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The integro-differential equations are applied in many branches of science, such as physics,
engineering, biochemistry, etc. A lot of scientific works are dedicated to the investigation and
numerical resolution of integro-differential models (see, for example, [2, 7, 11, 13, 16, 18] and the
references therein).

One type of nonlinear integro-differential parabolic model is obtained at the mathematical
simulation of processes of electromagnetic field penetration into a substance. Based on Maxwell
system [14], the mentioned model at first appeared in [3]. The integro-differential system obtained
in [8] describes many other processes as well (see, for example, [7, 11] and the references therein).
Equations and systems of such types still yield to the investigation for special cases. In this direction
the latest and rather complete bibliography can be found in the following monographs [7, 11].

The purpose of this note is to analyze degenerate one-dimensional case of such type models.
Unique solvability and convergence of the constructed semi-discrete scheme with respect to the
spatial derivative and fully discrete finite difference scheme are studied.

The investigated problem has the following form. In the rectangle Q = (0, 1)× (0, T ], where T
is a fixed positive constant, we consider the following initial-boundary value problem:
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U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ∈ [0, T ], (3)
U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1]. (4)

Here f = f(x, t), g = g(x, t), U0 = U0(x), V0 = V0(x) are given functions of their arguments
and U = U(x, t), V = V (x, t) are unknown functions.

It is necessary to mention that (1), (2) is a degenerate type parabolic system with integro-
differential and p-Laplacian (p = 4) terms. Let us note that non-degenerate variants of (1)–
(4) type problem for more general nonlinearities are studied in [6]. Many works are devoted to
the investigation of multi-dimensional cases of such type equations and systems as well (see, for
example, [1, 4, 7, 9–12, 15] and the references therein). We would also like to note that in recent
years special attention has been paid to the construction and investigation of splitting models for
this type and their generalized variants of multi-dimensional integro-differential equations (see, for
example, [7, 9, 10] and the references therein).
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As it was already mentioned, (1), (2) type models arise, on the one hand, when solving real
applied problems, and on the other hand, as a natural generalization of some nonlinear parabolic
equations and systems studied for example, in [16,17] and in many other works as well.

Problems of (1)–(4) type at first were studied in [1], where the monotonicity of the considered
operator is proved and the unique solvability is obtained.

Applying one modification of compactness method developed in [17] (see also [16]) the following
uniqueness and existence statement takes place.

Theorem 1. If f, g ∈ W 1
2 (Q), f(x, 0) = g(x, 0) = 0, U0, V0 ∈

◦
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Here usual well-known spaces are used.
In order to describe the space-discretization for problem (1)–(4), let us introduce nets: ωh =

{xi = ih, i = 1, 2, . . . ,M − 1}, ωh = {xi = ih, i = 0, 1, . . . ,M} with h = 1/M . The boundaries are
specified by i = 0 and i = M . The semi-discrete approximation at (xi, t) is designed by ui = ui(t),
vi = vi(t). The exact solution of problem (1)–(4) at point (xi, t) is denoted by Ui = Ui(t), Vi = Vi(t).

Approximating the space derivatives by a forward and backward differences:
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h
, wx,i =

ui − wi−1

h
,

let us correspond the following semi-discrete scheme to problem (1)–(4):
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u0(t) = uM (t) = v0(t) = vM (t) = 0, t ∈ [0, T ], (7)
ui(0) = U0,i, i = 0, 1, . . . ,M, (8)

which approximates problem (1)–(4) on smooth solutions with the first order of accuracy with
respect to spatial step h.

The semi-discrete scheme (5)–(8) represents a Cauchy problem for nonlinear system of ordi-
nary integro-differential equations. It is stable with respect to initial data and right-hand side of
equations (5), (6) in the norm
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1/2
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It is not difficult to obtain the following estimate for (5)–(8)
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where the norm under the integral is defined as follows

||w]|2h = (w,w]h =
M∑
i=1

wiwih.

Here C denotes the positive constant independent of the mesh parameter h. This estimate gives
the above-mentioned stability as well as the global existence of a solution to problem (5)–(8).

In Theorems 2 and 3, using an approach of the work [5] for investigation the finite-difference
scheme, the convergence of the approximate solutions are stated.

For earlier work on discretization in time or space, or both, of models such as (1), (2), see,
e.g., [5–12].

The following statement takes place.

Theorem 2. The solution
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In order to describe the fully discrete analog of problem (1)–(4), let us construct grid on the
rectangle Q. For using the time-discretization in equations (1), (2) the net is introduced as follows
ωτ = {tj = jτ, j = 0, 1, . . . , J}, with τ = T/J and ωhτ = ωh × ωτ , uji = u(xi, tj).

Let us correspond the following implicit finite difference scheme to problem (1)–(4), where the
terms with time derivatives in (5), (6) are approximated using the forward finite difference formula:

uj+1
i − uji

τ
−
{[

τ

j+1∑
k=1

[
(ukx,i)

2 + (vkx,i)
2
]
+ (uj+1

x,i )2 + (vj+1
x,i )2

]
uj+1
x,i

}
x,i

= f j+1
i , (9)

vj+1
i − vji

τ
−
{[

τ

j+1∑
k=1

[
(ukx,i)

2 + (vkx,i)
2
]
+ (uj+1

x,i )2 + (vj+1
x,i )2

]
vj+1
x,i

}
x,i

= gj+1
i , (10)

i = 1, 2, . . . ,M − 1, j = 0, 1, . . . , J − 1;

uj0 = ujM = vj0 = vjM = 0, j = 0, 1, . . . , J, (11)
u0i = U0,i, v0i = V0,i, i = 0, 1, . . . ,M. (12)

Thus, the system of nonlinear algebraic equations (9)–(12) is obtained, which approximates
problem (1)–(4) on sufficiently smooth solution with the first order of accuracy with respect to
time and spatial steps τ and h.

The following estimate can be obtained easily for the solution of the finite difference scheme
(9)–(12)
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which guarantees the stability and solvability of scheme (9)–(12). It is proved also that system
(9)–(12) has a unique solution. Here C represents positive constant independent from time and
spatial steps τ and h.

The following main conclusion is valid for scheme (9)–(12).
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Theorem 3. The solution
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Note that for solving the difference scheme (9)–(12) Newton iterative process is used. Various
numerical experiments are done. These experiments agree with theoretical research.

Statements such Theorems 1–3 for (1), (2) type equation are stated in [8]. As it was mentioned
in [8], it is very interesting to looking for assumptions on the data of the considered problem (1)–(4)
that provide the regularity for the solution U(x, t), V (x, t), which is required for obtaining rates of
convergence in Theorems 2 and 3 as well as the optimal rates of convergence. It is important also
to study more general nonlinearities for such kind degenerate and non-degenerate equations and
systems.
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