# Positive Solutions to Boundary Value Problems for Nonlinear Functional Differential Equations 

Robert HakI<br>Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic<br>E-mail: hakl@ipm.cz<br>José Oyarce<br>Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío<br>Concepción, Chile<br>E-mail: jooyarce@egresados.ubiobio.cl

Consider a boundary value problem for a functional differential equation

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t)+\lambda F(u)(t) \text { for a.e. } t \in[a, b], \quad h(u)=0 . \tag{1}
\end{equation*}
$$

Here, $\ell: C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$ and $h: C([a, b] ; \mathbb{R}) \rightarrow \mathbb{R}$ are linear bounded operators, $F:$ $C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$ is a continuous operator satisfying the Carathéodory conditions, and $\lambda \in \mathbb{R}$ is a parameter. By a solution to the problem (1) we understand an absolutely continuous function $u:[a, b] \rightarrow \mathbb{R}$ that satisfies the equation in (1) almost everywhere on $[a, b]$ and satisfies the boundary condition in (1). We say that a solution $u$ to (1) is positive if $u(t)>0$ for $t \in[a, b]$.

Although the assumptions of the main results do not exclude the case when $F(0) \not \equiv 0$, the main importance of our results is that they are applicable in the case when the problem (1) possesses a trivial solution, i.e., $F(0)(t)=0$ for a.e. $t \in[a, b]$.

## Notation 1.

$\mathbb{N}$ is the set of all natural numbers, $\mathbb{R}$ is the set of all real numbers, $\left.\mathbb{R}_{+}=\right] 0,+\infty\left[, \mathbb{R}_{0}^{+}=[0,+\infty[\right.$.
$C([a, b] ; \mathbb{R})$ is the Banach space of continuous functions $v:[a, b] \rightarrow \mathbb{R}$ with the norm $\|v\|_{C}=$ $\max \{|v(t)|: t \in[a, b]\}$.

If $D \subset \mathbb{R}$, then $C_{h}([a, b] ; D)=\{u \in C([a, b] ; \mathbb{R}): u(t) \in D$ for $t \in[a, b], h(u)=0\}$.
$L([a, b] ; \mathbb{R})$ is the Banach space of Lebesgue integrable functions $p:[a, b] \rightarrow \mathbb{R}$ with the norm $\|p\|_{L}=\int_{a}^{b}|p(s)| d s$.

If $D \subset \mathbb{R}$, then $L([a, b] ; D)=\{p \in L([a, b] ; \mathbb{R}): p(t) \in D$ for a.e. $t \in[a, b]\}$.
If $A: C([a, b] ; \mathbb{R}) \rightarrow C([a, b] ; \mathbb{R})$ is a linear bounded operator, by $\|A\|$ we denote the norm of $A$.
Definition 1. We say that a pair of operators $(\ell, h)$ belongs to the set $\mathcal{V}^{+}$if every nontrivial absolutely continuous function $u:[a, b] \rightarrow \mathbb{R}$, satisfying

$$
\begin{equation*}
u^{\prime}(t) \geq \ell(u)(t) \text { for a.e. } t \in[a, b], \quad h(u)=0, \tag{2}
\end{equation*}
$$

admits the inequality

$$
u(t)>0 \text { for } t \in[a, b] .
$$

Definition 2. We say that a pair of operators $(\ell, h)$ belongs to the set $\mathcal{U}^{+}$if there exists $c>0$ such that every absolutely continuous function $u:[a, b] \rightarrow \mathbb{R}$ satisfying (2) admits the inequality

$$
u(t) \geq c \int_{a}^{b}\left[u^{\prime}(s)-\ell(u)(s)\right] d s \text { for } t \in[a, b]
$$

It can be easily seen that if $(\ell, h) \in \mathcal{V}^{+}$, resp. $(\ell, h) \in \mathcal{U}^{+}$, then the homogeneous problem

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t) \text { for a.e. } t \in[a, b], \quad h(u)=0 \tag{3}
\end{equation*}
$$

has only the trivial solution. Note also that $\mathcal{U}^{+} \subseteq \mathcal{V}^{+}$. However, $\mathcal{U}^{+} \neq \mathcal{V}^{+}$in general.
Now we formulate some of the assumptions of the main results.
(H.1) $F$ transforms $C_{h}\left([a, b] ; \mathbb{R}_{0}^{+}\right)$into $L\left([a, b] ; \mathbb{R}_{0}^{+}\right)$and it is not the zero operator, i.e., there exists $x_{0} \in C_{h}\left([a, b] ; \mathbb{R}_{+}\right)$such that

$$
\int_{a}^{b} F\left(x_{0}\right)(s) d s>0
$$

(H.2) $F$ is sublinear with respect to $C_{h}\left([a, b] ; \mathbb{R}_{0}^{+}\right)$, i.e., there exists a Carathéodory function $\eta$ : $[a, b] \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$non-decreasing in the second variable such that

$$
F(v)(t) \leq \eta\left(t,\|v\|_{C}\right) \text { for a.e. } t \in[a, b], \quad v \in C_{h}\left([a, b] ; \mathbb{R}_{0}^{+}\right)
$$

and

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \int_{a}^{b} \eta(s, x) d s=0
$$

(H.3) $F$ is nondecreasing in the neighbourhood of zero, i.e., for every $\rho>0$ there exists $m_{\rho} \in$ $C_{h}\left([a, b] ; \mathbb{R}_{+}\right)$such that $m_{\rho}(t) \leq \rho$ for $t \in[a, b]$ and

$$
F(y)(t) \leq F(x)(t) \text { for a.e. } t \in[a, b]
$$

whenever $x, y \in C_{h}\left([a, b] ; \mathbb{R}_{+}\right)$,

$$
y(t) \leq m_{\rho}(t) \text { and } y(t) \leq x(t) \leq \rho \text { for } t \in[a, b] .
$$

(H.4) $F$ is concave in the neighbourhood of zero, i.e., for every $x \in C_{h}\left([a, b] ; \mathbb{R}_{+}\right)$there exists $\mu_{x}>0$ such that

$$
\mu F(x)(t) \leq F(\mu x)(t) \text { for a.e. } t \in[a, b], \quad \mu \in] 0, \mu_{x}[.
$$

Notation 2. Let $\lambda \in \mathbb{R}$. Then by $\mathcal{S}(\lambda)$ we denote the set of all positive solutions to (1) for corresponding $\lambda$.
Theorem 1. Let $(\ell, h) \in \mathcal{V}^{+}$and let (H.1)-(H.4) be fulfilled. Then there exists a critical parameter $\lambda_{c} \geq 0$ such that
(i) the problem (1) has a positive solution provided $\lambda>\lambda_{c}$;
(ii) the problem (1) has no positive solution provided $\lambda<\lambda_{c}$.

Moreover,

$$
\lim _{\lambda \rightarrow+\infty} \inf \left\{\|u\|_{C}: u \in \mathcal{S}(\lambda)\right\}=+\infty .
$$

If, in addition, $(\ell, h) \in \mathcal{U}^{+}$, then for every $\rho>0$ there exists $\lambda(\rho)>\lambda_{c}$ such that

$$
u(t)>\rho \text { for } t \in[a, b], \quad u \in \mathcal{S}(\lambda), \quad \lambda>\lambda(\rho) .
$$

As for the critical case $\lambda=\lambda_{c}$, the existence or nonexistence of a positive solution to (1) depends on the properties of the operator $F$; both cases can occur. If we slightly strengthen the assumption (H.4), in particular, if we assume
(H.4') For every $x \in C_{h}\left([a, b] ; \mathbb{R}_{+}\right)$there exists $\mu_{x}>0$ such that

$$
\mu F(x)(t) \leq F(\mu x)(t) \text { for a.e. } t \in[a, b], \quad \mu \in] 0, \mu_{x}[
$$

and

$$
\mu_{0} \int_{a}^{b} F(x)(s) d s<\int_{a}^{b} F\left(\mu_{0} x\right)(s) d s
$$

for some $\left.\mu_{0} \in\right] 0, \mu_{x}[$
instead, we can establish a result about the nonexistence of a positive solution to (1) with $\lambda=\lambda_{c}$.
Theorem 2. Let $(\ell, h) \in \mathcal{V}^{+}$and let (H.1)-(H.3), and (H.4') be fulfilled. Then $\mathcal{S}\left(\lambda_{c}\right)=\varnothing$ and

$$
\lim _{\lambda \rightarrow \lambda_{c}^{+}} \sup \left\{\|u\|_{C}: u \in \mathcal{S}(\lambda)\right\}=0 .
$$

Suppose that the operator $F$ includes a linear part, i.e.,

$$
F(v)(t)=\widetilde{F}(v, v)(t) \text { for a.e. } t \in[a, b], \quad v \in C([a, b] ; \mathbb{R}),
$$

where $\widetilde{F}: C([a, b] ; \mathbb{R}) \times C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$ is a continuous operator satisfying the Carathéodory conditions and it is linear and nondecreasing in the first variable. Therefore, instead of (1) we consider the problem

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t)+\lambda \widetilde{F}(u, u)(t) \text { for a.e. } t \in[a, b], \quad h(u)=0 \tag{4}
\end{equation*}
$$

where $\ell$ and $\lambda$ are the same as in (1) and $\widetilde{F}$ is described above. The set of all positive solutions to (4) we denote again by $\mathcal{S}(\lambda)$ as (4) is a particular case of (1).

Theorem 3. Let $(\ell, h) \in \mathcal{V}^{+}$and let (H.1)-(H.3) and (H.4') be fulfilled. Then $\lambda_{c}>0$, the problem

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t)+\lambda_{c} \widetilde{F}(u, 0)(t) \text { for a.e. } t \in[a, b], \quad h(u)=0 \tag{5}
\end{equation*}
$$

has a positive solution $u_{c}$, the set of solutions to (5) is one-dimensional (generated by $u_{c}$ ), and

$$
\left.\left(T_{\lambda}, h\right) \in \mathcal{V}^{+}, \text {resp. }\left(T_{\lambda}, h\right) \in \mathcal{U}^{+}, \text {for } \lambda \in\right] 0, \lambda_{c}[
$$

where

$$
T_{\lambda}(v)(t) \stackrel{\text { def }}{=} \ell(v)(t)+\lambda \widetilde{F}(v, 0)(t) \text { for a.e. } t \in[a, b], v \in C([a, b] ; \mathbb{R})
$$

provided $(\ell, h) \in \mathcal{V}^{+}$, resp. $(\ell, h) \in \mathcal{U}^{+}$.

Theorem 3 gives us a method how to calculate the precise value of $\lambda_{c}$ in the cases where $F$ includes a linear part. Indeed, define an operator $A: C([a, b] ; \mathbb{R}) \rightarrow C([a, b] ; \mathbb{R})$ by

$$
A(x)(t) \stackrel{\text { def }}{=} \int_{a}^{b} G(t, s) \widetilde{F}(x, 0)(s) d s \text { for } t \in[a, b], \quad x \in C([a, b] ; \mathbb{R}),
$$

where $G$ is Green's function to (3). Then

$$
u_{c}(t)=\lambda_{c} A\left(u_{c}\right)(t) \text { for } t \in[a, b],
$$

i.e., $1 / \lambda_{c}$ is the first eigenvalue to $A$ corresponding to the positive eigenfunction $u_{c}$. Therefore, according to Krasnoselski's theory and Gelfand's formula,

$$
\lambda_{c}=\lim _{n \rightarrow+\infty} \frac{1}{\sqrt[n]{\left\|A^{n}\right\|}}
$$

## Application

Most of population models with a delayed harvesting term can be represented as an equation

$$
\begin{equation*}
u^{\prime}(t)=-\delta(t) u(t)-H(t) u(t-\sigma(t))+\lambda \sum_{k=1}^{N} P_{k}(t) u\left(t-\tau_{k}(t)\right) f_{k}\left(u\left(t-\tau_{k}(t)\right)\right), \tag{6}
\end{equation*}
$$

where $N \in \mathbb{N}$,
(A.1) (i) $\delta, H, P_{k}: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}(k=1, \ldots, N)$ are $T$-periodic locally integrable functions,

$$
\int_{0}^{T}[\delta(s)+H(s)] d s>0, \quad \int_{0}^{T} \sum_{k=1}^{N} P_{k}(s) d s>0
$$

(ii) $\sigma: \mathbb{R} \rightarrow\left[0, \sigma_{*}\right], \tau_{k}: \mathbb{R} \rightarrow\left[0, \tau_{*}\right](k=1, \ldots, N)$ are $T$-periodic locally measurable functions ( $\sigma_{*}$ and $\tau_{*}$ are non-negative constants),
(iii) $f_{k}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{+}(k=1, \ldots, N)$ are continuous decreasing functions that are continuously differentiable at some neighbourhood of zero, and

$$
\lim _{x \rightarrow+\infty} f_{k}(x)=0 \quad(k=1, \ldots, N) .
$$

By a $T$-periodic solution to (6) we understand a $T$-periodic locally absolutely continuous function defined on $\mathbb{R}$ and satisfying the equality (6) for almost every $t \in \mathbb{R}$.

Theorem 4. Let (A.1) be fulfilled, and let there exist $\gamma: \mathbb{R} \rightarrow \mathbb{R}_{+}$that is locally absolutely continuous such that

$$
\begin{equation*}
\gamma^{\prime}(t) \leq-\delta(t) \gamma(t)-H(t) \gamma(t-\sigma(t)) \text { for a.e. } t \in \mathbb{R} \tag{7}
\end{equation*}
$$

Then $(\ell, h) \in \mathcal{U}^{+}$and $F$ satisfies (H.1)-(H.3) and (H.4') with $\mu_{x}=1$ for all $x \in C\left([0, T] ; \mathbb{R}_{+}\right)$, where the operators $\ell, F: C([0, T] ; \mathbb{R}) \rightarrow L([0, T] ; \mathbb{R})$ and $h: C([0, T] ; \mathbb{R}) \rightarrow \mathbb{R}$ are defined by

$$
\ell(v)(t) \stackrel{\text { def }}{=}-\delta(t) v(t)-H(t) v\left(\sigma_{0}(t)\right), \quad h(v) \stackrel{\text { def }}{=} v(0)-v(T) \text { for } v \in C([0, T] ; \mathbb{R}),
$$

$$
\begin{aligned}
& F(v)(t) \stackrel{\text { def }}{=} \sum_{k=1}^{N} P_{k}(t) v\left(\tau_{0 k}(t)\right) f_{k}\left(v\left(\tau_{0 k}(t)\right)\right) \text { for } v \in C([0, T] ; \mathbb{R}), \\
& \sigma_{0}(t) \stackrel{\text { def }}{=} t-\sigma(t)+\left\lfloor\frac{T-(t-\sigma(t))}{T}\right\rfloor T \text { for a.e. } t \in[0, T], \\
& \tau_{0 k}(t) \stackrel{\text { def }}{=} t-\tau_{k}(t)+\left\lfloor\frac{T-\left(t-\tau_{k}(t)\right)}{T}\right\rfloor T \text { for a.e. } t \in[0, T] \quad(k=1, \ldots, N) .
\end{aligned}
$$

One of the efficient conditions guaranteeing the existence of a positive $\gamma$ satisfying (7) is

$$
\int_{t-\sigma(t)}^{t} H(s) \exp \left(\int_{s-\sigma(s)}^{s} \delta(\xi) d \xi\right) d s \leq \frac{1}{e} \text { for a.e. } t \in[0, T] .
$$

Another conditions guaranteeing the inclusion $(\ell, h) \in \mathcal{U}^{+}$are

$$
\text { either } \int_{0}^{T}[\delta(s)+H(s)] d s<1 \text { or } \int_{0}^{T} H(s) \exp \left(\int_{s-\sigma(s)}^{s} \delta(\xi) d \xi\right) d s<1
$$

provided (A.1)(i) is fulfilled.

