Optimal Conditions for the Unique Solvability of Two-Point Boundary Value Problems for Third Order Linear Singular Differential Equations

Ivan Kiguradze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
Tbilisi, Georgia

E-mail: ivane.kiguradze@tsu.ge

On a finite open interval $] a, b[$, we consider the linear differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}=p(t) u+q(t) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u(a+)=0, \quad u^{\prime}(a+)=0, \quad \sum_{i=0}^{k} \ell_{i} u^{(i)}(b-)=0 \tag{2}
\end{equation*}
$$

Here

$$
k \in\{0,1,2\}, \quad \ell_{i} \geq 0 \quad(i=0, \ldots, k), \quad \ell_{k}>0
$$

while p and $q:] a, b[\rightarrow \mathbb{R}$ are measurable functions such that

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{2}(b-t)^{2-k}|p(t)| d t<+\infty, \quad \int_{a}^{b}(t-a)(b-t)^{2-k}|q(t)| d t<+\infty \tag{3}
\end{equation*}
$$

We are mainly interested in the case where the functions p and q have nonintegrable singularities at the boundary points of the interval $] a, b[$, i.e. the case, where

$$
\int_{a}^{b}(|p(t)|+|q(t)|) d t=+\infty
$$

However, the results below on the unique solvability of problem (1), (2) are new also for the regular case when the functions p and q are integrable on $[a, b]$.

To formulate the above mentioned results, we need the following notation.

$$
\begin{gathered}
\Delta_{k}(t)=\sum_{i=0}^{k} \frac{(b-t)^{2-i}}{(2-i)!} \ell_{i} / \sum_{i=0}^{k} \frac{(b-a)^{2-i}}{(2-i)!} \ell_{i} \\
g_{k}(t, s)= \begin{cases}\frac{1}{2}\left(\Delta_{k}(s)(t-a)^{2}-(t-s)^{2}\right) & \text { for } a \leq s<t \leq b \\
\frac{1}{2} \Delta_{k}(s)(t-a)^{2}\end{cases} \\
r_{0}(\alpha)=1, \quad r_{1}(\alpha)=\frac{\ell_{0}(b-a)+(\alpha+3) \ell_{1}}{\ell_{0}(b-a)+2 \ell_{1}}
\end{gathered}
$$

$$
\begin{gathered}
r_{2}(\alpha)=\frac{\ell_{0}(b-a)^{2}+(\alpha+3) \ell_{1}(b-a)+(\alpha+3)(\alpha+2) \ell_{2}}{\ell_{0}(b-a)^{2}+2 \ell_{1}(b-a)+2 \ell_{2}}, \\
p_{k}(t ; \alpha)=\frac{(\alpha+1)(\alpha+2)(\alpha+3)}{r_{k}(\alpha)(b-a)^{\alpha+1}-(t-a)^{\alpha+1}}(t-a)^{\alpha-2} \text { for } 0<t<b, \quad \alpha>-1, \\
p_{-}(t) \equiv(|p(t)|-p(t)) / 2 .
\end{gathered}
$$

In [1] it is stated that problem (1), (2) is uniquely solvable if and only if the homogeneous problem

$$
\begin{equation*}
u^{\prime \prime \prime}=p(t) u \tag{0}
\end{equation*}
$$

under the boundary conditions (2) has only a trivial solution. Based on this fact the following theorem is proved.

Theorem. Let there exist a continuous function $w:] a, b[\rightarrow] a, b[$ such that along with (3) the following conditions

$$
\begin{gather*}
\sup \left\{\int_{a}^{b} \frac{g_{k}(t, s)}{w(t)} w(s) p_{-}(s) d s: a<t<b\right\}<1, \tag{4}\\
\liminf _{t \rightarrow a} \frac{w(t)}{(t-a)^{2}}>0, \quad \liminf _{t \rightarrow b} \frac{w(t)}{(b-t)^{m_{k}}}>0 \tag{5}
\end{gather*}
$$

hold, where $m_{k}=(1-k+|1-k|) / 2$. Then problem (1), (2) has a unique solution.
Corollary 1. If for some $\alpha>-1$ along with (3) the conditions

$$
\begin{gather*}
p(t) \geq-p_{k}(t ; \alpha) \text { for } a<t<b, \tag{6}\\
\operatorname{mes}\{t \in] a, b\left[: p(t)>-p_{k}(t ; \alpha)\right\}>0 \tag{7}
\end{gather*}
$$

hold, then problem (1), (2) has a unique solution.
Corollary 2. If along with (3) the condition

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{2} \Delta_{k}(t) p_{-}(t) d t<2 \tag{8}
\end{equation*}
$$

holds, then problem (1), (2) has a unique solution.
Remark 1. In the above formulated theorem, inequality (4) is unimprovable and it cannot be replaced by the nonstrict inequality

$$
\begin{equation*}
\sup \left\{\int_{a}^{b} \frac{g_{k}(t, s)}{w(t)} w(s) p_{-}(s) d s: a<t<b\right\} \leq 1 . \tag{9}
\end{equation*}
$$

Indeed, if

$$
p(t) \equiv-p_{k}(t ; \alpha), \quad w(t) \equiv\left(r_{k}(\alpha)(b-a)^{\alpha+1}-(b-t)^{\alpha+1}\right)(t-a)^{2},
$$

where $\alpha>-1$, then inequalities (5) are satisfied, while inequality (4) is violated instead of which inequality (9) holds. On the other hand, in this case the homogeneous problem (1_{0}), (2) has a nontrivial solution $u(t) \equiv w(t)$ and, consequently, problem (1), (2) is not uniquely solvable no matter how the function q is.

Remark 2. The strict inequality (7) in Corollary 1 cannot be replaced by the nonstrict one since if $p(t) \equiv-p_{k}(t ; \alpha)$, then the homogeneous problem $\left(1_{0}\right),(2)$ has a nontrivial solution.

Remark 3. In the case, where $k \in\{1,2\}$, the strict inequality (8) in Corollary 2 cannot be replaced by the condition

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{2} \Delta_{k}(t) p_{-}(t) d t<2+\varepsilon \tag{10}
\end{equation*}
$$

no matter how small $\varepsilon>0$ is. Indeed, if $p(t) \equiv-p_{k}(t ; \alpha)$ and $\alpha>0$ is so large that

$$
r_{k}(\alpha)>1+\frac{2}{\varepsilon},
$$

then inequality (8) is violated but inequality (9) holds. On the other hand, as we already mentioned above, in this case the homogeneous problem $\left(1_{0}\right),(2)$ has a nontrivilal solution.

Particular cases of the boundary conditions (2) are the Dirichlet boundary conditions

$$
\begin{equation*}
u(a+)=0, \quad u^{\prime}(a+)=0, \quad u(b-)=0, \tag{0}
\end{equation*}
$$

and the Nicoletti boundary conditions

$$
\begin{array}{lll}
u(a+)=0, & u^{\prime}(a+)=0, & u^{\prime}(b-)=0, \\
u(a+)=0, & u^{\prime}(a+)=0, & u^{\prime \prime}(b-)=0 . \tag{2}
\end{array}
$$

For problem (1), (2_{k}) ($k=0,1,2$), a pair of conditions (6), (7) has one of the following three forms:

$$
\begin{gather*}
p(t) \geq-\frac{(\alpha+1)(\alpha+2)(\alpha+3)}{(b-a)^{\alpha+1}-(t-a)^{\alpha+1}}(t-a)^{\alpha-2} \text { for } a<t<b, \tag{0}\\
\operatorname{mes}\{t \in] a, b\left[:(t-a)^{2-\alpha} p(t)>-\frac{(\alpha+1)(\alpha+2)(\alpha+3)}{(b-a)^{\alpha+1}-(t-a)^{\alpha+1}}\right\}>0 ; \tag{0}\\
p(t) \geq-\frac{2(\alpha+1)(\alpha+2)(\alpha+3)}{(\alpha+3)(b-a)^{\alpha+1}-2(t-a)^{\alpha+1}}(t-a)^{\alpha-2} \text { for } a<t<b, \tag{1}\\
\operatorname{mes}\{t \in] a, b\left[:(t-a)^{2-\alpha} p(t)>-\frac{2(\alpha+1)(\alpha+2)(\alpha+3)}{(\alpha+3)(b-a)^{\alpha+1}-2(t-a)^{\alpha+1}}\right\}>0 ; \tag{1}\\
p(t) \geq-\frac{2(\alpha+1)(\alpha+2)(\alpha+3)}{(\alpha+2)(\alpha+3)(b-a)^{\alpha+1}-2(t-a)^{\alpha+1}}(t-a)^{\alpha-2} \text { for } a<t<b, \tag{2}\\
\operatorname{mes}\{t \in] a, b\left[:(t-a)^{2-\alpha} p(t)>-\frac{2(\alpha+1)(\alpha+2)(\alpha+3)}{(\alpha+2)(\alpha+3)(b-a)^{\alpha+1}-2(t-a)^{\alpha+1}}\right\}>0 . \tag{2}
\end{gather*}
$$

Corollary 3. Let for some $k \in\{0,1,2\}$ along with (3) conditions $\left(6_{k}\right)$ and $\left(7_{k}\right)$ be satisfied. Then problem (1), (2_{k}) has a unique solution.

Corollary 4. If for some $k \in\{0,1,2\}$ along with (3) the condition

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{2}(b-t)^{2-k} p_{-}(t) d t<2(b-a)^{2-k} \tag{11}
\end{equation*}
$$

is satisfied, then problem (1), $\left(2_{k}\right)$ has a unique solution.

Remark 4. The strict inequality $\left(7_{k}\right)$ in Corollary 3 cannot be replaced by the nonstrict one, while inequality (11) in Corollary 4 for some $k \in\{1,2\}$ cannot be replaced by the inequality

$$
\int_{a}^{b}(t-a)^{2}(b-t)^{2-k} p_{-}(t) d t<(2+\varepsilon)(b-a)^{2-k}
$$

no matter how small $\varepsilon>0$ is.

References

[1] I. Kiguradze, On the unique solvability of two-point boundary value problems for third order linear differential equations with singularities. Trans. A. Razmadze Math. Inst. 175 (2021), no. 3, 375-390.

