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Semidiscrete systems of equations constitute an important subclass of so-called “hybrid systems”
characterized by the presence of two components in the state space: discrete and continuous.
Intuitively, this means that the dynamics is mostly continuous, but at certain instants is exposed
to abrupt influences. Such systems naturally appear in applications, for example, in biological
and ecological models [10, 12] as well as in the control theory [11]. Some models with impulsive
actions [9] are also an important example of semidiscrete problems.

Finally, accounting for stochastic effects is an important part of any realistic approach to model-
ing. For example, in the population dynamics, demographic and ecological stochasticity arises due
to a change in time of factors external to the system, but affecting the survival of the population,
and in control theory, random coefficients can simulate, for example, inaccuracies in measure-
ments. Therefore, the study of hybrid stochastic systems has recently attracted the attention of
many specialists (see e.g. [7] and the references therein).

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space.

To describe semidiscrete systems, we fix a natural number l (1 ≤ l < n), for which x1(t), . . . , xl(t)
(t ≥ 0) will be the continuous components of the state vector of the system, while xl+1(s), . . . , xn(s)
(s ∈ N+ ≡ {0, 1, 2, . . . }) will be its discrete components. In the vector notation it will look as
follows:

x̂(t) = col(x1(t), . . . , xl(t)) (t ≥ 0), x̃(s) = col(xl+1(s), . . . , xn(s)) (s ∈ N+),

x(t) = col
(
x1(t), . . . , xl(t), xl+1([t]), . . . , xn([t])

)
(t ≥ 0),

where [t] is the integer part of the number t.
We study the moment exponential stability of solutions of the following system of linear diffe-

rential and difference Itô equations with aftereffect:

dx̂(t) = −
m1∑
j=1

A1j(t)x(h1j(t)) dt+

m∑
i=2

mi∑
j=1

Aij(t)x(hij(t)) dBi(t) (t ≥ 0),

x̃(s+ 1) = x̃(s)−
s∑

j=−∞
A1(s, j)x(j)h

+
m∑
i=2

s∑
j=−∞

Ai(s, j)x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+)

(0.1)
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with respect to the initial conditions

x(ς) = φ(ς) (ς < 0), (0.1a)
x(0) = b. (0.1b)

Here

• x(t) = col(x1(t), . . . , xl(t), xl+1([t]), . . . , xn([t])) (t ≥ 0) is a n-dimensional unknown stochastic
process;

• Aij(t) are l × n - matrices (i = 1, . . . ,m, j = 1, . . . ,mi), where the entries of the matrices
A1j(t), j = 1, . . . ,m1 are progressively measurable scalar stochastic processes on interval
[0,∞) with almost surely (a.s.) locally integrable trajectories, and the entries of the matrices
Aij(t), i = 2, . . . ,m, j = 1, . . . ,mi are progressively measurable scalar stochastic processes
on [0,∞), whose trajectories a.s. locally square-integrable;

• hij(t), i = 1, . . . ,m, j = 1, . . . ,mi are Borel measurable functions defined on [0,∞) and such
that hij(t) ≤ t (t ≥ 0) are almost everywhere Lebesgue measurable for all i = 1, . . . ,m,
j = 1, . . . ,mi;

• h is some positive real number;

• Ai(s, j) – (n − l) × n are matrices whose entries are Fs-measurable scalar random variables
for all i = 1, . . . ,m, s ∈ N+, j = −∞, . . . , s;

• φ(ς) = col(φ1(ς), . . . , φl(ς), φl+1([ς]), . . . , φn([ς])) (ς < 0) is a F0-measurable, n-dimensional
stochastic process with a.s. essentially bounded trajectories;

• b = col(b1, . . . , bn) is a F0-measurable n-dimensional random variable.

Under these assumptions, the problem (0.1)–(0.1b) has a unique global solution.
The moment exponential stability is defined in

Definition 0.1. System (0.1) is called exponentially q-stable with respect to the initial data if
there are positive numbers c, λ such that all solutions x(t, b, φ) (t ∈ (−∞,∞)) of the initial value
problem (0.1), (0.1a), (0.1b) satisfy the estimate(

E|x(t, b, φ)|q
)1/q ≤ c exp{−λt}

((
E|b|q

)1/q
+ ess supς<0

(
E|φ(ς)|q

)1/q)
(t ≥ 0).

The next definition is used in the main result of the paper.

Definition 0.2. An invertible matrix B = (bij)
m
i,j=1 is called positive invertible if all elements of

the matrix B−1 are positive.

According to [3], the matrix B will be positive invertible if bij ≤ 0 for i, j = 1, . . . ,m, i ̸= j
and all diagonal minors of the matrix B are positive. In particular, matrices with strict diagonal
dominance and non-positive off-diagonal elements are positive invertible.

1 Sufficient stability conditions
In this section we use a special constant cp, which is defined in
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Lemma. For any scalar, progressive measurable stochastic process f(ς)

(
E

∣∣∣∣
t∫

0

f(ς) dB(ς)
∣∣∣∣2p) 1

2p

≤ cp

(
E

( t∫
0

|f(ς)|2dς
)p) 1

2p

, (1.1)

where cp is some number depending on p ≥ 1. Here B(ς) is the scalar Wiener process.

Estimate (1.1) follows from the inequality given in the monograph [8, p. 65], where the formulas
for cp can also be found.

Let µ be the Lebesgue measure on [0,∞). Consider three groups of conditions on the coefficients
of System (0.1).

Assume that

• there exist numbers τij ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi such that 0 ≤ t− hij(t) ≤ τij (t ≥ 0)
µ-almost everywhere for all these indices;

• there exist numbers a ij
kr ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi, k = 1, . . . , l, r = 1, . . . , n such that

|aijkr(t)| ≤ a ij
kr (t ≥ 0) P × µ-almost everywhere for all these indices.

In addition, assume that there exist λk ≥ 0, k = 1, . . . , n, for which

• the diagonal entries of the matrices A1(s, s) (s ∈ N+) can be represented as a1kk(s, s) + λk

(s ∈ N+), k = l + 1, . . . , n;

•
∑
j∈Ik

a1jkk(t) ≥ λk (t ≥ 0) P × µ-almost everywhere (k = 1, . . . , l) and some subsets Ik ⊂

{1, . . . ,m1}, k = 1, . . . , l;

• 0 < λkh < 1 if k = l + 1, . . . , n.

Finally, assume that there exist numbers di ∈ N+, i = 1, . . . ,m, for which

• the entries of the matrices Ai(s, j) are equal to 0 P -almost everywhere for all s ∈ N+,
j = −∞, . . . , s− di − 1, i = 1, . . . ,m;

• |aikr(s, j)| ≤ a i
kr(s, j) P -almost everywhere for all i = 1, . . . ,m, k = l + 1, . . . , n, r = 1, . . . , n,

s ∈ N+, j = s− di, . . . , s, and, in addition,

sup
τ∈N+

τ∑
j=νi(τ)

a 1
kr(τ, j) < ∞ for all i = 1, . . . ,m, k = l + 1, . . . , n, r = 1, . . . , n,

where νi(τ) = 0 if 0 ≤ τ ≤ di and νi(τ) = τ − di if τ > di.

The entries of the n× n-matrix C are defined by

ckk =
1

λk

( ∑
j∈Ik

a 1j
kk

( m1∑
ν=1

a 1ν
kk τ1j + cp

m∑
i=2

mi∑
ν=1

a iν
kr
√
τ1j

)
+

m1∑
j=1, j∈{1,...,m1}/Ik

a 1j
kk

)

+
cp√
2λk

m∑
i=2

mi∑
j=1

a ij
kk, k = 1, . . . , l,

ckr =
1

λk

( ∑
j∈Ik

a 1j
kr

( m1∑
ν=1

a 1ν
kr τ1j + cp

m∑
i=2

mi∑
ν=1

a iν
kr
√
τ1j

)
+

m1∑
j=1

a 1j
kr

)
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+
cp√
2λk

m∑
i=2

mi∑
j=1

a ij
kr, k = 1, . . . , l, r = 1, . . . , n, k ̸= r,

ckr =
1

λkh

(
h sup

τ∈N+

τ∑
j=ν1(τ)

a 1
kr(τ, j) + cp

√
h

m∑
i=2

sup
τ∈N+

τ∑
j=νi(τ)

a i
kr(τ, j)

)
,

k = 1, . . . , l, r = 1, . . . , n.

The above assumptions enable us to formulate the main result of this paper.

Theorem. If the matrix E − C is positive invertible, then System (0.1) is exponentially 2p-stable
with respect to the initial data, i.e. in the sense of Definition 0.1. Moreover, the exponential decay
rate λ of all solutions can be estimated as

0 < λ < min
{
λi, i = 1, . . . , l; − ln(1− λih), i = l + 1, . . . , n

}
. (1.2)

The proof of the theorem is based on the regularization method, also known as a method of
model (auxiliary) equations or “N. V. Azbelev’s W -method”, see the monographs [1, 2] and the
references therein. This approach has proven to be efficient in the theory of stochastic differential
[4] and difference [5] equations. The main idea of the method is to replace functionals on the
space of trajectories of solutions by the so-called “model” equation that already has the necessary
property of stability and which is used to regularize the initial equation. Checking stability of the
latter amounts, then, to estimating the norm of a certain integral operator or checking a positive
invertibility of some matrix. The latter version of the W -method was developed in [6].

2 An example
Consider a semidiscrete system of stochastic equations with constant coefficients and bounded
delays of the form:

dx̂(t) = −
m1∑
j=1

A1jx(t− h1j) dt+
m∑
i=2

mi∑
j=1

Aijx(t− hij)dBi(t) (t ≥ 0),

x̃(s+ 1) = x̃(s)−A1

s∑
j=s−d1

x(j)h+

m∑
i=2

Ai

s∑
j=s−di

x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+),

(2.1)

where Aij = (aijkr)
l,n
k,r=1, i = 1, . . . ,m, j = 1, . . . ,mi are real l×n-matrices and Ai = (aikr)

n
k=l+1,r=1,

i = 1, . . . ,m are real (n− l)×n-matrices, and hij ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi are real numbers,
h > 0 is some (sufficiently small) real number. Put also

m1∑
j=1

a1jkk = ak, k = 1, . . . , l an define the

entries of the n× n-matrix C as follows:

ckk =
1

ak

m1∑
j=1

|a1jkk|
( m1∑

ν=1

|a1νkk|h1j + cp

m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+

cp√
2ak

m∑
i=2

mi∑
j=1

|aijkk|, k = 1, . . . , l,

ckr =
1

ak

( m1∑
j=1

|a1jkr|
( m1∑

ν=1

|a1νkr |h1j + cp

m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+

m1∑
j=1

|a1jkr|
)

+
cp√
2ak

m∑
i=2

mi∑
j=1

|aijkr|, k = 1, . . . , l, r = 1, . . . , n, k ̸= r,
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ckk =
cp(di + 1)

a1kk
√
h

m∑
i=2

|aikk|, k = 1 + 1, . . . , l,

ckr =
(d1 + 1)|a1kr|

a1kk
+

cp(di + 1)

a1kk
√
h

m∑
i=2

|aikr|, k = 1 + 1, . . . , l, r = 1, . . . , n, k ̸= r.

Then from Theorem we can deduce the following

Proposition. If ak > 0, k = 1, . . . , l, a1kk > 0, k = l+ 1, . . . , n, and the matrix E −C is positively
invertible, then system (2.1) is exponentially 2p-stable with respect to the initial data.

In particular, we obtain

Corollary. Let n = 2, l = 1 in system (2.1) and let the entries cij, i, j = 1, 2 of the 2× 2-matrix
C be defined as described right before Proposition. If now 1− c11 > 0; (1− c11)(1− c22) > c12c21,
then system (2.1) is exponentially 2p-stable with respect to the initial data.

The corollary follows from Proposition and from the fact that under the conditions of the
corollary the 2× 2-matrix E − C is positive invertible, since its diagonal minors are positive.
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