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1 Introduction
Consider the second order half-linear differential equation

(p(t)φα(x
′))′ + q(t)φα(x) = 0, (HL)

where α is a positive constant, p(t) and q(t) are positive, continuously differentiable functions on
[a,∞), a = 0, and φγ : R → R denotes the odd function defined by

φγ(u) = |u|γ sgnu = |u|γ−1u, u ∈ R, γ > 0.

It is known that all proper solutions of (HL) are either oscillatory, in which case equation (HL)
itself is called oscillatory, or else nonoscillatory, in which case (HL) itself is called nonoscillatory.
Our attention will be focused on oscillatory equations of the form (HL).

Let x(t) be an oscillatory solution of (HL) existing on [a,∞). We denote by {σk}∞k=1 (σk < σk+1)
the sequence of zeros of x(t), and by {τk}∞k=1 (τk < τk+1) the sequence of points at which x(t) takes
on extrema (i.e. local maxima or minima). Naturally, x(σk) = 0 and x′(τk) = 0 for all k. The
values |x′(σk)| and |x(τk)| are referred to as the slope and amplitude, respectively, of the k-th wave
of x(t). We use the following notations:

A∗[x] = sup
k

|x(τk)|, A∗[x] = inf
k
|x(τk)|, S∗[x] = sup

k
|x′(σk)|, S∗[x] = inf

k
|x′(σk)|.

An oscillatory solution x(t) of (HL) is bounded if A∗[x] < ∞, and unbounded if A∗[x] = ∞.
Two cases are possible for a bounded oscillatory solution: either lim

k→∞
|x(τk)| = 0 which is equivalent

to lim
t→∞

x(t) = 0, or lim inf
k→∞

|x(τk)| > 0 which amounts to A∗[x] > 0. In the former case x(t) is called
a decaying oscillatory solution, while in the latter case x(t) is called an non-decaying oscillatory
solution of (HL).



84 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

Recently, Kusano and Yoshida [1] have shown the existence and the qualitative properties, i.e.,
“amplitudes” and “slopes”, of oscillatory solutions x(t) of the linear differential equation

(p(t)x′)′ + q(t)x = 0, t = a. (L)

The purpose of this paper is to report to the QUALITDE – 2021 that some of their results can be
extended to half-linear differential equations of the form (HL).

2 Main results
Our first result concerns the estimation of A∗[x] and A∗[x].

Theorem 2.1. Let (HL) be oscillatory and let x(t) be a solution of it satisfying the initial condition

x(a) = l, x′(a) = m, (2.1)

where l and m are any given constants such that (l,m) ̸= (0, 0).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) > 0, (2.2)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) < ∞. (2.3)

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) > 0, (2.4)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) < ∞. (2.5)

(iii) Suppose that (p(t) 1
α q(t))′ = 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

, (2.6)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) < ∞. (2.7)

(iv) Suppose that (p(t) 1
α q(t))′ 5 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) > 0, (2.8)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

. (2.9)

Since the constants l and m in (2.1) are arbitrary, the above inequalities (2.2)–(2.9) guarantee
under the indicated conditions on p(∞) and/or q(∞) that A∗[x] < ∞ and/or A∗[x] > 0 for all
solutions x(t) of (HL). Then, A∗[x] < ∞ gives the boundedness of x(t) on [a,∞) and A∗[x] < ∞
and A∗[x] > 0 imply the non-decaying boundedness of x(t) on [a,∞).
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Corollary 2.1. Suppose that (HL) is oscillatory. All of its solutions are bounded on [a,∞) if p(t)
and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0;

(iii) (p(t)
1
α q(t))′ = 0 for t = a;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

Corollary 2.2. Supposet that (HL) is oscillatory. All of its solutions are non-decaying bounded
on [a,∞) if p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and p(∞) < ∞, q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0, q(∞) < ∞;

(iii) (p(t)
1
α q(t))′ = 0 for t = a and p(∞)

1
α q(∞) < ∞;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

The estimation of S∗[x] and S∗[x] are given in the following
Theorem 2.2. Let (HL) be oscillatory and let x(t) be a solution of it satisfying (2.1).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

,

S∗[x] =
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) < ∞ and q(∞) > 0.

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) > 0 and q(∞) < ∞,

S∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

.

(iii) Suppose that p′(t) = 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) < ∞,

S∗[x] =
[p(a) 1

α

{
q(a)|l|α+1 + αp(a)|m|α+1

}
αp(∞)1+

1
α

] 1
α+1 if p(∞) < ∞.

(iv) Suppose that p′(t) 5 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α

] 1
α+1 if p(∞) > 0,

S∗[x] =
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) > 0.

Corollary 2.3. Let (HL) be oscillatory. If p(t) and q(t) are monotone functions such that 0 <
p(∞) < ∞ and 0 < q(∞) < ∞, then S∗[x] < ∞ and S∗[x] > 0 for all solutions x(t) of (HL).
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3 Example
Example. Consider the half-linear differential equation(

(coth(t+ τ))αφα(x
′)
)′
+ k tanh(t+ τ)φα(x) = 0 (3.1)

on [0,∞), where τ = 0 and k > 0 are constants. Equation (3.1) is oscillatory since the functions
p(t) = (coth(t+ τ))α and q(t) = k tanh(t+ τ) are not integrable on [0,∞). It is clear that p(t) and
q(t) satisfy p′(t) 5 0, q′(t) = 0, (p(t) 1

α q(t))′ = 0, p(0) = (coth τ)α, p(∞) = 1, q(0) = k tanh τ and
q(∞) = k, all nontrivial solutions of equation (3.1) are bounded and non-decaying by (ii) and (iii)
of Corollary 2.2. As regards the estimates for upper and lower amplitudes and upper and lower
slopes of solutions of (3.1), we obtain, for example,

A∗[x] 5
[
coth τ |l|α+1 +

α

k
(coth τ)α+2|m|α+1

] 1
α+1

,

A∗[x] =
[
tanh τ |l|α+1 +

α

k
(coth τ)α|m|α+1

] 1
α+1

from (ii) of Theorem 2.1, and

S∗[x] 5
[k
α

coth τ |l|α+1 + (coth τ)α+2|m|α+1
] 1

α+1
,

S∗[x] =
[k
α
(tanh τ)α+1|l|α+1 + |m|α+1

] 1
α+1

from (ii) of Theorem 2.2. If in particular τ = 0 and k = α, then the upper and lower amplitudes
and slopes coincide, that is,

A∗[x] = A∗[x] = S∗[x] = S∗[x] =
[
|l|α+1 + |m|α+1

] 1
α+1 .

This value may well be called the amplitude A[x] and the slope S[x] of the solution x(t) of the
equation (

(coth t)αφα(x
′)
)′
+ α tanh t φα(x) = 0. (3.2)

Notice that (3.2) is reduced to the generalized harmonic oscillator

(φα(ż))
· + αφα(z) = 0, · = d

dσ
, (3.3)

by means of the change of variables (t, x) → (σ, z) given by σ = log(cosh t), z(σ) = x(t). Equation
(3.3) is known as a differential equation generating a generalized trigonometic function. Its solution
z(σ) determined by the initial condition z(0) = 0, ż(0) = 1 is the generalized sine function z = S(σ)
which exists on R, is periodic with period 2πα, πα = 2π

α+1/ sin(
π

α+1), and vanishes at σ = kπα,
k ∈ Z. It follows that (3.2) has an oscillatory solution x(t) = S(log(cosh t)) on [0,∞) whose zeros
are located at tn = cosh−1(enπα), n = 0, 1, 2, . . . , and whose amplitude and slope are given by
A[x] = 1 and S[x] = 1, respectively.
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