On a Dirichlet Type
 Boundary Value Problem in an Orthogonally Convex Cylinder for a Class of Linear Partial Differential Equations

Tariel Kiguradze, Reemah Alhuzally
Florida Institute of Technology, Melbourne, USA
E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

Let $\Omega=\left(0, \omega_{1}\right) \times\left(0, \omega_{2}\right) \times\left(0, \omega_{3}\right)$ be an open rectangular box, and let

$$
E=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \Omega:\left(x_{1}, x_{2}\right) \in \mathbf{D}, x_{3} \in\left(0, \omega_{3}\right)\right\}
$$

be an orthogonally convex cylinder with a piecewise smooth base inscribed in Ω. In view of the orthogonal convexity of the cylinder E, its base \mathbf{D} admits the representations

$$
\mathbf{D}=\left\{x_{1} \in\left(0, \omega_{1}\right), x_{2} \in\left(\gamma_{1}\left(x_{1}\right), \gamma_{2}\left(x_{1}\right)\right)\right\}=\left\{x_{2} \in\left(0, \omega_{2}\right), x_{1} \in\left(\eta_{1}\left(x_{2}\right), \eta_{2}\left(x_{2}\right)\right)\right\} .
$$

In the domain E consider the boundary value problem

$$
\begin{gather*}
u^{(\mathbf{2})}=\sum_{\alpha<\mathbf{2}} p_{\boldsymbol{\alpha}}(\mathbf{x}) u^{(\boldsymbol{\alpha})}+q(\mathbf{x}), \tag{1}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=\psi_{1}\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right), \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=\psi_{2}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right) \\
u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=\psi_{3}\left(x_{1}, x_{2},(k-1) \omega_{3}\right) \quad(k=1,2) . \tag{2}
\end{gather*}
$$

Here $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{2}=(2,2,2), \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a multi-index, $u^{(\boldsymbol{\alpha})}(\mathbf{x})=\frac{\partial^{\alpha_{1}+\alpha_{2}+\alpha_{3}} u(\mathbf{x})}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \partial x_{3}^{\alpha_{3}}}$, $p_{\boldsymbol{\alpha}} \in C(\bar{E})(\boldsymbol{\alpha}<\mathbf{2}), q \in C(\bar{E}), \psi_{i} \in C(\bar{E})(i=1,2,3)$ and \bar{E} is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function $u \in C^{2,2,2}(E)$ having continuous on \bar{E} partial derivatives $u^{(2,0,0)}$ and $u^{(2,2,0)}$, and satisfying equation (1) and the boundary conditions (2) everywhere in E and ∂E, respectively.

Throughout the paper the following notations will be used:
$\mathbf{0}=(0,0,0), \mathbf{1}=(1,1,1), \boldsymbol{\alpha}_{i}=\left(0, \ldots, \alpha_{i}, \ldots, 0\right), \boldsymbol{\alpha}_{i j}=\boldsymbol{\alpha}_{i}+\boldsymbol{\alpha}_{j}$.
$\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)<\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \Longleftrightarrow \alpha_{i} \leq \beta_{i}(i=1,2,3)$ and $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$.
$\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leq \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \Longleftrightarrow \boldsymbol{\alpha}<\boldsymbol{\beta}$, or $\boldsymbol{\alpha}=\boldsymbol{\beta}$.
$\|\boldsymbol{\alpha}\|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\left|\alpha_{3}\right|$.
$\boldsymbol{\Xi}=\{\boldsymbol{\sigma} \mid \mathbf{0}<\boldsymbol{\sigma}<\mathbf{1}\}$.
$\mathbf{\Upsilon}_{\mathbf{2}}=\left\{\boldsymbol{\alpha}<\mathbf{2}: \alpha_{i}=2\right.$ for some $\left.i \in\{1,2,3\}\right\}$.
$\boldsymbol{O}_{\mathbf{2}}=\{\boldsymbol{\alpha}<\mathbf{2}:\|\boldsymbol{\alpha}\|$ is odd $\}$.
$\operatorname{supp} \boldsymbol{\alpha}=\left\{i \mid \alpha_{i}>0\right\}$.
$\mathbf{x}_{\boldsymbol{\alpha}}=\left(\chi\left(\alpha_{1}\right) x_{1}, \chi\left(\alpha_{2}\right) x_{2}, \chi\left(\alpha_{3}\right) x_{3}\right)$, where $\chi(\alpha)=0$ if $\alpha=0$, and $\chi(\alpha)=1$ if $\alpha>0$.
$\widehat{\mathrm{x}}_{\boldsymbol{\alpha}}=\mathrm{x}-\mathrm{x}_{\alpha}$.
$\mathbf{x}_{\boldsymbol{\alpha}}$ will be identified with $\left(x_{i_{1}}, \ldots, x_{i_{l}}\right)$, where $\left\{i_{1}, \cdots i_{l}\right\}=\operatorname{supp} \boldsymbol{\alpha}$. Furthermore, $\mathbf{x}_{\boldsymbol{\alpha}}$ will be identified with ($\mathbf{x}_{\boldsymbol{\alpha}}, \widehat{\mathbf{0}}_{\boldsymbol{\alpha}}$), and \mathbf{x} will be identified with ($\mathbf{x}_{\boldsymbol{\alpha}}, \widehat{\mathbf{x}}_{\boldsymbol{\alpha}}$), or with ($\mathbf{x}_{\boldsymbol{\alpha}}, \mathbf{x}_{\widehat{\alpha}}$).
$\Omega_{\boldsymbol{\sigma}}=\left[0, \omega_{i_{1}}\right] \times \cdots \times\left[0, \omega_{i_{l}}\right]$, where $\left\{i_{1}, \cdots i_{l}\right\}=\operatorname{supp} \boldsymbol{\sigma}$.
$\Omega_{i j}=\left(0, \omega_{i}\right) \times\left(0, \omega_{j}\right)(1 \leq i<j \leq 3)$.

Along with problem (1), (2) consider the corresponding homogeneous problem

$$
\begin{gather*}
u^{(\mathbf{2})}=\sum_{\alpha<\mathbf{2}} p_{\boldsymbol{\alpha}}(\mathbf{x}) u^{(\boldsymbol{\alpha})}, \tag{0}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0, u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=0, u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) . \tag{0}
\end{gather*}
$$

For each $\boldsymbol{\sigma} \in \boldsymbol{\Xi}$ in the domain $\Omega_{\boldsymbol{\sigma}}$ consider the homogeneous boundary value problem depending on the parameter $\mathbf{x}_{\hat{\sigma}} \in \Omega_{\hat{\sigma}}$:

$$
\begin{gather*}
v^{(2,0,0)}=p_{022}\left(\mathbf{x}_{1}, \widehat{\mathbf{x}}_{1}\right) v+p_{122}\left(\mathbf{x}_{1}, \widehat{\mathbf{x}}_{1}\right) v^{(1,0,0)}, \tag{100}\\
v\left(\eta_{1}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{1}\right)=0, \quad v\left(\eta_{2}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{1}\right)=0 ; \tag{100}\\
v^{(0,2,0)}=p_{202}\left(\mathbf{x}_{2}, \widehat{\mathbf{x}}_{2}\right) v+p_{212}\left(\mathbf{x}_{2}, \widehat{\mathbf{x}}_{2}\right) v^{(0,1,0)}, \tag{010}\\
v\left(\gamma_{1}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{2}\right)=0, \quad v\left(\gamma_{2}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{2}\right)=0 ; \tag{010}\\
v^{(0,0,2)}=p_{220}\left(\mathbf{x}_{3}, \widehat{\mathbf{x}}_{3}\right) v+p_{221}\left(\mathbf{x}_{3}, \widehat{\mathbf{x}}_{3}\right) v^{(0,0,1)}, \tag{001}\\
v\left(0, \widehat{\mathbf{x}}_{3}\right)=0, \quad v\left(\omega_{3}, \widehat{\mathbf{x}}_{3}\right)=0 ; \tag{001}\\
v^{\left(\mathbf{2}_{12}\right)}=\sum_{\boldsymbol{\alpha}<\mathbf{2}_{12}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{12}}\left(\mathbf{x}_{12}, \widehat{\mathbf{x}}_{12}\right) v^{(\boldsymbol{\alpha})}, \tag{110}\\
v\left(\eta_{k}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{12}\right)=0, \quad v^{(2,0,0)}\left(\gamma_{k}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{12}\right)=0 \quad(k=1,2) ; \tag{110}\\
v^{\left(\mathbf{2}_{13}\right)}=\sum_{\boldsymbol{\alpha}<\mathbf{2}_{13}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{13}}\left(\mathbf{x}_{13}, \widehat{\mathbf{x}}_{13}\right) v^{(\boldsymbol{\alpha})}, \tag{101}\\
v\left(\eta_{k}\left(\mathbf{x}_{2}\right), \widehat{\mathbf{x}}_{13}\right)=0, \quad v^{(2,0,0)}\left((k-1) \omega_{3}, \widehat{\mathbf{x}}_{13}\right)=0 \quad(k=1,2) ; \tag{101}\\
v^{\left(\mathbf{2}_{23}\right)}=\sum_{\alpha<\mathbf{2}_{23}} p_{\boldsymbol{\alpha}+\widehat{\mathbf{2}}_{23}}\left(\mathbf{x}_{23}, \widehat{\mathbf{x}}_{23}\right) v^{(\boldsymbol{\alpha})}, \tag{011}\\
v\left(\gamma_{k}\left(\mathbf{x}_{1}\right), \widehat{\mathbf{x}}_{23}\right)=0, \quad v^{(2,0,0)}\left((k-1) \omega_{3}, \widehat{\mathbf{x}}_{23}\right)=0 \quad(k=1,2) . \tag{011}
\end{gather*}
$$

Definition 1. Problem $\left(1_{\boldsymbol{\sigma}}\right),\left(2_{\boldsymbol{\sigma}}\right)(\boldsymbol{\sigma} \in \boldsymbol{\Xi})$ is called $\boldsymbol{\sigma}$-associated problem of problem (1), (2).
Two-dimensional versions of problem (1), (2) were studied in [1], [2], where problems were considered in orthogonally convex smooth domains.

Orthogonal convexity of a domain is essential and cannot be relaxed. Examples attesting the paramount importance of the orthogonal convexity of a domain were introduced in Remarks 1 and 2 of [2]. Similar examples can be easily constructed for the three-dimensional case.

As follows from Remark 5 below, the C^{2} regularity of functions $\eta_{k}(k=1,2)$ is essential for solvability of problem (1), (2) in a classical sense. However, C^{2} regularity of functions $\eta_{k}(k=1,2)$ on the closed interval $\left[0, \omega_{2}\right]$ is impossible for smooth domains. Therefore we study the case of a piecewise smooth domain \mathbf{D} separately from the case of a smooth domain D. Surprisingly, some piecewise domains are better suited for the solvability of problem (1), (2), then domains with a C^{∞} boundary.

Set

$$
\begin{gather*}
\mathbf{D}_{0, \delta}=\left[\eta_{1}(0)-\delta, \eta_{1}(0)+\delta\right] \times[0, \delta], \quad E_{0, \delta}=\mathbf{D}_{0, \delta} \times\left[0, \omega_{3}\right], \\
\mathbf{D}_{\omega_{2}, \delta}=\left[\eta_{1}\left(\omega_{2}\right)-\delta, \eta_{1}\left(\omega_{2}\right)+\delta\right] \times\left[\omega_{2}-\delta, \omega_{2}\right], \quad E_{\omega_{2}, \delta}=\mathbf{D}_{\omega_{2}, \delta} \times\left[0, \omega_{3}\right], \\
\varphi_{1 k}\left(x_{2}, x_{3}\right)=\psi_{1}\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right), \quad \varphi_{2 k}\left(x_{1}, x_{3}\right)=\psi_{2}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right), \\
\varphi_{3 k}\left(x_{1}, x_{2}\right)=\psi_{3}\left(x_{1}, x_{2},(k-1) \omega_{3}\right) \quad(k=1,2) . \tag{3}
\end{gather*}
$$

Theorem 1. Let

$$
\begin{equation*}
\eta_{k} \in C^{2}\left(\left[0, \omega_{2}\right]\right) \quad(k=1,2) \tag{4}
\end{equation*}
$$

$p_{\boldsymbol{\alpha}} \in C(\bar{E})(\boldsymbol{\alpha}<\mathbf{2}), q \in C(\bar{\Omega}), \psi_{1} \in C^{2,2,2}(\bar{E}), \psi_{2} \in C^{0,2,2}(\bar{E}), \psi_{1} \in C^{0,0,2}(\bar{E})$, and let each $\boldsymbol{\sigma}$-associated problem $\left(1_{\boldsymbol{\sigma}}\right),\left(2_{\boldsymbol{\sigma}}\right)$ have only the trivial solution for every $\mathbf{x}_{\hat{\boldsymbol{\sigma}}} \in \Omega_{\hat{\boldsymbol{\sigma}}}(\boldsymbol{\sigma} \in \boldsymbol{\Xi})$. Then problem (1), (2) has the Fredholm property, i.e.:
(i) problem $\left(1_{0}\right),\left(2_{0}\right)$ has a finite dimensional space of solutions;
(ii) if problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution, then problem (1), (2) is uniquely solvable, its solution belongs to $C^{2,2,2}(\bar{E})$ and admits the estimate

$$
\begin{equation*}
\|u\|_{C^{2,2,2}(\bar{E})} \leq M\left(\|q\|_{C(\bar{E})}+\sum_{k=1}^{2}\left(\left\|\varphi_{1 k}\right\|_{C^{2,2}\left(\bar{\Omega}_{2,3}\right)}+\left\|\varphi_{2 k}\right\|_{C^{0,2}\left(\bar{\Omega}_{1,3}\right)}+\left\|\varphi_{3 k}\right\|_{C(\overline{\mathbf{D}})}\right)\right) \tag{5}
\end{equation*}
$$

where M is a positive constant independent of $\varphi_{1 k}, \varphi_{2 k}, \varphi_{3 k}(k=1,2)$ and q.
Theorem 2. Let

$$
\begin{gather*}
\gamma_{k} \in C^{2}\left(\left(0, \omega_{1}\right)\right), \quad \eta_{k} \in C^{2}\left(\left(0, \omega_{2}\right)\right) \quad(k=1,2) \tag{6}\\
p_{\boldsymbol{\alpha}} \in C^{0,2,0}(\bar{E}) \quad\left(\alpha_{2}=2, \boldsymbol{\alpha}<\mathbf{2}\right) \tag{7}
\end{gather*}
$$

$p_{\boldsymbol{\alpha}} \in C(\bar{E})(\boldsymbol{\alpha}<\mathbf{2}), q \in C(\bar{\Omega}), \psi_{1} \in C^{2,2,2}(\bar{E}), \psi_{2} \in C^{0,2,2}(\bar{E}), \psi_{1} \in C^{0,0,2}(\bar{E})$, and let each $\boldsymbol{\sigma}$-associated problem $\left(1_{\boldsymbol{\sigma}}\right),\left(2_{\boldsymbol{\sigma}}\right)$ have only the trivial solution for every $\mathbf{x}_{\widehat{\boldsymbol{\sigma}}} \in \Omega_{\widehat{\boldsymbol{\sigma}}}(\boldsymbol{\sigma} \in \boldsymbol{\Xi})$. Then problem (1), (2) has the Fredholm property, i.e.: $\mathbf{x}_{\widehat{\boldsymbol{\sigma}}} \in \Omega_{\widehat{\boldsymbol{\sigma}}}(\boldsymbol{\sigma} \in \boldsymbol{\Xi})$. Then problem (1), (2) has the Fredholm property, i.e.:
(i) problem $\left(1_{0}\right),\left(2_{0}\right)$ has a finite dimensional space of solutions;
(ii) if problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution, then problem $(1),(2)$ is uniquely solvable, its solution belongs to $C^{2,2,2}(E)$ and admits the estimate

$$
\begin{align*}
&\|u\|_{C(\bar{E})}+\left\|u^{(2,0,0)}\right\|_{C(\bar{E})}+\left\|u^{(2,0,2)}\right\|_{C(\bar{E})} \\
& \leq M\left(\|q\|_{C(\bar{E})}+\sum_{k=1}^{2}\left(\left\|\varphi_{1 k}\right\|_{C^{0,2}\left(\bar{\Omega}_{2,3}\right)}+\left\|\varphi_{2 k}\right\|_{C^{0,2}\left(\bar{\Omega}_{1,3}\right)}+\left\|\varphi_{3 k}\right\|_{C(\overline{\mathbf{D}})}\right)\right) \tag{8}
\end{align*}
$$

where M is a positive constant independent of $\varphi_{1 k}, \varphi_{2 k}, \varphi_{3 k}(k=1,2)$ and q.
Furthermore, if:
$\left(F_{1}\right) \mathbf{D}$ is strongly convex near the points $\left(\eta_{1}(0), 0\right)$ and $\eta_{2}\left(\omega_{2}, \omega_{2}\right)$, i.e.

$$
\begin{equation*}
\gamma_{1}^{\prime \prime}\left(\eta_{1}(0)\right)>0 \text { and } \gamma_{2}^{\prime \prime}\left(\eta_{2}\left(\omega_{2}\right)\right)<0 \tag{9}
\end{equation*}
$$

$\left(F_{2}\right) \gamma_{1} \in C^{5}\left(\left[\eta_{1}(0)-\delta, \eta_{1}(0)+\delta\right]\right)$ and $\gamma_{2} \in C^{5}\left(\left[\eta_{1}\left(\omega_{2}\right)-\delta, \eta_{1}\left(\omega_{2}\right)+\delta\right]\right)$ for some $\delta>0$;
$\left(F_{3}\right) \psi_{1} \in C^{5,0,0}\left(E_{0, \delta} \cup E_{\omega_{2}, \delta}\right)$ for some $\delta>0$;
$\left(F_{4}\right) \psi_{2} \in C^{1,0,0}\left(E_{0, \delta} \cup E_{\omega_{2}, \delta}\right)$ for some $\delta>0$;
$\left(F_{5}\right) \psi_{3} \in C^{3,0,0}\left(\mathbf{D}_{0, \delta} \cup \mathbf{D}_{\omega_{2}, \delta}\right)$ for some $\delta>0$;
$\left(F_{6}\right) p_{\boldsymbol{\alpha}}(\boldsymbol{\alpha}<\mathbf{2}), q \in C^{3,0,0}\left(E_{0, \delta} \cup E_{\omega_{2}, \delta}\right)$ for some $\delta>0$,
then every solution of problem (1), (2) belongs to $C^{2,2,2}(\bar{E})$.
Consider the equation

$$
\begin{align*}
u^{(2,2,2)}= & p_{220}\left(x_{3}\right) u^{(2,2,0)}+p_{202}\left(x_{2}\right) u^{(2,0,2)}+p_{022}\left(x_{1}\right) u^{(0,2,2)} \\
& +p_{200}\left(x_{2}, x_{3}\right) u^{(2,0,0)}+p_{020}\left(x_{1}, x_{3}\right) u^{(0,2,0)}+p_{002}\left(x_{1}, x_{2}\right) u^{(0,0,2)} \\
& +p_{201}\left(x_{2}\right) u^{(2,0,1)}+p_{102}\left(x_{2}\right) u^{(1,0,2)}+p_{021}\left(x_{1}\right) u^{(0,2,1)}+p_{012}\left(x_{1}\right) u^{(0,1,2)} \\
& +p_{111} u^{(1,1,1)}+p_{100}\left(x_{2}, x_{3}\right) u^{(1,0,0)}+p_{010}\left(x_{1}, x_{3}\right) u^{(0,1,0)}+p_{001}\left(x_{1}, x_{2}\right) u^{(0,0,1)} \\
& +p_{000}\left(x_{1}, x_{2}, x_{3}\right) u+q\left(x_{1}, x_{2}, x_{3}\right) . \tag{10}
\end{align*}
$$

Theorem 3. Let condition (4) hold, let the domain \mathbf{D} be convex, i.e.

$$
\begin{equation*}
(-1)^{k-1} \eta_{k}^{\prime \prime}\left(x_{2}\right) \geq 0 \text { for } x_{2} \in\left(0, \omega_{2}\right) \quad(k=1,2), \tag{11}
\end{equation*}
$$

and let

$$
\begin{gather*}
p_{220}\left(x_{3}\right) \geq 0, \quad p_{202}\left(x_{2}\right) \geq 0, \quad p_{022}\left(x_{1}\right) \geq 0, \tag{12}\\
p_{200}\left(x_{2}, x_{3}\right) \leq 0, \quad p_{020}\left(x_{1}, x_{3}\right) \leq 0, \quad p_{002}\left(x_{1}, x_{2}\right) \leq 0, \tag{13}\\
p_{000}\left(x_{1}, x_{2}, x_{3}\right) \geq 0 . \tag{14}
\end{gather*}
$$

Then problem (10), (2) is uniquely solvable, and its solution admits estimate (5).
Theorem 4. Let conditions (6) and inequalities (11)-(14) hold. Then problem (10), (2) is uniquely solvable, its solution belongs to $C^{2,2,2}(\bar{\Omega})$ and admits estimate (8).
Furthermore, if conditions $\left(F_{1}\right)-\left(F_{6}\right)$ hold, then the solution of problem (1), (2) belongs to $C^{2,2,2}(\bar{E})$.
Remark 1. Condition $\left(F_{1}\right)$ on the strong convexity of \mathbf{D} is essential for the existence of a classical solution of problem (1), (2), and it cannot be replaced by strict convexity. Indeed, consider the problem

$$
\begin{gather*}
u^{(2,2,2)}=0 \tag{15}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0 ; \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=2 x_{3}^{2} ; \quad u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) \tag{16}
\end{gather*}
$$

in the domain $E=D \times\left(0, \omega_{3}\right)$, where $\mathbf{D}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}-1\right)^{4}+\left(x_{2}-1\right)^{4}<1\right\}$. It is clear that D is strictly convex, but not strongly convex, since

$$
\gamma_{k}\left(x_{1}\right)=1+(-1)^{k} \sqrt[4]{1-\left(x_{1}-1\right)^{4}}(k=1,2), \quad \gamma_{k}^{\prime \prime}\left(x_{1}\right)>0 \text { for } x_{1} \in(0,1) \cup(1,2),
$$

and

$$
\gamma_{k}^{\prime \prime}(1)=0 \quad(k=1,2) .
$$

As a result, the unique solution $u(\mathbf{x})=\left(\left(x_{1}-1\right)^{2}-\sqrt{1-\left(x_{2}-1\right)^{4}}\right) x_{3}^{2}$ of problem (15), (16) does not belong to $C^{2,2,2}(\bar{E})$ since $u^{(0,1,2)}$ is discontinuous along the rectangle $x_{2}=1,\left(x_{1}, x_{3}\right) \in$ $[0,2] \times\left[0, \omega_{3}\right]$.

Remark 2. Consider the problem

$$
\begin{equation*}
u^{(2,2,2)}=0 \tag{17}
\end{equation*}
$$

$$
\begin{align*}
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=\psi_{1}\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right) ; \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=0 \\
u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) \tag{18}
\end{align*}
$$

in the domain $E=D \times\left(0, \omega_{3}\right)$, where $\mathbf{D}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}<1\right\}$, and

$$
\psi_{1}\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}0 & \text { for } 0 \leq x_{1} \leq 1 \\ \left(x_{1}-1\right)^{4+\alpha} & \text { for } 1 \leq x_{1} \leq 2\end{cases}
$$

It is clear that D is strongly convex domain with the C^{∞} boundary, and $\psi_{1} \in C^{4}(\bar{E})$ but $\psi_{1} \notin C^{5}(\bar{E})$ if $\alpha \in[0,1)$. As a result, the unique solution of problem (17), (18)

$$
u(\mathbf{x})=\frac{x_{1}-\eta_{2}\left(x_{2}\right)}{\eta_{1}\left(x_{2}\right)-\eta_{2}\left(x_{2}\right)} \psi_{1}\left(1+\sqrt{1-\left(x_{2}-1\right)^{2}}\right)=\frac{\sqrt{1-\left(x_{2}-1\right)^{2}}-x_{1}}{2}\left(1-\left(x_{2}-1\right)^{2}\right)^{2+\frac{\alpha-1}{2}}
$$

does not belong to $C^{2,2,2}(\bar{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segments $\left(1,0, x_{3}\right)$ and $\left(1,2, x_{3}\right), x_{3} \in\left[0, \omega_{3}\right]$.

Remark 3. Consider the problem

$$
\begin{array}{r}
u^{(2,2,2)}=0 \\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0 ; \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=x_{3}^{2} ; \quad u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) \tag{20}
\end{array}
$$

in the domain $E=D \times\left(0, \omega_{3}\right)$, where \mathbf{D} is a strongly convex C^{2} domain inscribed in the rectangle $[0,2] \times[0,1]$ such that

$$
\gamma_{2}\left(x_{1}\right)=1-\left(x_{1}-1\right)^{2}+\left|x_{1}-1\right|^{4+\alpha} \text { for } \frac{1}{2}<x_{1}<\frac{3}{2} .
$$

It is clear that if $\alpha \in[0,1)$, then $\gamma_{2} \in C^{4}([1-\delta, 1+\delta])$ but $\gamma_{2} \notin C^{5}([1-\delta, 1+\delta])$ for any $\delta>0$. Also,

$$
\begin{aligned}
& \eta_{1}\left(x_{2}\right)=1+\left(1-x_{2}\right)^{\frac{1}{2}}\left(1+c\left(1-x_{2}\right)^{\frac{2+\alpha}{2}}+o\left(\left(1-x_{2}\right)^{\frac{3}{2}}\right)\right) \text { for } x_{2} \in[1-\delta, 1] \\
& \eta_{1}\left(x_{2}\right)=1-\left(1-x_{2}\right)^{\frac{1}{2}}\left(1-c\left(1-x_{2}\right)^{\frac{2+\alpha}{2}}+o\left(\left(1-x_{2}\right)^{\frac{3}{2}}\right)\right) \text { for } x_{2} \in[1-\delta, 1]
\end{aligned}
$$

for some $\delta>0$, where c is a nonzero constant. As a result, problem (19),(20) has a unique solution

$$
u(\mathbf{x})=\left(x_{1}-\eta_{1}\left(x_{2}\right)\right)\left(x_{2}-\eta_{1}\left(x_{2}\right)\right)=x^{2}-x\left(\eta_{1}\left(x_{2}\right)+\eta_{2}\left(x_{2}\right)\right)-\eta_{1}\left(x_{2}\right) \eta_{2}\left(x_{2}\right),
$$

which does not belong to $C^{2,2,2}(\bar{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segment $\left(1,1, x_{3}\right), x_{3} \in\left[0, \omega_{3}\right]$.

Remark 4. Consider the problem

$$
\begin{gather*}
u^{(2,2,2)}=2\left|x_{1}-1\right|^{\alpha} \operatorname{sgn}\left(x_{1}-1\right), \tag{21}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0 \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=\left|x_{1}-1\right|^{\alpha} \operatorname{sgn}\left(x_{1}-1\right) x_{3}\left(x_{3}-\omega_{3}\right) ; \\
u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) \tag{22}
\end{gather*}
$$

in the domain $E=D \times\left(0, \omega_{3}\right)$, where \mathbf{D} is a strongly convex C^{2} domain inscribed in the rectangle $[0,2] \times[0,1]$ such that

$$
\gamma_{2}\left(x_{1}\right)=1-\left(x_{1}-1\right)^{2} \text { for } \frac{1}{2}<x_{1}<\frac{3}{2} .
$$

It is clear that if $\alpha \in(2,3)$, then $\psi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|^{\alpha} \operatorname{sgn} x_{1} x_{3}\left(x_{3}-\omega_{3}\right) \in C^{1,0,0}\left(E_{\omega_{2}, \delta} \cup E_{\omega_{2}, \delta}\right)$ for some $\delta>0$. Thus conditions $\left(F_{1}\right)-\left(F_{5}\right)$ hold, while condition $\left(F_{6}\right)$ is violated.

As a result, problem (21), (22) has a unique solution

$$
u(\mathbf{x})=\frac{\left|x_{1}-1\right|^{2+\alpha} \operatorname{sgn}\left(x_{1}-1\right)-\left(x_{1}-1\right)\left(1-x_{2}\right)^{\frac{1+\alpha}{2}}}{(1+\alpha)(2+\alpha)} x_{3}\left(x_{3}-\omega_{2}\right) \text { for } \frac{1}{2}<x_{1}<\frac{3}{2},
$$

which does not belong to $C^{2,2,2}(\bar{E})$ since $u^{(0,2,0)}$ and $u^{(1,2,0)}$ are discontinuous along the line segment $\left(1,1, x_{3}\right), x_{3} \in\left(0, \omega_{3}\right)$.

Remark 5. As we see, the functions $\gamma_{k}(k=1,2)$ can be piecewise smooth: γ_{k} may be nondifferentiable at points $\eta_{1}\left((k-1) \omega_{2}\right)$ and $\eta_{2}\left((k-1) \omega_{2}\right)$ (if they differ) $(k=1,2)$. On the other hand, C^{2} smoothness of the functions η_{k} is essential and cannot be relaxed. Indeed, let $\alpha \in(1,2)$ be an arbitrary number,

$$
\eta_{k}\left(x_{2}\right)=1+(-1)^{k} \sqrt{1-\left|x_{2}-\frac{1}{2}\right|^{\alpha}} \quad(k=1,2),
$$

and let u be a solution of the problem

$$
\begin{gather*}
u^{(2,2,2)}=0 \tag{23}\\
u\left(\eta_{k}\left(x_{2}\right), x_{2}, x_{3}\right)=0 ; \quad u^{(2,0,0)}\left(x_{1}, \gamma_{k}\left(x_{1}\right), x_{3}\right)=x_{3}^{2} ; \quad u^{(2,2,0)}\left(x_{1}, x_{2},(k-1) \omega_{3}\right)=0 \quad(k=1,2) . \tag{24}
\end{gather*}
$$

Then

$$
u^{(0,0,2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-2 x_{1}+\left|x_{2}-1\right|^{\alpha} .
$$

Consequently, $u^{(0,1,2)}\left(x_{1}, x_{2}, x_{3}\right)$ is continuous on \bar{E}, however $u^{(0,2,2)}\left(x_{1}, x_{2}, x_{3}\right)$ is discontinuous along the line segment $0 \leq x_{1} \leq 2, x_{2}=1$ since $\alpha \in(1,2)$. Thus, problem (23),(24) is not solvable in a classical sense due to the fact that the functions η_{k} are not twice differentiable at $x_{2}=1$.

References

[1] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem for fourth-order linear hyperbolic equations. Nonlinear Anal. 49 (2002), no. 2, Ser. A: Theory Methods, 197-219.
[2] T. Kiguradze and R. Alhuzally, Dirichlet type problem in a smooth convex domain for quasilinear hyperbolic equations of fourth order. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2019, Tbilisi, Georgia, December 7-9, pp. 103-107;
http://www.rmi.ge/eng/QUALITDE-2019/Kiguradze_T_Al\ Huzally_workshop_2019.pdf.

