , N, (2)

where N is a positive integer and un(x) = u(tn, x).
Although there are many methods for solving, even more, complex PDEs (see, for example, [2,3]

and the references therein), our purpose, as we already mentioned, is to apply one of the well-known
ML methods for solving problem (1). In particular, our goal is to design the Gaussian Process
(GP) [6, 9] for the heat equation to predict the solution [7, 8].

The GP is an extension of Multivariate Gaussian Distribution. In turn, the multivariate Gaus-
sian distribution is a generalization of the one-dimensional normal distribution to higher dimensions.
For example, if there are inputs from two-dimensional space, then for any cross-section over the
fixed one-dimensional input we get Gaussian distribution along each axis (see, Figure 1).

Probability density function (pdf) in two-dimensional space is given as follows:

pdf(x, y) =
1

2πσxσy
e
− (x−µx)2

2σ2
x

− (y−µy)2

2σ2
y .

In general, the pdf of the Multivariate Gaussian distribution in d dimensions is defined by the
following formula:

pdf(x) = 1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ),

where µ = (µ1, µ2, . . . , µd) is mean vector of x = (x1, x2, . . . , xd) and Σ−1 is the inverse of the
d× d positively defined covariance matrix Σ = cov[x], which is constructed by one of the so-called
covariance functions [6, 9].
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Figure 1. 2D multivariate Gaussian distribution and its cross-section projections.

GP presents one of the most important ML approaches based on a particularly effective method
for placing a prior distribution over the space of functions [1, 6, 9]. GP can serve as an effective
algorithm for function approximation. As an example let us consider samples from the GP, mean
function, and some observation points where the values of the approximated function are known.
Figures 2 depict 5 sample functions from the prior distribution over functions specified by a par-
ticular Gaussian with two (left) and four (right) observation points. Sample functions are plotted
as dashed lines, the mean function is shown as a black solid line, observed points represented as
red crosses, and the shaded region denotes uncertainty region. As it can be seen the uncertainty
region is narrowing when the number of observed points is increasing. The equations for obtaining
the mean function, which can be considered as the function approximation can be derived from the
Sherman–Morrison–Woodbury formula [1, 5, 6, 9].
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Figure 2. Fife samples from Gaussian posterior (dashed) and its mean (solid black) with
the dataset of two and four points (red crosses). For colored figures, please refer to the
online version.

Coming back to problem (1), let us set GP prior on un−1 according to [6, 9]

un−1(x) ∼ GP(0, kn−1,n−1(x, x
′, θ)), (3)

where kn−1,n−1 is the kernel (covariance function) of the GP and θ represents the vector of the
hyper-parameters of the covariance function [6–9].

Note that there are many different types of covariance functions. In this study, the neural
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network covariance function is used [9]

k(x, x′, θ) =
2

π
sin−1

(
2(σ2

0 + σ2xx′)√
(1 + 2(σ2

0 + σ2x2))(1 + 2(σ2
0 + σ2x′2))

)
, (4)

where θ is two component hyper-parameter vector θ = (σ0, σ).
The hyper-parameter θ can be trained by applying the initial (x0, U0), boundary (xbn, u

b
n) and

already collected training data (xn−1, un−1) and Negative Log Marginal Likelihood resulting from
[7,8] [

ubn
ubn−1

]
∼ N (0,K),

where
K =

[
kn,n(x

b
n, x

b
n) kn,n−1(x

b
n, xn−1)

kn−1,n−1(xn−1, xn−1)

]
.

To predict approximation at new point x∗n, the following conditional distribution can be used

un(x
∗
n)|

[
ubn
un−1

]
∼ N

(
qTK−1

[
ubn
un−1

]
, kn,n(x

∗
n, x

∗
n)− qTK−1q

)
,

where
qT =

[
kn,n(x

∗
n, x

b
n) kn,n−1(x

∗
n, xn−1)

]
.

It is known that linear operations on GP give again GP and thus, taking into account the Euler
scheme (2) together with GP prior assumption (3) allows to conclude that un and un−1 are jointly
Gaussian with the following GP [4,6–9][

un
un−1

]
∼ GP

(
0,

[
kn,n kn,n−1

kn−1,n−1

])
,

where covariance functions are defined using the (4):

kn,n = k,

kn,n−1 = k − aτ
d2

dx′2
k − τfn(x

′),

kn−1,n−1 = k − aτ
d2

dx′2
k − τfn(x

′)− aτ
d2

dx2
k − τfn(x) + a2τ2

d2

dx2
d2

dx′2
k − aτ2fn(x

′).

For the test experiment we chouse the right-hand side of problem (1) in such a way that the
exact solution is U(x, t) = − exp(−0.01πt) sin(πx) with the initial solution U0(x) = − sin(πx).

Figures 3 show a pretty good agreement between numerical and exact solutions for different
time values.

In the end, let us note that our future work is aimed to apply the mentioned methodology to
the PDEs with nonlinear diffusion coefficients as well as for the spatial multi-dimensional cases.
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Figure 3. Exact and Numerical solutions at t = 0.4 and 1.
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