The Boundary Value Problem for a Semilinear Hyperbolic System

Sergo Kharibegashvili

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia E-mail: kharibegashvili@yahoo.com

In the space \mathbb{R}^{n+1} of the variables $x = (x_1, \ldots, x_n)$ and t, we consider the semilinear hyperbolic system of the form

$$\Box^2 u_i + f_i(u_1, u_2, \dots, u_N) = F_i(x, t), \ i = 1, \dots, N,$$
(1)

where $f = (f_1, \ldots, f_N)$, $F = (F_1, \ldots, F_N)$ are the given, and $u = (u_1, \ldots, u_N)$ is an unknown real vector function, $n \ge 2$, $N \ge 2$, $\Box := \frac{\partial^2}{\partial t^2} - \Delta$, $\Delta := \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$.

For the system (1) we consider the boundary value problem: find in the cylindrical domain $D_T := \Omega \times (0, T)$, where Ω is an open Lipschitz domain in \mathbb{R}^n , a solution u = u(x, t) of that system according to the boundary conditions

$$u\Big|_{\partial D_T} = 0, \quad \frac{\partial u}{\partial \nu}\Big|_{\partial D_T} = 0,$$
 (2)

where $\nu = (\nu_1, \ldots, \nu_n, \nu_{n+1})$ is the unit vector of the outer normal to ∂D_T .

Let

$$\overset{\circ}{C}{}^{k}(\overline{D}_{T},\partial D_{T}) := \left\{ u \in C^{k}(\overline{D}_{T}) : \left. u \right|_{\partial D_{T}} = \frac{\partial u}{\partial \nu} \right|_{\partial D_{T}} = 0 \right\}, \ k \ge 2.$$

Assume $u \in \overset{\circ}{C}{}^4(\overline{D}_T, \partial D_T)$ is a classical solution of the problem (1), (2). Multiplying both parts of the system (1) scalarly by an arbitrary vector function $\varphi = (\varphi_1, \ldots, \varphi_N) \in \overset{\circ}{C}{}^2(\overline{D}_T, \partial D_T)$ and integrating the obtained equation by parts over the domain D_T , we obtain

$$\int_{D_T} \Box u \Box \varphi \, dx \, dt + \int_{D_T} f(u)\varphi \, dx \, dt = \int_{D_T} F\varphi \, dx \, dt.$$
(3)

When deducing (3), we have used the equality

$$\int_{D_T} \Box \, u \, \Box \, \varphi \, dx \, dt = \int_{\partial D_T} \frac{\partial \varphi}{\partial N} \Box \, u \, ds - \int_{\partial D_T} \varphi \, \frac{\partial}{\partial N} \Box \, u \, ds + \int_{D_T} \varphi \Box^2 \, u \, dx \, dt,$$

where

$$\frac{\partial}{\partial N} = \nu_{n+1} \frac{\partial}{\partial t} - \sum_{i=1}^{n} \nu_i \frac{\partial}{\partial x_i}$$

is the derivative with respect to the conormal, as well as the equalities

$$\frac{\partial \varphi}{\partial N}\Big|_{\Gamma} = -\frac{\partial \varphi}{\partial \nu}\Big|_{\Gamma}, \quad \frac{\partial \varphi}{\partial N}\Big|_{\partial D_{T} \setminus \Gamma} = \frac{\partial \varphi}{\partial \nu}\Big|_{\partial D_{T} \setminus \Gamma}, \quad \Gamma := \partial \Omega \times (0,T), \quad \varphi\Big|_{\partial D_{T}} = \frac{\partial \varphi}{\partial \nu}\Big|_{\partial D_{T}} = 0.$$

Introduce the Hilbert space $\overset{\circ}{W}_{2,\Box}^1(D_T)$ as a completion with respect to the norm

$$\|u\|_{\dot{W}_{2,\Box}^{1}(D_{T})}^{2} = \int_{D_{T}} \left[u^{2} + \left(\frac{\partial u}{\partial t}\right)^{2} + \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}}\right)^{2} + (\Box u)^{2} \right] dx dt$$

$$\tag{4}$$

of the classical space $\overset{\circ}{C}^2(\overline{D}_T, \partial D_T)$. It follows from (4) that if $u \in \overset{\circ}{W}_{2,\Box}^1(D_T)$, then $u \in \overset{\circ}{W}_2^1(D_T)$ and $\Box u \in L_2(D_T)$. Here $W_2^1(D_T)$ is the well-known Sobolev space consisting of the elements of $L_2(D_T)$, having the first order generalized derivatives from $L_2(D_T)$ and $\overset{\circ}{W}_2^1(D_T) = \{u \in W_2^1(D_T) : u|_{\partial D_T} = 0\}$, where the equality $u|_{\partial D_T} = 0$ is understood in the trace theory.

Below, on the nonlinear vector function $f = (f_1, \ldots, f_N)$ from (1) we impose the following requirement

$$f \in C(\mathbb{R}^n), \quad |f(u)| \le M_1 + M_2 |u|^{\alpha}, \quad u \in \mathbb{R}^n,$$
(5)

where $|\cdot|$ is the norm of the space \mathbb{R}^n and $M_i = const \ge 0$, i = 1, 2, and

$$0 \le \alpha = const < \frac{n+1}{n-1}.$$
(6)

Remark 1. The embedding operator $I : W_2^1(D_T) \to L_q(D_T)$ is a linear continuous compact operator for $1 < q < \frac{2(n+1)}{n-1}$ and n > 1. At the same time, the Nemytsky operator $K : L_q(D_T) \to L_2(D_T)$, acting according to the formula K(u) = f(u), where $u = (u_1, \ldots, u_N) \in L_2(D_T)$ and the vector function $f = (f_1, \ldots, f_N)$ satisfies the condition (5), is continuous and bounded if $q \ge 2\alpha$. Therefore, if $\alpha < \frac{n+1}{n-1}$, then there exists a number q such that $1 < q < \frac{2(n+1)}{n-1}$ and $q \ge 2\alpha$. Thus, in this case the operator

$$K_0 = KI : W_2^1(D_T) \to L_2(D_T)$$

is continuous and compact. Moreover, from $u \in W_2^1(D_T)$ it follows that $f(u) \in L_2(D_T)$ and, if $u^m \to u$ in the space $W_2^1(D_T)$, then $f(u^m) \to f(u)$ in the space $L_2(D_T)$.

Definition 1. Let the vector function f satisfy the conditions (5) and (6), $F \in L_2(D_T)$. The vector function $u \in \overset{\circ}{W}_{2,\Box}^1(D_T)$ is said to be a weak generalized solution of the problem (1), (2), if for any vector function $\varphi = (\varphi_1, \ldots, \varphi_N) \in \overset{\circ}{W}_{2,\Box}^1(D_T)$ the integral equality (3) is valid, i.e.

$$\int_{D_T} \Box u \Box \varphi \, dx \, dt + \int_{D_T} f(u)\varphi \, dx \, dt = \int_{D_T} F\varphi \, dx \, dt \quad \forall \varphi \in \overset{\circ}{W}^1_{2,\Box}(D_T).$$
(7)

Notice that in view of Remark 1 the integral $\int_{D_T} f(u)\varphi \, dx \, dt$ in the equality (7) is defined

correctly, since from $u \in \overset{\circ}{W}{}_{2,\square}^1(D_T)$ it follows $f(u) \in L_2(D_T)$ and, therefore, $f(u)\varphi \in L_1(D_T)$.

It is not difficult to verify that if the solution u of the problem (1), (2) belongs to the class $\overset{\circ}{C}^4(\overline{D}_T, \partial D_T)$ in the sense of Definition 1, then it will also be a classical solution of this problem.

Consider the following condition

$$\lim_{|u|\to\infty} \inf \frac{uf(u)}{||u||_{\mathbb{R}^N}^2} \ge 0.$$
(8)

Theorem 1. Let the conditions (5), (6) and (8) be fulfilled. Then for any $F \in L_2(D_T)$ the problem (1), (2) has at least one weak generalized solution $u \in \overset{\circ}{W}^{1}_{2,\Box}(D_T)$.

Remark 2. If the conditions of Theorem 1 are fulfilled and the Nemytsky operator K(u) = f(u): $\mathbb{R}^N \to \mathbb{R}^N$ is monotonic, i.e.

$$(K(u) - K(v)) \cdot (u - v) \ge 0 \quad \forall u, v \in \mathbb{R}^N,$$
(9)

then there will hold the uniqueness of the solution of this problem.

Thus, the following theorem is valid.

Theorem 2. Let the conditions (5), (6) and (8), (9) be fulfilled. Then for any $F \in L_2(D_T)$ the problem (1), (2) has a unique weak generalized solution in the space $\overset{\circ}{W}_{2,\Box}^1(D_T)$.

Remark 3. The condition (9) will be fulfilled if $f \in C^1(\mathbb{R}^N)$ and the matrix $A = \left(\frac{\partial f_i}{\partial u_j}\right)_{i,j=1}^N$ is defined non-negatively, i.e.

$$\sum_{i,j=1}^{N} \frac{\partial f_i}{\partial u_j} (u) \xi_i \xi_j \ge 0 \quad \forall \xi = (\xi_1, \dots, \xi_N), \quad u = (u_1, \dots, u_N) \in \mathbb{R}^N.$$

As the examples show, if the conditions imposed on the nonlinear vector function f are violated, then the problem (1), (2) may not have a solution. For example, if

$$f_i(u_1, \dots, u_N) = \sum_{j=1}^N a_{ij} |u_j|^{\beta_{ij}} + b_i, \ i = 1, \dots, N,$$

where constant numbers a_{ij} , β_{ij} and b_i satisfy inequalities

$$a_{ij} > 0, \ 1 < \beta_{ij} < \frac{n+1}{n-1}, \ \sum_{i=1}^{N} b_i > 0,$$

then the condition (8) will be violated and the problem (1), (2) will not have a solution $u \in \overset{\circ}{W}_{2,\Box}^{1}(D_{T})$ for $F = \mu F^{o}$, where $F^{o} = (F_{1}^{o}, \ldots, F_{N}^{o}) \in L_{2}(D_{T})$, $G = \sum_{i=1}^{N} F_{i}^{o} \leq 0$; $\|G\|_{L_{2}(D_{T})} \neq 0$ for $\mu > \mu_{0} = \mu_{0}(G, \beta_{ij}) = const > 0$.