On Some Estimates for the First Eigenvalue of a Sturm-Liouville Problem

S. Ezhak, M. Telnova
Plekhanov Russian University of Economics, Moscow, Russia
E-mail: svetlana.ezhak@gmail.com; mytelnova@yandex.ru

1 Introduction

Consider the Sturm-Liouville problem

$$
\begin{gather*}
y^{\prime \prime}+Q(x) y+\lambda y=0, \quad x \in(0,1), \tag{1.1}\\
y(0)=y(1)=0, \tag{1.2}
\end{gather*}
$$

where Q belongs to the set $T_{\alpha, \beta, \gamma}$ of all measurable locally integrable on $(0,1)$ functions with non-negative values such that the following integral conditions hold:

$$
\begin{gather*}
\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) d x=1, \quad \gamma \neq 0 \tag{1.3}\\
\int_{0}^{1} x(1-x) Q(x) d x<\infty \tag{1.4}
\end{gather*}
$$

A function y is a solution to problem (1.1),(1.2) if it is absolutely continuous on the segment $[0,1]$, satisfies (1.2), its derivative y^{\prime} is absolutely continuous on any segment $[\rho, 1-\rho]$, where $0<\rho<\frac{1}{2}$, and equality (1.1) holds almost everywhere in the interval $(0,1)$.

This work gives estimates for

$$
m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) \text { and } M_{\alpha, \beta, \gamma}=\sup _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) .
$$

Some of these results were obtained using approaches and ideas applied in works [1,4-6].
In Theorem 1 [3], it was proved that if condition (1.4) does not hold, then for any $0 \leq p \leq \infty$, there is no non-trivial solution y of equation (1.1) with the properties $y(0)=0, y^{\prime}(0)=p$.

From the results of [4, Chapter $1, \S 2$, Theorem 3] it follows that $T_{\alpha, \beta, \gamma}$ is empty provided $\gamma<0$, $\alpha \leq 2 \gamma-1$ or $\beta \leq 2 \gamma-1$, for other values $\alpha, \beta, \gamma, \gamma \neq 0$, the set $T_{\alpha, \beta, \gamma}$ is not empty. Thus, for $\gamma<0, \alpha \leq 2 \gamma-1$ or $\beta \leq 2 \gamma-1$, there is no function Q satisfying (1.3) and (1.4) taken together and, as a consequence, the first eigenvalue of problem (1.1), (1.2) does not exist.

Consider the functional

$$
R[Q, y]=\frac{\int_{0}^{1} y^{\prime 2} d x-\int_{0}^{1} Q(x) y^{2} d x}{\int_{0}^{1} y^{2} d x}
$$

If condition (1.4) is satisfied, then the functional $R[Q, y]$ is bounded below in $H_{0}^{1}(0,1)$. In order to show it, let us consider the set Γ_{*} of functions $y \in H_{0}^{1}(0,1)$ such that

$$
\int_{0}^{1} y^{2} d x=1
$$

and the functional

$$
I[Q, y]=\int_{0}^{1} y^{\prime 2} d x-\int_{0}^{1} Q(x) y^{2} d x
$$

For any $y \in H_{0}^{1}(0,1)$ and $x \in(0,1)$, by the Hölder inequality, we have

$$
\begin{gathered}
y^{2}(x)=\left(\int_{0}^{x} y^{\prime}(t) d t\right)^{2} \leq x \int_{0}^{x} y^{\prime 2}(t) d t \\
y^{2}(x)=\left(-\int_{x}^{1} y^{\prime}(t) d t\right)^{2} \leq(1-x) \int_{x}^{1} y^{\prime 2}(t) d t
\end{gathered}
$$

Then

$$
\frac{y^{2}}{x(1-x)}=\frac{y^{2}}{x}+\frac{y^{2}}{1-x} \leq \int_{0}^{x} y^{\prime 2}(t) d t+\int_{x}^{1} y^{\prime 2}(t) d t=\int_{0}^{1} y^{\prime 2}(t) d t
$$

and

$$
\int_{0}^{1} Q(x) y^{2} d x \leq\left(\int_{0}^{1} y^{\prime 2} d x\right) \int_{0}^{1} x(1-x) Q(x) d x
$$

For some positive k, consider

$$
E_{k}=\{x \in[0,1] \mid Q(x) \leq k\}, \quad \bar{E}_{k}=\{x \in[0,1] \mid Q(x)>k\} .
$$

We have

$$
\int_{0}^{1} Q(x) y^{2} d x=\int_{E_{k}} Q(x) y^{2} d x+\int_{\bar{E}_{k}} Q(x) y^{2} d x \leq k \int_{0}^{1} y^{2} d x+\int_{0}^{1} y^{\prime 2} d x \int_{\bar{E}_{k}} x(1-x) Q(x) d x .
$$

Since the integral $\int_{0}^{1} x(1-x) Q(x) d x$ is finite and the measure of \bar{E}_{k} tends to 0 as $k \rightarrow \infty$, then $\int_{\bar{E}_{k}} x(1-x) Q(x) d x$ tends to 0 as $k \rightarrow \infty$ and we can choose $k=k_{*}$ so that

$$
\int_{\bar{E}_{k_{*}}} x(1-x) Q(x) d x \leq \frac{1}{2}
$$

Then

$$
\int_{0}^{1} Q(x) y^{2} d x \leq k_{*}+\frac{1}{2} \int_{0}^{1} y^{\prime 2} d x
$$

and

$$
\int_{0}^{1} y^{\prime 2} d x-\int_{0}^{1} Q(x) y^{2} d x \geq \frac{1}{2} \int_{0}^{1} y^{\prime 2} d x-k_{*} \geq-k_{*}
$$

Thus, if condition (1.4) is satisfied, then for any $Q \in T_{\alpha, \beta, \gamma}, I[Q, y]$ is bounded below in Γ_{*}, $R[Q, y]$ is bounded below in $H_{0}^{1}(0,1)$, and

$$
\inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R[Q, y]=\inf _{y \in \Gamma_{*}} I[Q, y] .
$$

It was proved [3] that for any $Q \in T_{\alpha, \beta, \gamma}$,

$$
\lambda_{1}(Q)=\inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R[Q, y] .
$$

For any $Q \in T_{\alpha, \beta, \gamma}$, we have

$$
M_{\alpha, \beta, \gamma}=\sup _{Q \in T_{\alpha, \beta, \gamma}} \inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} R[Q, y] \leq \inf _{y \in H_{0}^{1}(0,1) \backslash\{0\}} \frac{\int_{0}^{1} y^{\prime 2} d x}{\frac{0}{1} y_{0}^{2} d x}=\pi^{2}
$$

2 Main results

Theorem 2.1. If $\gamma>1, \alpha, \beta<2 \gamma-1$, then there exist functions $Q_{*} \in T_{\alpha, \beta, \gamma}$ and $u \in H_{0}^{1}(0,1)$, $u>0$ on $(0,1)$, such that $m_{\alpha, \beta, \gamma}=R\left[Q_{*}, u\right]$. Moreover, u satisfies the equation

$$
\begin{equation*}
u^{\prime \prime}+m u=-x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{\gamma+1}{\gamma-1}} \tag{2.1}
\end{equation*}
$$

and the integral condition

$$
\begin{equation*}
\int_{0}^{1} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} u^{\frac{2 \gamma}{\gamma-1}} d x=1 \tag{2.2}
\end{equation*}
$$

Theorem 2.2.

(1) If $\gamma=1, \alpha, \beta \leqslant 0$, then $m_{\alpha, \beta, \gamma} \geqslant \frac{3}{4} \pi^{2}$.
(2) If $\gamma=1, \beta \leqslant 0<\alpha \leqslant 1$ or $\alpha \leqslant 0<\beta \leqslant 1$, then $m_{\alpha, \beta, \gamma} \geqslant 0$.
(3) If $\gamma=1,0<\alpha, \beta \leqslant 1$, then $m_{\alpha, \beta, \gamma} \geqslant 0$.
(4) If $\gamma>1, \alpha, \beta \leqslant \gamma$, then $m_{\alpha, \beta, \gamma}=0$.
(5) If $\gamma \geqslant 1, \alpha>\gamma$ or $\beta>\gamma$, then $m_{\alpha, \beta, \gamma}<0$.
(6) If $\gamma<0, \alpha, \beta>2 \gamma-1$ or $0<\gamma<1,-\infty<\alpha, \beta<\infty$, then $m_{\alpha, \beta, \gamma}=-\infty$.

Theorem 2.3.

(1) If $\gamma>1$, $-\infty<\alpha, \beta<\infty$ or $0<\gamma \leq 1$, $\alpha \leq 2 \gamma-1$, $-\infty<\beta<\infty(\beta \leq 2 \gamma-1$, $-\infty<\alpha<\infty)$, then $M_{\alpha, \beta, \gamma}=\pi^{2}$.
(2) If $\gamma<0$ or $0<\gamma<1, \alpha, \beta>2 \gamma-1$, then $M_{\alpha, \beta, \gamma}<\pi^{2}$.
(3) If $\gamma<-1, \alpha, \beta>2 \gamma-1$, then there exist functions $Q_{*} \in T_{\alpha, \beta, \gamma}$ and $u \in H_{0}^{1}(0,1), u>0$ on (0,1), such that $M_{\alpha, \beta, \gamma}=R\left[Q_{*}, u\right]$. Moreover, u satisfies equation (2.1) and the integral condition (2.2).

References

[1] Yu. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, 89. Birkhäuser Verlag, Basel, 1996.
[2] S. Ezhak and M. Telnova, On one upper estimate for the first eigenvalue of a Sturm-Liouville problem with Dirichlet boundary conditions and a weighted integral condition. Mem. Differ. Equ. Math. Phys. 73 (2018), 55-64.
[3] S. Ezhak and M. Telnova, On conditions on the potential in a Sturm-Liouville problem and an upper estimate of its first eigenvalue. Springer Proceedings in Mathematics \& Statistics, International Conference on Differential \& Difference Equations and Applications ICDDEA 2019, pp. 481-496, Differential and Difference Equations with Applications, 2019.
[4] K. Z. Kuralbaeva, Some optimal estimates for eigenvalues of Sturm-Liouville problems. Thesis, 1996.
[5] A. A. Vladimirov and E. S. Karulina, On an a priori majorant of the least eigenvalues of the Sturm-Liouville problem. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz. 193 (2021), 25--27.
[6] P. Yan and M. Zhang, A survey on extremal problems of eigenvalues. Abstr. Appl. Anal. 2012, Art. ID 670463, 26 pp.

