On a Dirichlet Type Boundary Value Problem in an Orthogonally Convex Cylinder for a Class of Linear Partial Differential Equations

Tariel Kiguradze, Reemah Alhuzally

Florida Institute of Technology, Melbourne, USA E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

Let $\Omega = (0, \omega_1) \times (0, \omega_2) \times (0, \omega_3)$ be an open rectangular box, and let

$$E = \{ (x_1, x_2, x_3) \in \Omega : (x_1, x_2) \in \mathbf{D}, x_3 \in (0, \omega_3) \}$$

be an orthogonally convex cylinder with a piecewise smooth base inscribed in Ω . In view of the orthogonal convexity of the cylinder E, its base **D** admits the representations

$$\mathbf{D} = \left\{ x_1 \in (0, \omega_1), \ x_2 \in (\gamma_1(x_1), \gamma_2(x_1)) \right\} = \left\{ x_2 \in (0, \omega_2), \ x_1 \in (\eta_1(x_2), \eta_2(x_2)) \right\}.$$

In the domain E consider the boundary value problem

$$u^{(2)} = \sum_{\alpha < 2} p_{\alpha}(\mathbf{x})u^{(\alpha)} + q(\mathbf{x}), \tag{1}$$

$$u(\eta_k(x_2), x_2, x_3) = \psi_1(\eta_k(x_2), x_2, x_3), \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = \psi_2(x_1, \gamma_k(x_1), x_3), u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = \psi_3(x_1, x_2, (k-1)\omega_3) \quad (k = 1, 2).$$
(2)

Here $\mathbf{x} = (x_1, x_2, x_3)$, $\mathbf{2} = (2, 2, 2)$, $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3)$ is a multi-index, $u^{(\boldsymbol{\alpha})}(\mathbf{x}) = \frac{\partial^{\alpha_1 + \alpha_2 + \alpha_3} u(\mathbf{x})}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}}$, $p_{\boldsymbol{\alpha}} \in C(\overline{E})$ ($\boldsymbol{\alpha} < \mathbf{2}$), $q \in C(\overline{E})$, $\psi_i \in C(\overline{E})$ (i = 1, 2, 3) and \overline{E} is the closure of E.

By a solution of problem (1),(2) we understand a *classical* solution, i.e., a function $u \in C^{2,2,2}(E)$ having continuous on \overline{E} partial derivatives $u^{(2,0,0)}$ and $u^{(2,2,0)}$, and satisfying equation (1) and the boundary conditions (2) everywhere in E and ∂E , respectively.

Throughout the paper the following notations will be used:

 $\begin{aligned} \mathbf{0} &= (0,0,0), \ \mathbf{1} = (1,1,1), \ \boldsymbol{\alpha}_i = (0,\ldots,\alpha_i,\ldots,0), \ \boldsymbol{\alpha}_{ij} = \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_j. \\ \boldsymbol{\alpha} &= (\alpha_1,\alpha_2,\alpha_3) < \boldsymbol{\beta} = (\beta_1,\beta_2,\beta_3) \iff \alpha_i \leq \beta_i \ (i=1,2,3) \text{ and } \boldsymbol{\alpha} \neq \boldsymbol{\beta}. \\ \boldsymbol{\alpha} &= (\alpha_1,\alpha_2,\alpha_3) \leq \boldsymbol{\beta} = (\beta_1,\beta_2,\beta_3) \iff \boldsymbol{\alpha} < \boldsymbol{\beta}, \text{ or } \boldsymbol{\alpha} = \boldsymbol{\beta}. \\ \|\boldsymbol{\alpha}\| &= |\alpha_1| + |\alpha_2| + |\alpha_3|. \\ \mathbf{\Xi} &= \{\boldsymbol{\sigma} \mid \mathbf{0} < \boldsymbol{\sigma} < \mathbf{1}\}. \\ \mathbf{\Upsilon}_2 &= \{\boldsymbol{\alpha} < \mathbf{2} : \ \alpha_i = 2 \text{ for some } i \in \{1,2,3\}\}. \\ \boldsymbol{O}_2 &= \{\boldsymbol{\alpha} < \mathbf{2} : \ \|\boldsymbol{\alpha}\| \text{ is odd}\}. \\ \text{supp } \boldsymbol{\alpha} &= \{i \mid \alpha_i > 0\}. \\ \mathbf{x}_{\boldsymbol{\alpha}} &= (\chi(\alpha_1)x_1, \chi(\alpha_2)x_2, \chi(\alpha_3)x_3), \text{ where } \chi(\alpha) = 0 \text{ if } \boldsymbol{\alpha} = 0, \text{ and } \chi(\alpha) = 1 \text{ if } \boldsymbol{\alpha} > 0. \\ \widehat{\mathbf{x}}_{\boldsymbol{\alpha}} &= \mathbf{x} - \mathbf{x}_{\boldsymbol{\alpha}}. \end{aligned}$

 \mathbf{x}_{α} will be identified with $(x_{i_1}, \ldots, x_{i_l})$, where $\{i_1, \cdots, i_l\} = \operatorname{supp} \alpha$. Furthermore, \mathbf{x}_{α} will be identified with $(\mathbf{x}_{\alpha}, \widehat{\mathbf{0}}_{\alpha})$, and \mathbf{x} will be identified with $(\mathbf{x}_{\alpha}, \widehat{\mathbf{x}}_{\alpha})$, or with $(\mathbf{x}_{\alpha}, \mathbf{x}_{\widehat{\alpha}})$.

$$\Omega_{\boldsymbol{\sigma}} = [0, \omega_{i_1}] \times \cdots \times [0, \omega_{i_l}], \text{ where } \{i_1, \cdots i_l\} = \operatorname{supp} \boldsymbol{\sigma}.$$

$$\Omega_{ij} = (0, \omega_i) \times (0, \omega_j) \ (1 \le i < j \le 3).$$

Along with problem (1), (2) consider the corresponding homogeneous problem

$$u^{(2)} = \sum_{\alpha < 2} p_{\alpha}(\mathbf{x}) u^{(\alpha)}, \tag{1}$$

$$u(\eta_k(x_2), x_2, x_3) = 0, \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = 0, \quad u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = 0 \quad (k = 1, 2).$$
(20)

For each $\sigma \in \Xi$ in the domain Ω_{σ} consider the homogeneous boundary value problem depending on the parameter $\mathbf{x}_{\hat{\sigma}} \in \Omega_{\hat{\sigma}}$:

$$v^{(2,0,0)} = p_{022}(\mathbf{x}_1, \widehat{\mathbf{x}}_1)v + p_{122}(\mathbf{x}_1, \widehat{\mathbf{x}}_1)v^{(1,0,0)}, \qquad (1_{100})$$

$$v(\eta_1(\mathbf{x}_2), \widehat{\mathbf{x}}_1) = 0, \quad v(\eta_2(\mathbf{x}_2), \widehat{\mathbf{x}}_1) = 0;$$
 (2100)

$$v^{(0,2,0)} = p_{202}(\mathbf{x}_2, \widehat{\mathbf{x}}_2)v + p_{212}(\mathbf{x}_2, \widehat{\mathbf{x}}_2)v^{(0,1,0)}, \qquad (1_{010})$$

$$v(\gamma_1(\mathbf{x}_1), \widehat{\mathbf{x}}_2) = 0, \quad v(\gamma_2(\mathbf{x}_1), \widehat{\mathbf{x}}_2) = 0;$$
(2010)

$$v^{(0,0,2)} = p_{220}(\mathbf{x}_3, \widehat{\mathbf{x}}_3)v + p_{221}(\mathbf{x}_3, \widehat{\mathbf{x}}_3)v^{(0,0,1)},$$
(1₀₀₁)

$$v(0, \widehat{\mathbf{x}}_3) = 0, \quad v(\omega_3, \widehat{\mathbf{x}}_3) = 0;$$
 (2₀₀₁)

$$v^{(\mathbf{2}_{12})} = \sum_{\alpha < \mathbf{2}_{12}} p_{\alpha + \widehat{\mathbf{2}}_{12}}(\mathbf{x}_{12}, \widehat{\mathbf{x}}_{12}) v^{(\alpha)}, \qquad (1_{110})$$

$$v(\eta_k(\mathbf{x}_2), \widehat{\mathbf{x}}_{12}) = 0, \quad v^{(2,0,0)}(\gamma_k(\mathbf{x}_1), \widehat{\mathbf{x}}_{12}) = 0 \quad (k = 1, 2);$$
 (2110)

$$v^{(\mathbf{2}_{13})} = \sum_{\alpha < \mathbf{2}_{13}} p_{\alpha + \widehat{\mathbf{2}}_{13}}(\mathbf{x}_{13}, \widehat{\mathbf{x}}_{13}) v^{(\alpha)}, \qquad (1_{101})$$

$$v(\eta_k(\mathbf{x}_2), \widehat{\mathbf{x}}_{13}) = 0, \quad v^{(2,0,0)}((k-1)\omega_3, \widehat{\mathbf{x}}_{13}) = 0 \quad (k=1,2);$$
 (2₁₀₁)

$$v^{(\mathbf{2}_{23})} = \sum_{\alpha < \mathbf{2}_{23}} p_{\alpha + \widehat{\mathbf{2}}_{23}}(\mathbf{x}_{23}, \widehat{\mathbf{x}}_{23}) v^{(\alpha)}, \qquad (1_{011})$$

$$v(\gamma_k(\mathbf{x}_1), \widehat{\mathbf{x}}_{23}) = 0, \quad v^{(2,0,0)}((k-1)\,\omega_3, \widehat{\mathbf{x}}_{23}) = 0 \quad (k=1,2).$$
 (2₀₁₁)

Definition 1. Problem $(1_{\sigma}), (2_{\sigma}) \ (\sigma \in \Xi)$ is called σ -associated problem of problem (1), (2).

Two-dimensional versions of problem (1), (2) were studied in [1], [2], where problems were considered in orthogonally convex smooth domains.

Orthogonal convexity of a domain is essential and cannot be relaxed. Examples attesting the paramount importance of the orthogonal convexity of a domain were introduced in Remarks 1 and 2 of [2]. Similar examples can be easily constructed for the three-dimensional case.

As follows from Remark 5 below, the C^2 regularity of functions η_k (k = 1, 2) is essential for solvability of problem (1), (2) in a classical sense. However, C^2 regularity of functions η_k (k = 1, 2)on the closed interval $[0, \omega_2]$ is impossible for smooth domains. Therefore we study the case of a piecewise smooth domain **D** separately from the case of a smooth domain **D**. Surprisingly, some piecewise domains are better suited for the solvability of problem (1), (2), then domains with a C^{∞} boundary.

Set

$$\mathbf{D}_{0,\delta} = [\eta_1(0) - \delta, \eta_1(0) + \delta] \times [0, \delta], \quad E_{0,\delta} = \mathbf{D}_{0,\delta} \times [0, \omega_3], \\ \mathbf{D}_{\omega_2,\delta} = [\eta_1(\omega_2) - \delta, \eta_1(\omega_2) + \delta] \times [\omega_2 - \delta, \omega_2], \quad E_{\omega_2,\delta} = \mathbf{D}_{\omega_2,\delta} \times [0, \omega_3], \\ \varphi_{1k}(x_2, x_3) = \psi_1(\eta_k(x_2), x_2, x_3), \quad \varphi_{2k}(x_1, x_3) = \psi_2(x_1, \gamma_k(x_1), x_3), \\ \varphi_{3k}(x_1, x_2) = \psi_3(x_1, x_2, (k-1)\omega_3) \quad (k = 1, 2).$$
(3)

Theorem 1. Let

$$\eta_k \in C^2([0,\omega_2]) \ (k=1,2),$$
(4)

 $p_{\alpha} \in C(\overline{E}) \ (\alpha < 2), \ q \in C(\overline{\Omega}), \ \psi_1 \in C^{2,2,2}(\overline{E}), \ \psi_2 \in C^{0,2,2}(\overline{E}), \ \psi_1 \in C^{0,0,2}(\overline{E}), \ and \ let \ each \sigma$ -associated problem $(1_{\sigma}), (2_{\sigma})$ have only the trivial solution for every $\mathbf{x}_{\widehat{\sigma}} \in \Omega_{\widehat{\sigma}} \ (\sigma \in \Xi)$. Then problem (1), (2) has the Fredholm property, *i.e.*:

- (i) problem $(1_0), (2_0)$ has a finite dimensional space of solutions;
- (ii) if problem $(1_0), (2_0)$ has only the trivial solution, then problem (1), (2) is uniquely solvable, its solution belongs to $C^{2,2,2}(\overline{E})$ and admits the estimate

$$\|u\|_{C^{2,2,2}(\overline{E})} \le M\bigg(\|q\|_{C(\overline{E})} + \sum_{k=1}^{2} \Big(\|\varphi_{1k}\|_{C^{2,2}(\overline{\Omega}_{2,3})} + \|\varphi_{2k}\|_{C^{0,2}(\overline{\Omega}_{1,3})} + \|\varphi_{3k}\|_{C(\overline{\mathbf{D}})}\Big)\bigg), \quad (5)$$

where M is a positive constant independent of φ_{1k} , φ_{2k} , φ_{3k} (k = 1, 2) and q.

Theorem 2. Let

$$\gamma_k \in C^2((0,\omega_1)), \quad \eta_k \in C^2((0,\omega_2)) \quad (k=1,2),$$
(6)

$$p_{\alpha} \in C^{0,2,0}(\overline{E}) \ (\alpha_2 = 2, \ \alpha < 2), \tag{7}$$

 $p_{\alpha} \in C(\overline{E}) \ (\alpha < 2), \ q \in C(\overline{\Omega}), \ \psi_1 \in C^{2,2,2}(\overline{E}), \ \psi_2 \in C^{0,2,2}(\overline{E}), \ \psi_1 \in C^{0,0,2}(\overline{E}), \ and \ let \ each \sigma$ -associated problem $(1_{\sigma}), (2_{\sigma})$ have only the trivial solution for every $\mathbf{x}_{\widehat{\sigma}} \in \Omega_{\widehat{\sigma}} \ (\sigma \in \Xi)$. Then problem (1), (2) has the Fredholm property, i.e.: $\mathbf{x}_{\widehat{\sigma}} \in \Omega_{\widehat{\sigma}} \ (\sigma \in \Xi)$. Then problem (1), (2) has the Fredholm property, i.e.:

- (i) problem $(1_0), (2_0)$ has a finite dimensional space of solutions;
- (ii) if problem $(1_0), (2_0)$ has only the trivial solution, then problem (1), (2) is uniquely solvable, its solution belongs to $C^{2,2,2}(E)$ and admits the estimate

$$\begin{aligned} \|u\|_{C(\overline{E})} + \|u^{(2,0,0)}\|_{C(\overline{E})} + \|u^{(2,0,2)}\|_{C(\overline{E})} \\ &\leq M \bigg(\|q\|_{C(\overline{E})} + \sum_{k=1}^{2} \bigg(\|\varphi_{1k}\|_{C^{0,2}(\overline{\Omega}_{2,3})} + \|\varphi_{2k}\|_{C^{0,2}(\overline{\Omega}_{1,3})} + \|\varphi_{3k}\|_{C(\overline{\mathbf{D}})} \bigg) \bigg), \quad (8) \end{aligned}$$

where M is a positive constant independent of φ_{1k} , φ_{2k} , φ_{3k} (k = 1, 2) and q.

Furthermore, if:

(F₁) **D** is strongly convex near the points $(\eta_1(0), 0)$ and $\eta_2(\omega_2, \omega_2)$, i.e.

$$\gamma_1''(\eta_1(0)) > 0 \text{ and } \gamma_2''(\eta_2(\omega_2)) < 0;$$
(9)

(F₂)
$$\gamma_1 \in C^5([\eta_1(0) - \delta, \eta_1(0) + \delta])$$
 and $\gamma_2 \in C^5([\eta_1(\omega_2) - \delta, \eta_1(\omega_2) + \delta])$ for some $\delta > 0$;

(F₃)
$$\psi_1 \in C^{5,0,0}(E_{0,\delta} \cup E_{\omega_2,\delta})$$
 for some $\delta > 0$;

- $(F_4) \ \psi_2 \in C^{1,0,0}(E_{0,\delta} \cup E_{\omega_2,\delta}) \ for \ some \ \delta > 0;$
- (F₅) $\psi_3 \in C^{3,0,0}(\mathbf{D}_{0,\delta} \cup \mathbf{D}_{\omega_2,\delta})$ for some $\delta > 0$;
- (F₆) p_{α} ($\alpha < 2$), $q \in C^{3,0,0}(E_{0,\delta} \cup E_{\omega_2,\delta})$ for some $\delta > 0$,

then every solution of problem (1), (2) belongs to $C^{2,2,2}(\overline{E})$.

Consider the equation

$$u^{(2,2,2)} = p_{220}(x_3)u^{(2,2,0)} + p_{202}(x_2)u^{(2,0,2)} + p_{022}(x_1)u^{(0,2,2)} + p_{200}(x_2, x_3)u^{(2,0,0)} + p_{020}(x_1, x_3)u^{(0,2,0)} + p_{002}(x_1, x_2)u^{(0,0,2)} + p_{201}(x_2)u^{(2,0,1)} + p_{102}(x_2)u^{(1,0,2)} + p_{021}(x_1)u^{(0,2,1)} + p_{012}(x_1)u^{(0,1,2)} + p_{111}u^{(1,1,1)} + p_{100}(x_2, x_3)u^{(1,0,0)} + p_{010}(x_1, x_3)u^{(0,1,0)} + p_{001}(x_1, x_2)u^{(0,0,1)} + p_{000}(x_1, x_2, x_3)u + q(x_1, x_2, x_3).$$
(10)

Theorem 3. Let condition (4) hold, let the domain **D** be convex, i.e.

$$(-1)^{k-1}\eta_k''(x_2) \ge 0 \quad for \ x_2 \in (0, \omega_2) \quad (k = 1, 2),$$
(11)

and let

$$p_{220}(x_3) \ge 0, \ p_{202}(x_2) \ge 0, \ p_{022}(x_1) \ge 0,$$
 (12)

$$p_{200}(x_2, x_3) \le 0, \ p_{020}(x_1, x_3) \le 0, \ p_{002}(x_1, x_2) \le 0,$$
 (13)

$$p_{000}(x_1, x_2, x_3) \ge 0. \tag{14}$$

Then problem (10), (2) is uniquely solvable, and its solution admits estimate (5).

Theorem 4. Let conditions (6) and inequalities (11)–(14) hold. Then problem (10), (2) is uniquely solvable, its solution belongs to $C^{2,2,2}(\overline{\Omega})$ and admits estimate (8). Furthermore, if conditions $(F_1)-(F_6)$ hold, then the solution of problem (1), (2) belongs to $C^{2,2,2}(\overline{E})$.

Remark 1. Condition (F_1) on the strong convexity of **D** is essential for the existence of a classical solution of problem (1), (2), and it cannot be replaced by strict convexity. Indeed, consider the problem

$$u^{(2,2,2)} = 0, (15)$$

$$u(\eta_k(x_2), x_2, x_3) = 0; \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = 2x_3^2; \quad u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = 0 \quad (k=1,2)$$
(16)

in the domain $E = D \times (0, \omega_3)$, where $\mathbf{D} = \{(x_1, x_2) : (x_1 - 1)^4 + (x_2 - 1)^4 < 1\}$. It is clear that D is strictly convex, but not strongly convex, since

$$\gamma_k(x_1) = 1 + (-1)^k \sqrt[4]{1 - (x_1 - 1)^4} \quad (k = 1, 2), \quad \gamma_k''(x_1) > 0 \text{ for } x_1 \in (0, 1) \cup (1, 2),$$

and

$$\gamma_k''(1) = 0 \ (k = 1, 2).$$

As a result, the unique solution $u(\mathbf{x}) = ((x_1 - 1)^2 - \sqrt{1 - (x_2 - 1)^4})x_3^2$ of problem (15), (16) does not belong to $C^{2,2,2}(\overline{E})$ since $u^{(0,1,2)}$ is discontinuous along the rectangle $x_2 = 1$, $(x_1, x_3) \in [0,2] \times [0,\omega_3]$.

Remark 2. Consider the problem

$$u^{(2,2,2)} = 0, (17)$$

$$u(\eta_k(x_2), x_2, x_3) = \psi_1(\eta_k(x_2), x_2, x_3); \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = 0;$$
$$u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = 0 \quad (k = 1, 2) \quad (18)$$

in the domain $E = D \times (0, \omega_3)$, where $\mathbf{D} = \{(x_1, x_2) : (x_1 - 1)^2 + (x_2 - 1)^2 < 1\}$, and

$$\psi_1(x_1, x_2, x_3) = \begin{cases} 0 & \text{for } 0 \le x_1 \le 1\\ (x_1 - 1)^{4 + \alpha} & \text{for } 1 \le x_1 \le 2 \end{cases}$$

It is clear that D is strongly convex domain with the C^{∞} boundary, and $\psi_1 \in C^4(\overline{E})$ but $\psi_1 \notin C^5(\overline{E})$ if $\alpha \in [0, 1)$. As a result, the unique solution of problem (17), (18)

$$u(\mathbf{x}) = \frac{x_1 - \eta_2(x_2)}{\eta_1(x_2) - \eta_2(x_2)} \psi_1 \left(1 + \sqrt{1 - (x_2 - 1)^2} \right) = \frac{\sqrt{1 - (x_2 - 1)^2} - x_1}{2} \left(1 - (x_2 - 1)^2 \right)^{2 + \frac{\alpha - 1}{2}}$$

does not belong to $C^{2,2,2}(\overline{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segments $(1,0,x_3)$ and $(1,2,x_3)$, $x_3 \in [0,\omega_3]$.

Remark 3. Consider the problem

$$u^{(2,2,2)} = 0, (19)$$

$$u(\eta_k(x_2), x_2, x_3) = 0; \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = x_3^2; \quad u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = 0 \quad (k = 1, 2) \quad (20)$$

in the domain $E = D \times (0, \omega_3)$, where **D** is a strongly convex C^2 domain inscribed in the rectangle $[0, 2] \times [0, 1]$ such that

$$\gamma_2(x_1) = 1 - (x_1 - 1)^2 + |x_1 - 1|^{4+\alpha}$$
 for $\frac{1}{2} < x_1 < \frac{3}{2}$

It is clear that if $\alpha \in [0, 1)$, then $\gamma_2 \in C^4([1 - \delta, 1 + \delta])$ but $\gamma_2 \notin C^5([1 - \delta, 1 + \delta])$ for any $\delta > 0$. Also,

$$\eta_1(x_2) = 1 + (1 - x_2)^{\frac{1}{2}} \left(1 + c \left(1 - x_2 \right)^{\frac{2+\alpha}{2}} + o\left((1 - x_2)^{\frac{3}{2}} \right) \right) \text{ for } x_2 \in [1 - \delta, 1],$$

$$\eta_1(x_2) = 1 - (1 - x_2)^{\frac{1}{2}} \left(1 - c \left(1 - x_2 \right)^{\frac{2+\alpha}{2}} + o\left((1 - x_2)^{\frac{3}{2}} \right) \right) \text{ for } x_2 \in [1 - \delta, 1].$$

for some $\delta > 0$, where c is a nonzero constant. As a result, problem (19), (20) has a unique solution

$$u(\mathbf{x}) = (x_1 - \eta_1(x_2))(x_2 - \eta_1(x_2)) = x^2 - x(\eta_1(x_2) + \eta_2(x_2)) - \eta_1(x_2)\eta_2(x_2),$$

which does not belong to $C^{2,2,2}(\overline{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segment $(1,1,x_3), x_3 \in [0,\omega_3]$.

Remark 4. Consider the problem

$$u^{(2,2,2)} = 2|x_1 - 1|^{\alpha} \operatorname{sgn}(x_1 - 1),$$
(21)

$$u(\eta_k(x_2), x_2, x_3) = 0 \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = |x_1 - 1|^{\alpha} \operatorname{sgn}(x_1 - 1) x_3(x_3 - \omega_3);$$
$$u^{(2,2,0)}(x_1, x_2, (k - 1)\omega_3) = 0 \quad (k = 1, 2) \quad (22)$$

in the domain $E = D \times (0, \omega_3)$, where **D** is a strongly convex C^2 domain inscribed in the rectangle $[0, 2] \times [0, 1]$ such that

$$\gamma_2(x_1) = 1 - (x_1 - 1)^2$$
 for $\frac{1}{2} < x_1 < \frac{3}{2}$.

It is clear that if $\alpha \in (2,3)$, then $\psi_2(x_1, x_2, x_3) = |x_1|^{\alpha} \operatorname{sgn} x_1 x_3(x_3 - \omega_3) \in C^{1,0,0}(E_{\omega_2,\delta} \cup E_{\omega_2,\delta})$ for some $\delta > 0$. Thus conditions $(F_1) - (F_5)$ hold, while condition (F_6) is violated.

As a result, problem (21), (22) has a unique solution

$$u(\mathbf{x}) = \frac{|x_1 - 1|^{2+\alpha} \operatorname{sgn}(x_1 - 1) - (x_1 - 1)(1 - x_2)^{\frac{1+\alpha}{2}}}{(1+\alpha)(2+\alpha)} x_3(x_3 - \omega_2) \text{ for } \frac{1}{2} < x_1 < \frac{3}{2}$$

which does not belong to $C^{2,2,2}(\overline{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segment $(1,1,x_3), x_3 \in (0,\omega_3)$.

Remark 5. As we see, the functions γ_k (k = 1, 2) can be piecewise smooth: γ_k may be nondifferentiable at points $\eta_1((k-1)\omega_2)$ and $\eta_2((k-1)\omega_2)$ (if they differ) (k = 1, 2). On the other hand, C^2 smoothness of the functions η_k is essential and cannot be relaxed. Indeed, let $\alpha \in (1, 2)$ be an arbitrary number,

$$\eta_k(x_2) = 1 + (-1)^k \sqrt{1 - \left|x_2 - \frac{1}{2}\right|^{\alpha}} \quad (k = 1, 2),$$

and let u be a solution of the problem

$$u^{(2,2,2)} = 0, (23)$$

$$u(\eta_k(x_2), x_2, x_3) = 0; \quad u^{(2,0,0)}(x_1, \gamma_k(x_1), x_3) = x_3^2; \quad u^{(2,2,0)}(x_1, x_2, (k-1)\omega_3) = 0 \quad (k = 1, 2).$$
(24)

Then

$$u^{(0,0,2)}(x_1, x_2, x_3) = x_1^2 - 2x_1 + |x_2 - 1|^{\alpha}.$$

Consequently, $u^{(0,1,2)}(x_1, x_2, x_3)$ is continuous on \overline{E} , however $u^{(0,2,2)}(x_1, x_2, x_3)$ is discontinuous along the line segment $0 \le x_1 \le 2$, $x_2 = 1$ since $\alpha \in (1,2)$. Thus, problem (23), (24) is not solvable in a classical sense due to the fact that the functions η_k are not twice differentiable at $x_2 = 1$.

References

- [1] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem for fourth-order linear hyperbolic equations. *Nonlinear Anal.* **49** (2002), no. 2, Ser. A: Theory Methods, 197–219.
- [2] T. Kiguradze and R. Alhuzally, Dirichlet type problem in a smooth convex domain for quasilinear hyperbolic equations of fourth order. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations – QUALITDE-2019, Tbilisi, Georgia, December 7-9, pp. 103–107;

 $\texttt{http://www.rmi.ge/eng/QUALITDE-2019/Kiguradze_T_A1\% 20 Huzally_workshop_2019.pdf.}$