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Let I = [a, b] ⊂ R be a finite and closed interval non-degenerated in the point, t0 ∈ ]a, b[ and
It0 = [a, b] \ {t0}, I−t0 = [a, t0[ , I+t0 = ]t0, b].

Consider the Cauchy problem for the linear system of generalized ordinary differential equations
(GODE) with singularities

dx = dA(t) · x+ df(t) for t ∈ It0 , (1)
lim

t→t0−
(H−1(t)x(t)) = 0 and lim

t→t0+
(H−1(t)x(t)) = 0, (2)

where A = (aik)
n
i,k=1 is an n × n-matrix valued function and f = (fk)

n
k=1 is an n-vector valued

function, both of them have a locally bounded variation on [a, b] \ {t0}; H = diag(h1, . . . , hn) is a
continue diagonal matrix function, continuous and having an inverse H−1(t) for t ∈ [a, b] \ {t0}.

Along with system (1) consider the perturbed system

dy = dÃ(t) · y + df̃(t) for t ∈ It0 (3)

under condition (2), where Ã, f̃ are, as above, a matrix- and vector-functions.
We are interested in the question whether the unique solvability of problem (1), (2) guarantees

the unique solvability of problem (3), (2) and nearness of its solutions in the definite sense if matrix-
functions A and Ã and vector-functions f and f̃ are nearly among themselves.

The same and related problems for singular linear ordinary differential systems have been in-
vestigated in [3] (see also the references therein).

The singularity of system (1) consists in the fact that both A and f need not have bounded
variations on any interval containing the point t0.

The solvability of the singular problem (1), (2) is investigated in [2]. To our knowledge, the
well-posedness of (1), (2) has not been considered up to now.

The theory of GODE has been introduced by J. Kurzweil [4]. The interest to the theory has
also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [1, 2, 4] and the references
therein).

We present sufficient conditions for the so called H-well-posedness of problem (1), (2). We
realize the presented results for systems of impulsive differential equations with fixed points of
impulses actions.

We use the following notation and definitions.
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N = {1, 2, . . . }, R = ]−∞,+∞[ , R+ = [0,+∞[ .
Rn×m is the space of all real n×m matrices X = (xik)

n,m
i,k=1 with the standard norm ∥X∥.

|X| = (|xik|)n,mi,k=1,
[X]± = 1

2 (|X| ±X); r(X) is the spectral radius of X ∈ Rn×n. Rn = Rn×1.
On×m is the zero n×m-matrix, 0n is the zero n-vector. In is the identity n× n-matrix.
b∨
a
(X) is the sum of variations on [a, b] of components of matrix-function X.

b−∨
a
(X) = lim

t→b−

t∨
a
(X); X(t−) and X(t+) are the left and the right limits of X at the point t.

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
BV([a, b],Rn×m) is the set of all bounded variation matrix-functions.
BVloc(It0 ;Rn×m) is the set of all X : I → Rn×m for which the restriction to [a, b] belong to

BV([a, b];Rn×m) for every closed interval [a, b] from It0 .

If X(t) = (xik(t))
n,m
i,k=1, then V (X)(t) = (

t∨
aj

(xik))
n,m
i,k=1 for (t− t0)(aj − t0) > 0 (j = 1, 2), where

a1 = a, a2 = b.
[X(t)]v± ≡ 1

2 (V (X)(t)±X(t)).
Lloc(It0 ;Rn×m) is the set of all matrix-functions X : It0 → Rn×m whose restrictions to every

closed interval [a, b] from It0 is integrable.
s1, s2 and sc are the operators defined, respectively, by

s1(x)(aj) = s2(x)(aj) = 0, sc(x)(aj) = x(aj) (j = 1, 2),

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ),

sc(x)(t) = sc(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s))

for a1 ≤ s < t < t0 or t0 < s < t ≤ a2.

If X ∈ BVloc(It0 ;Rn×n),

det
(
In + (−1)jdjX(t)

)
̸= 0 for t ∈ It0 (j = 1, 2),

and Y ∈ BVloc(It0 ;Rn×m), then

A(X,Y )(a) = On×m

(
A(X,Y )(b) = On×m

)
,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) if s < t < t0 (t0 < s < t).

If g : [a, b] → R has bounded variation and x : [a, b] → R, then
t∫

s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ) d1g(τ) +
∑

s≤τ<t

x(τ) d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect

to the measure corresponding to the function sc(g). So
t∫
s
x(τ) dg(τ) is the Kurzweil–Stieltjes

integral [4].
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Let
t±∫
s

x(τ) dg(τ) = lim
δ→0+

t±δ∫
s

x(τ) dg(τ),

t∫
s±

x(τ) dg(τ) = lim
δ→0+

t∫
s±δ

x(τ).

If G = (gik)
l,n
i,k=1 and X = (xkj)

n,m
k,j=1 are matrix-functions on [a, b], then

t∫
a

dG(τ)X(τ) ≡
( n∑

k=1

t∫
a

xkj(τ)dgik(τ)

)l,m

i,j=1

, Sj(G) =
(
sj(gik)

)l,n
i,k=1

.

A vector-function x : It0 → Rn is said to be a solution of system (1) if x ∈ BV([c, d],Rn) for
every closed interval [c, d] from It0 and

x(t) = x(s) +

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for c ≤ s < t ≤ d.

We assume that det(In + (−1)jdjA(t)) ̸= 0 for t ∈ It0 (j = 1, 2). The inequalities guarantee
the unique solvability of the Cauchy problem for the case when A ∈ BVloc(I,Rn×n) and f ∈
BVloc(I,Rn) (see, [4]).

Let A0 ∈ BVloc(It0 ,Rn×n) is a matrix-function such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ It0 (j = 1, 2). (4)

Then a matrix-function C0 : It0 × It0 → Rn×n is said to be the Cauchy matrix of the homogeneous
system dx = dA0(t) · x if, for every interval J ⊂ I and τ ∈ J , the restriction of C0( · , τ) to J is the
fundamental matrix of this system satisfying the condition C0(τ, τ) = In.

Let
I−t0(δ) = [t0 − δ, t0[ , I+t0(δ) = ]t0, t0 + δ], It0(δ) = I−t0(δ) ∪ I+t0(δ) (δ > 0).

Definition 1. Problem (1), (2) is said to be H-well-posed with respect to the pair of the matrix-
functions (S1(A0), S2(A0)) if it has a unique solution x and for every ε > 0 there exists η > 0 such
that problem (3), (2) has a unique solution y and the estimate∥∥H(t) (x(t)− y(t))

∥∥ < ε for t ∈ I (5)

holds for every Ã ∈ BVloc(It0 ,Rn×n) and f̃ ∈ BVloc(It0 ,Rn) such that

det
(
In + (−1)jdjÃ(t)

)
̸= 0 for t ∈ It0 (j = 1, 2),∥∥∥∥

t∫
t0±

H−1(s) dV(A(A0, Ã−A))(s) ·H(s)

∥∥∥∥ < η for t ∈ I±t0 , respectively,

∥∥∥∥
t∫

t0±

H−1(s)dV(A(A0, f̃ − f))(s)

∥∥∥∥ < η for t ∈ I±t0 , respectively.

We note that the matrix-functions S1(A0) and S2(A0) are including in the definition of the
operators V (A(A0, Ã−A)) and V (A(A0, f̃ − f)).
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Theorem 1. Let there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and constant matrices B0. B ∈
Rn×n
+ such that the conditions r(B) < 1,

|C0(t, τ)| ≤ H(t)B0H
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0,

|τ − t0|
|t− t0|

≤ 1,

∣∣∣∣
t∫

t0±

|C0(t, s)| dV(A(A0, A−A0))(s)H(s)

∣∣∣∣ ≤ H(t)B, respectively, on I±t0(δ)

hold for some δ > 0. Let, moreover,

lim
t→t0±

∥∥∥∥
t∫

t0±

H−1(t)C0(t, τ) dA(A0, f)(τ)

∥∥∥∥ = 0, respectively.

Then problem (1), (2) is H-well-posed with respect to (S1(A0), S2(A0)).

Theorem 2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that the conditions
r(B) < 1,[

(−1)jdjaii(t)
]
+
> −1 for t < t0, [(−1)jdjaii(t)]− < 1 for t > t0 (j = 1, 2),

ci(t, τ) ≤ b0
hi(t)

hi(τ)
for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0|,∣∣∣∣

t∫
t0±

ci(t, τ)hi(τ) d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣ ≤ bii hi(t), respectively, on I±t0(δ),

∣∣∣∣
t∫

t0±

ci(t, τ)hk(τ) dV(A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik hi(t), respectively, on I±t0(δ)

(i ̸= k; i, k = 1, . . . , n) hold for some b0 > 0 and δ > 0. Let, moreover,

lim
t→t0±

t∫
t0±

ci(t, τ)

hi(t)
dV(A(a0ii, fi))(τ) = 0, respectively (i = 1, . . . , n),

where
a0ii(t) ≡ −

[
aii(t) sgn(t− t0)

]v
− sgn(t− t0) (i = 1, . . . , n),

and ci is the Cauchy function of the equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then problem
(1), (2) is H-well-posed with respect to the pair (S1(A0), S2(A0)), where

A0(t) ≡ diag(a011(t), . . . , a0nn(t)).

The Cauchy functions ci(t, τ) (i = 1, . . . , n), mentioned in the theorem, have the well known
form (see, for example, [1]).

Now we apply the previous results for the Cauchy problem with weight for the singular impulsive
differential system

dx

dt
= P (t)x+ q(t), x(τl+)− x(τl−) = G(l)x(τl) + g(l) (l ∈ N); (6)

lim
t→b−

(H−1(t)x(t)) = 0, (7)
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where τl ∈ [a, b[ (l ∈ N), lim
l→+∞

τl = b, are points of fixed impulses actions, P = (pik)
n
i,k=1 ∈

Lloc([a, b[;Rn×n), q = (qk)
n
k=1 ∈ Lloc([a, b[;Rn), and G = (gik)

n
i,k=1 ∈ E(N;Rn×n), g = (gk)

n
k=1 ∈

E(N;Rn).
We assume that T = {τ1, τ2, . . . }, ACloc([a, b[\T ;Rn×m) is the matrix-function whose restric-

tions to every [c, d] ⊂ [a, b[\T is absolutely continuous. E(N;Rn×m) is the set of all discrete
matrix-functions from N into Rn×m. Nα,β = {l ∈ N : α ≤ τl < β}.

Let G0 ∈ E(N;Rn×n) be such that

det(In +G0(l)) ̸= 0 (l ∈ N).

Then for every X ∈ Lloc([a, b[;Rn×n) and Y ∈ E(N;Rn×n) we put

Aι(G0;X,Y )(t) ≡
t∫

a

X(τ) dτ +
∑

l∈Na,t

(In +G0(l))
−1Y (τl).

A vector-function x ∈ ACloc([a, b[\T ;Rn) is said to be a solution of system (6) if x′(t) =
P (t)x(t)+ q(t) for a.a. t ∈ [a, b[\T and there exist one-sided limits x(τl−) and x(τl+) (l = 1, 2, . . . )
satisfying (8). In addition, x is a solution of system (6) if and only if it is a solution of (1), where

A(t) ≡
t∫

a

P (τ) dτ +
∑

l∈Na,t

G(τl), f(t) ≡
t∫

a

q(τ) dτ +
∑

l∈Na,t

u(τl).

We assume that det(In + G(l)) ̸= 0 (l = 1, 2, . . . ). Due to the conditions imposed on P , G, q
and u, we have A ∈ BVloc([a, b[,Rn×n) and f ∈ BVloc([a, b[,Rn). So system (6) is a particular case
of system (1), and the impulsive problem (6), (7) to problem (1), (2) for t0 = b.

Along with system (6) consider the perturbed singular system

dx

dt
= P̃ (t)x+ q̃(t), x(τl+)− x(τl−) = G̃(l)x(τl) + g̃(l) (l ∈ N). (8)

Definition 2. Problem (6), (7) is said to be H-well-posed with respect to the matrix-function G0

if it has a unique solution x and for every ε > 0 there exists η > 0 such that problem (8), (7) has a
unique solution y and estimate (5) holds for every matrix-functions P̃ , G̃ and vector-functions q̃, g̃
such that

det(In + G̃(l)) ̸= 0 (l ∈ N),∥∥∥∥
b−∫
t

H−1(s) dV(Aι(G0; P̃ − P, G̃−G))(s) ·H(s)

∥∥∥∥ < η and

∥∥∥∥
b−∫
t

H−1(s) dV(Aι(G0; q̃ − q, g̃ − g))(s)

∥∥∥∥ < η for t ∈ [a, b[.

Theorem 3. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that the conditions

r(B) < 1, [gii(l)]+ > −1 (i = 1, . . . , n; l ∈ N),

ci(t, τ) ≤ b0
hi(t)

hi(τ)
for b− δ ≤ t ≤ τ < b (i = 1, . . . , n),
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∣∣∣∣
b−∫
t

ci(t, τ)hi(τ)[pii(τ)]− dτ +
∑

l∈Nt,b

ci(tl, τl)hi(τl)[gii(l)]−

∣∣∣∣ ≤ bii hi(t) and

∣∣∣∣
b−∫
t

ci(t, τ)hk(τ) dV
(
Aι([gii]+; pik, gik)

)
(τ)

∣∣∣∣ ≤ bik hi(t) for t ∈ b− δ, b[

(i ̸= k; i, k = 1, . . . , n) hold for some b0 > 0 and δ > 0. Let, moreover,

lim
t→b−

b−∫
t

ci(t, τ)

hi(t)
dV

(
Aι([gii]+; qi, gi)

)
(τ) = 0 (i = 1, . . . , n),

where ci is the Cauchy function of the impulsive equation

dx

dt
= [pii(t)]+ x, x(τl+)− x(τl−) = [gii(l)]+ x(τl) (l ∈ N).

Then problem (6), (7) is H-well-posed with respect to G0, where

G0(l) ≡ diag
(
[g11(l)]+, . . . , [gnn(l)]+

)
.

References
[1] M. Ashordia, Systems of Generalized Ordinary Differential Equations, Linear Impulsive Dif-

ferential and Ordinary Differential Systems. Numerical Solvability. Mem. Differ. Equ. Math.
Phys. 81 (2020), 1–184.

[2] M. Ashordia, I. Gabisonia and M. Talakhadze, On the solvability of the modified Cauchy
problem for linear systems of generalized ordinary differential equations with singularities.
Georgian Math. J. 28 (2021), no. 1, 29–47.

[3] I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations.
(Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.

[4] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a pa-
rameter. (Russian) Czechoslovak Math. J. 7(82) (1957), 418–449.



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 9
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On the domain Ω = [0, T ]× [0, ω], we consider the family of problems for the system of partial
integro-differential equations with weakly singular kernels

∂v

∂t
= A(t, x)v +

T∫
0

K(t, s, x)v(s, x) ds+ f(t, x), (1)

P (x)v(0, x) + S(x)v(T, x) = φ(x), x ∈ [0, ω], (2)

where v(t, x) = col(v1(t, x), v2(t, x), . . . , vn(t, x)) is an unknown vector function, the (n×n) matrix
A(t, x), and n vector function f(t, x) are continuous on Ω, the (n×n) matrix K(t, s, x) has the form
K(t, s, x) = 1

|t−s|α H(t, s, x), and the (n×n) matrix H(t, s, x) is continuous on [0, T ]× [0, T ]× [0, ω],
0 < α < 1, the (n× n) matrices P (x), S(x) and n vector function φ(x) are continuous on [0, ω].

A continuous function v : Ω → Rn that has a continuous derivative with respect to t on Ω is
called a solution to the family problems for the system of integro-differential equations (1), (2) if
it satisfies system (1) and condition (2) for all (t, x) ∈ Ω and x ∈ [0, ω], respectively.

Partial integro-differential equations and various problems for them are arisen as mathematical
models of various physical processes [2, 3, 25]. Boundary value problems for ordinary integro-
differential equations with continuous kernels and weakly singular or other nonsmooth kernels were
researched in [1, 4–11, 13, 14, 16–24] by the different methods. Some problems for partial integro-
differential equations with singular kernels were considered in [26–33].

Nevertheless, the establishment of conditions for the solvability of the family problems for partial
integro-differential equations with weakly singular kernels is an actual problem.

The aim of the present communication is to apply the Dzhumabaev parametrization method [12]
and the results of article [4] to the family of partial integro-differential equations with weakly
singular kernels.

For this we construct a homogeneous family of partial integral equations with weakly singular
kernels of the second kind and introduce an analog of regular partition for Ω by the initial data of
the partial integro-differential equation (1).

For fixed x ∈ [0, ω] problem (1), (2) is a linear problem for the system of integro-differential
equations with weakly kernels. Suppose a variable x is changed on [0, ω]; then we obtain a family
of problems for partial integro-differential equations with weakly kernels.

Let us divide domain Ω equally into N parts and denote this partition by ∆N :

∆N =
{
t0 = 0 < t1 < · · · < tN = T, 0 ≤ x ≤ ω

}
,

where ts = sT/N .
By vr(t, x) we denote the restriction of the function v(t, x) to the r-th domain Ωr = [tr−1, tr)×

[0, ω], i.e. vr(t, x) = v(t, x), (t, x) ∈ Ωr, r = 1 : N .
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Inputting the functional parameters λr(x)=̂vr(tr−1, x) and performing the substitution of fun-
ctions zr(t, x) = vr(t, x)− λr(x) in each of the r-th domain, we obtain the following problem with
parameters:

∂zr
∂t

= A(t, x)(zr + λr(x)) +
N∑
j=1

tj∫
tj−1

K(t, s, x)(zj(s, x) + λj(x)) ds+ f(t, x), (t, x) ∈ Ωr, (3)

zr(tr−1, x) = 0, x ∈ [0, ω], r = 1 : N, (4)
P (x)λ1(x) + S(x)λN (x) + S(x) lim

t→T−0
zN (t, x) = φ(x), x ∈ [0, ω], (5)

λp(x) + lim
t→tp−0

zp(t, x)− λp+1(x) = 0, x ∈ [0, ω], p = 1 : (N − 1), (6)

where (6) are the conditions of continuity for the solution at the inner lines of the partition ∆N .
Introduction of additional parameters [4–11] lets us obtain the initial data (5). Thus, it is

possible to determine the system of functions z([t], x) from the family of special Cauchy problems
for the systems of integro-differential equations with weakly singular kernels (5), (6) for fixed values
of the parameters λ(x) ∈ C([0, ω],RnN ). By using the fundamental matrix U(t, x) of the differential
equation ∂v

∂t = A(t, x)v, we reduce problem (5), (6) to the equivalent system of integral equations

zr(t, x) = U(t, x)

t∫
tr−1

U−1(τ1, x)

N∑
j=1

tj∫
tj−1

K(τ1, s, x)(zj(s, x) + λj(x)) ds dτ1

+ U(t, x)

t∫
tr−1

U−1(τ1, x)
[
A(τ1, x)λr(x) + f(τ1, x)

]
dτ1, (t, x) ∈ Ωr, r = 1 : N. (7)

Introduce the notations

Φ(∆N , t, x, α) =
N∑
j=1

tj∫
tj−1

K(t, s, x)zj(s, x) ds,

M(∆N , t, x, τ, α) =

tj∫
τ

K(t, τ1, x)U(τ1, x) dτ1U
−1(τ, x), (t, x) ∈ Ω, τ ∈ [tj−1, tj), j = 1 : N,

M(∆N , t, x, T, α) = 0.

Consider the following family of integral equations of the second kind with weakly singular
kernel

Φ(∆N , t, x, α) =

T∫
0

M(∆N , t, x, τ, α)Φ(∆N , τ, x, α) dτ +D(∆N , t, x, α)λ+ F (∆N , t, x, α), (8)

and the corresponding homogeneous family of integral equations

Φ(∆N , t, x, α) =

T∫
0

M(∆N , t, x, τ, α)Φ(∆N , τ, x, α) dτ, (t, x) ∈ Ω. (9)
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Definition. A partition ∆N is called regular if the family of integral equations with weakly singular
kernel (9) has only a trivial solution.

The set of regular partitions ∆N is denoted by σ([0, T ], x, α). As it is known from the theory of
integral equations with singular kernels [15], if ∆N ∈ σ([0, T ], x, α), then (8) has a unique solution
for any λ(x) ∈ C([0, ω],RnN ), F (∆N , t, x, α) ∈ C(Ω,Rn), and this solution can be presented in the
form

Φ(∆N , t, x, α) = D(∆N , t, x, α)λ+ F (∆N , t, x, α)

+

T∫
0

Γ(∆N , t, x, s, 1)
(
D(∆N , s, x, α)λ(x) + F (∆N , s, x, α)

)
ds, (t, x) ∈ Ω, (10)

where Γ(∆N , t, x, s, 1) is the resolvent of the family of integral equations with weakly singular kernel
(8). The n×nN matrix D(∆N , t, x, α) = (Dr(∆N , t, x, α)), r = 1 : N , continuous on Ω, and vector
F (∆N , t, x, α) are constructed by the integral representation (7):

Dr(∆N , t, x, α) =

tr∫
tr−1

K(t, τ, x)U(τ, x)

τ∫
tr−1

U−1(τ1, x)A(τ1, x) dτ1 dτ

+

N∑
j=1

tj∫
tj−1

K(t, τ, x)U(τ, x)

τ∫
tj−1

U−1(τ1, x)

tr∫
tr−1

K(τ1, s, x) ds dτ1 dτ,

F (∆N , t, x, α) =
N∑
j=1

tj∫
tj−1

K(t, τ, x)U(τ, x)

τ∫
tj−1

U−1(τ1, x)f(τ1, x) dτ1 dτ.

Substituting
N∑
j=1

tj∫
tj−1

K(t, s, x)zj(s, x) ds in (7) with the right-hand side of (10), we get the repre-

sentation of the function zr(t, x) in terms of λ(x) ∈ C([0, ω],RnN ), f(t, x) ∈ C(Ω,Rn). Then, using
this representation, we determine lim

t→T−0
zN (t, x), lim

t→tp−0
zp(t, x), p = 1 : (N−1). Substituting these

expressions in (5), (6) and multiplying both sides of (5) by h = T
N , we get the following linear

system of equations for the introduced parameters λr(x), r = 1 : N :

Q∗(∆N , x, α)λ(x) = −F ∗(∆N , x, α), λ(x) ∈ C([0, ω],RnN ). (11)

Theorem 1. If the matrix Q∗(∆N , x, α) : RnN → RnN in the partition ∆N ∈ σ([0, T ], x, α) is
invertible for all x ∈ [0, ω], then the family of problems for the system of partial integro-differential
equations with weakly singular kernels (1), (2) has a unique solution.

Theorem 2. For the unique solvability of family of problems for the system of partial integro-
differential equations with weakly singular kernels (1), (2) it is necessary and sufficient that the
matrix Q∗(∆N , x, α) : RnN → RnN be invertible for any ∆N ∈ σ([0, T ], x, α) and for all x ∈ [0, ω].
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Remark on Continuous Dependence of Solutions
to the Riccati equation on its Righthand Side
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Abstract. The Riccati equation is considered to show some special features of continuous depen-
dence on the right-hand side of the equation.

Consider the initial value problem for the Riccati equation

u′ + u2 = K(t), K ∈ C[0;T ], (1)

with the initial condition u(0) = u0. Suppose that the problem has a solution on [0;T ]. We are
interested whether the existence of solutions on [0;T ] still holds under small perturbation of the
right-hand side. The formulation is not strict enough and admits opposite answers for its different
treatments.

We have the following result detailing, for the case under consideration, the classical theorem on
continuous dependence of solutions on the right-hand side and initial conditions (see, for example, [1,
Chapter 7, Theorem 6]).

Theorem 1. Let u(t) defined on [0;T ] be a solution to equation (1) with u(0) = u0. Then for each
function F (t) ∈ C[0, T ], satisfying on [0;T ] the condition

|K(t)− F (t)| < ε =

(
4

T∫
0

exp

(
− 2

t∫
0

u(τ) dτ

)
dt ·

T∫
0

exp

(
2

t∫
0

u(τ) dτ

)
dt

)−1

,

the initial value problem
v′ + v2 = F (t), v(0) = u0 (2)

also has a solution defined on [0;T ].

Proof. We are looking for the solution v having the form

v(t) = u(t) + z(t) exp

(
− 2

t∫
0

u(τ) dτ

)
(3)

with z(t) to be determined. Immediate calculations show that

v′ = u′ + z′ exp

(
− 2

t∫
0

u(τ) dτ

)
− 2zu exp

(
− 2

t∫
0

u(τ) dτ

)
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= K − u2 + z′ exp

(
−2

t∫
0

u(τ) dτ

)
− 2zu exp

(
−2

t∫
0

u(τ) dτ

)

= F − v2 = F − u2 − 2zu exp

(
− 2

t∫
0

u(τ) dτ

)
− z2 exp

(
− 4

t∫
0

u(τ) dτ

)
,

whence

z′ + z2 exp

(
−2

t∫
0

u(τ) dτ

)
+ (K − F ) exp

(
2

t∫
0

u(τ) dτ

)
= 0. (4)

Hereafter we use the following notation:

2

t∫
0

u(τ) dτ = U(t), expU(t) = E(t).

So, equation (4) can be rewritten as

z′ + z2E−1 + (F −K)E = 0.

To find such z, we use a contracting operator Φ acting on the space Zδ of all continuous functions
z satisfying |z(t)| ≤ δ on [0;T ] with some δ > 0. We define Φ by

Φ(z)(t) =

t∫
0

(
E(τ)(K(τ)− F (τ))− z2(τ)E(τ)−1

)
dτ

and have to check that

(i) Φ(z) ∈ Zδ whenever z ∈ Zδ

and

(ii) Φ is contracting.

First we prove (ii).

∣∣Φ(z1)(t)− Φ(z2(t)
∣∣ = t∫

0

∣∣E(τ)−1
∣∣ ∣∣z22(τ)− z21(τ)

∣∣ dτ
=

t∫
0

E(τ)−1
∣∣z2(τ)− z1(τ)

∣∣ ∣∣z2(τ) + z1(τ)
∣∣ dτ ≤ 2δ

t∫
0

E(τ)−1
∣∣z2(τ)− z1(τ)

∣∣ dτ
≤ 2δ

t∫
0

E(τ)−1 sup
τ∈[0,T ]

∣∣z2(τ)− z1(τ)
∣∣ dτ = 2δ

t∫
0

E(τ)−1 dτ · ∥z1 − z2∥.

The operator Φ is contracting if δ
t∫
0

E(τ)−1 dτ < 1 on [0;T ], i.e.

δ <
1

2

( T∫
0

E(τ)−1 dτ

)−1

.
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Now we take such δ and prove (i). Suppose |K(τ)− E(τ)| < ε and ∥z∥ ≤ δ. Then

|Φ(z)(t)| ≤ ε

T∫
0

E(τ) dτ + δ2
T∫
0

E(τ)−1 dτ < ε

T∫
0

E(τ) dτ +
δ

2
,

which is less or equal to δ if

ε ≤ δ

2

( T∫
0

E(τ) dτ

)−1

.

So, if we have a solution u to equation (1) with u(0) = u0, then we can obtain E and
T∫
0

E(τ) dτ .

Now we have to find δ such that

2ε

T∫
0

E(τ) dτ ≤ δ <
1

2

( T∫
0

E(τ)−1 dτ

)−1

.

This is possible whenever

ε <
1

4

( T∫
0

E(τ)−1 dτ

)−1( T∫
0

E(τ) dτ

)−1

.

If the estimates are valid, then there exists z ∈ Zδ such that Φ(z) = z, whence z′ = E(K−F )−
z2E−1 and z(0) = 0, i.e. the function v defined by (3) is a solution to the related Riccati equation
and v(0) = u(0).

Note that the existence of a solution to (2) in the proof depends not only on the difference of
the functions K and F but also on the solution u itself. This is not just a defect of the proof as
shown in the following result.

Theorem 2. If T = π/2 and K(t) ≡ −1 in (1), then for each ε > 0 there exist an initial value
u0 and a continuous function F on [0;T ] such that ∥F −K∥ < ε, and equation (1) has a solution
u ∈ C1[0;T ] with u(0) = u0, while there is no solution to (2) on [0;T ].

Proof. First we can solve the equation u′ + u2 = −A2 with arbitrary A ̸= 0 to obtain the solution
u = A tan(At0 −At).

In the case A = 1 we have a solution u(t) = tan(t0 − t) to equation (1) defined in particular for
all t satisfying −T < t0 − t < T . If 0 < t0 < T , then the solution u is defined, inter alia, on the
segment [0;T ].

Now consider A = 1 + ε and F (t) = −(1 + ε)2. The function

v = (1 + ε) tan
(
(1 + ε)t1 − (1 + ε)t

)
is a solution to (2) provided that

v(0) = u(0) = tan t0 = (1 + ε) tan((1 + ε)t1).

Thus,
t1 =

1

1 + ε
arctan

(tan t0
1 + ε

)
.
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The solution is bounded on [0;T ] if (1 + ε)t1 − (1 + ε)t ∈ (−T ;T ) whenever t ∈ [0;T ].
For t = 0 we have (1 + ε)t1 ∈ (−T ;T ).
For t = T we need

−T < (1 + ε)t1 − (1 + ε)T < T,

whence
εT < (1 + ε)t1 = arctan

(tan t0
1 + ε

)
,

and therefore tan t0 > (1 + ε) tan εT .
So, if the constant t0 does not satisfy this condition, then v is not defined on the whole segment

[0;T ]. For arbitrary small ε > 0 there exists sufficiently small t0 > 0 making the last inequality
false.

So, no estimate based just on the difference K(t)− F (t) is possible to provide the existence of
a solution to problem (2) for all u0.

Note also that Theorem 1 becomes wrong if we replace [0;T ] with [0;T ).
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1 Introduction
For a given n ∈ N, let M̃n denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

with piecewise continuous coefficients, which are matrix-valued functions A : R+ → Rn×n, and by
Mn its subclass that consists of systems with coefficients that are bounded on the semiaxis R+. In
what follows, we identify system (1.1) with its defining function A( · ) and therefore write A ∈ Mn

and the like. The vector space of solutions of system (1.1) will be denoted by S(A) and the set of
its nonzero solutions by S∗(A) (i.e. S∗(A) = S(A) \ {0}).

The following definition is due to O. Perron [19].
The lower exponent of a vector-function x : R+ → Rn

∗ ≡ Rn \ {0} is the quantity

π[x] = lim
t→+∞

1

t
ln ∥x(t)∥. (1.2)

Note that a lower exponent may well be infinite and hence is generally a point of the extended real
line R ≡ R ⊔ {−∞,+∞}, which we equip with the standard order and the order topology.

Assigning to each solution x( · ) ∈ S∗(A) of system (1.1) its lower exponent π[x], we obtain
the functional πA : S∗(A) → R, which is called the lower exponent of system (1.1). Obviously, if
A ∈ Mn, then the range of the functional πA is contained in a bounded interval. Such defined
functionals πA have different domains, which is not always convenient. In order to have a unified
view of these functionals and to make it possible to compare them with one another, they are put in
one-to-one correspondence with functions defined on Rn

∗ . Namely, there is a natural isomorphism
ιA : Rn → S(A) defined by ξ 7→ x( · , ξ), where x( · , ξ) is the solution of the system A starting at
the initial moment t = 0 from the vector ξ ∈ Rn. Then the function πA : Rn

∗ → R defined by
πA = πA ◦ iA is called the Perron exponent of system (1.1). As said above, πA takes finite values
and is bounded wherever A ∈ Mn.

The Perron exponent is one of a number of asymptotic characteristics, which are functionals
defined on solutions of differential systems and reflecting one or another of their qualitative or
asymptotic properties. Historically, the first in this series was the Lyapunov exponent λA [18],
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which is of fundamental importance in the stability theory. As is well known, it is defined similarly
to the Perron exponent with the replacement in (1.2) of the lower limit by the upper one. Several
different asymptotic characteristics are proposed by I. N. Sergeev (see, e.g., [20, 21]).

Lower exponents are introduced by O. Perron [19] by analogy with Lyapunov characteristic
exponents, and he was the first to observe that some of their properties differ from those of Lyapunov
exponents. At the same time no serious research of qualitative properties of solutions that Perron
exponents represent has been carried out until recently. Situation has changed since the publication
of works [22, 23], in which Perron stability was defined and some properties of this notion were
treated.

The first problem that arises when studying an asymptotic characteristic is to completely de-
scribe it as a function of an initial vector for linear differential systems, that is, for example, for the
Perron exponent it is required to obtain a complete description of the following function classes:

Pn =
{
πA : A ∈ Mn

}
and P̃n =

{
πA : A ∈ M̃n

}
. (1.3)

To date solutions to these problems are only known for the Lyapunov exponent [18], [7, p. 25–26]
and the lower and upper Bohl exponents [5, 6] (definition of the two latter ones see in [8, p. 171–
172], [24]). It is worth remarking that whereas a description of the Lyapunov exponent involves
linear algebra concepts, that of the Bohl exponents requires the language of descriptive function
theory, and so is the case for classes (1.3). A description of the second of these is given in the
report, while a description of the first one is unknown so far.

Let us provide a number of properties of the Perron exponent that demonstrate its fundamental
difference from the Lyapunov exponent, which seems outwardly similar.

A. M. Lyapunov [18], [7, p. 30] established that the number of different values that the Lyapunov
exponent of a system A ∈ Mn takes does not exceed its dimension n. O. Perron discovered [19]
that for his eponymous exponent this is not the case. He gave an example of a two-dimensional
diagonal system with bounded coefficients whose Perron exponent takes exactly three different
values. N. A. Izobov showed [15] that the Perron exponent of a diagonal system (1.1) takes no
more than 2n−1 values, and in the work [1] for every integer m ∈ [1, 2n−1] a diagonal system (1.1)
is constructed such that its Perron exponent takes exactly m different values.

For non-diagonal systems the structure of the range of the Perron exponent may be much more
complicated: in the work [16] a system is constructed such that the lower exponents of its solutions
fill an entire interval, and in [2] it is proved that a set P is the range of the Perron exponent of a
system A ∈ Mn if and only if P is a bounded Suslin set containing its sup.

Despite these differences in structure of the ranges of the Lyapunov and Perron exponents
of system (1.1), Lebesgue sets of restrictions of these functionals to affine subspaces have some
similarity. So, N. A. Izobov established [15,17] that for any A ∈ Mn and affine subspace Πk ⊂ Rn

of dimension k (1 ≤ k ≤ n) the set

P (Πk) ≡
{
ξ ∈ Πk \ {0} : π(ξ) < sup

ζ∈Πk\{0}
π(ζ)

}
has zero k-dimensional Lebesgue measure, i.e.

mesP (Πk) = 0. (1.4)

In other words, the set of lower exponents of solutions with the initial vectors from an affine plane
Πk contains its sup, and for almost all (with respect to Lebesgue measure) initial vectors from
Πk, the corresponding solutions starting from them have lower exponents equal to this sup. For
one-dimensional affine subspaces the specified property can be strengthened [3]: for any affine line
Π1, the set P (Π1) has zero Hausdorf lnν | ln( · )|-measure for all ν < −1.
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It is easy to verify [4] that P (Π1) is a Gδσ-set and πA is Baire 2. These statements and the above-
cited statements from [3] are unimprovable [4]: for each n ≥ 2 there exists a system A ∈ Mn such
that for a certain line Π1 the set P (Π1) is exactly Gδσ with infinite Hausdorf ln−1 | ln( · )|-measure
and the function πA is exactly Baire 2.

A. G. Gargyants [10] discovered that for systems in M̃n \ Mn for n > 2 property (1.4) is
generally not valid: he constructed a system A ∈ M̃n such that for any k-dimensional (1 ≤ k ≤ n)
affine subspace Πk ⊂ Rn, different from a line containing the origin, the set Πk \ P (Πk) has zero
k-dimensional Lebesgue measure and is of the first Baire category with respect to Πk. He also
proved [12] that property (1.4) holds for all systems A ∈ M̃n satisfying

lim
t→+∞

t−1 ln ∥A(t)∥ ≤ 0.

A natural question arises: is the set P (Πk) of the first Baire category with respect to Πk for
any n > 2, k = 1, . . . , n, and system in Mn? The answer (in the negative) was obtained by
A. G. Gargyants [14]: for each n ≥ 2 there exists a system A ∈ Mn such that the set Rn \ P (Rn)
is of the first Baire category.

2 The main result
The problem is to obtain for each n ≥ 2 a set-theoretic description of Perron exponents of systems
in M̃n, i.e. of the function class P̃n defined in (1.3). Note that a description of the classes P1 and
P̃1 is trivial: they consist of all constant functions R1

∗ → R and R1
∗ → R, respectively.

A. G. Gargyants obtained [11, 13] progress in this problem: he proved that for any n ≥ 2 the
class P̃ncontains all continuous functions f : Rn

∗ → R satisfying the condition

f(cξ) = f(ξ), ξ ∈ Rn
∗ , c ∈ R∗. (2.1)

In [9], this result was extended to upper semicontinuous functions.
For every n ≥ 2, a complete description of the class P̃n is provided by the following

Theorem. A function f : Rn
∗ → R belongs to the class P̃n if and only if it satisfies (2.1) and for

all r ∈ R, the inverse image f−1([−∞, r]) of the closed ray [−∞, r] is a Gδ-set in Rn
∗ .
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Consider the super-linear generalized Emden–Fowler differential equation for t ∈ I = [1,∞)(
|x′|α sgnx′

)′
+ b(t)g(x)|x|β sgnx = 0, 0 < α < β, (1)

and its special case
x′′ + b(t) |x|β sgnx = 0, t ∈ I, β > 1, (2)

where b is a positive absolute continuous function on I and g is a positive continuous function on R.
A solution x of (1) is said to be proper if it is defined for all large t and sup

t∈[τ,∞)
|x(t)| > 0 for

any large τ . A proper solution x of (1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise, it is said to be nonoscillatory.

It is well known, see, e.g., [8], that the coexistence of nontrivial oscillatory and nonoscillatory
solutions is possible for (1). Further, in [10] the question as to whether oscillatory solutions of (2)
may coexist with nonoscillatory ones having at least one zero has been posed and Kiguradze in [8]
has negatively answered to this question.

Concerning the existence of nonoscillatory solutions, it is well known that the class P of all even-
tually positive solutions x of (1) can be divided into three subclasses, according to the asymptotic
behavior of x as t → ∞, namely

M+
∞,ℓ =

{
x ∈ P : lim

t→∞
x(t) = ∞, lim

t→∞
x′(t) = ℓx, 0 < ℓx < ∞

}
,

M+
∞,0 =

{
x ∈ P : lim

t→∞
x(t) = ∞, lim

t→∞
x′(t) = 0

}
,

M+
ℓ,0 =

{
x ∈ P : lim

t→∞
x(t) = ℓx, lim

t→∞
x′(t) = 0, 0 < ℓx < ∞

}
,

see, e.g., [4]. Solutions in M+
∞,ℓ, M+

∞,0, M+
ℓ,0 are called also dominant solutions, intermediate

solutions and subdominant solutions, respectively. Such a terminology has been introduced by the
Japanese mathematical school and it is due to the fact that, if x ∈ M+

∞,ℓ, y ∈ M+
∞,0, z ∈ M+

ℓ,0, then
we have x(t) > y(t) > z(t) for large t.

Necessary and sufficient conditions for the existence of subdominant and dominant solutions are
easily available in the literature, see, e.g., [4] and the references therein. However, as far we know,
until now no general necessary and sufficient conditions for existence of intermediate solutions of
(2) are known; this fact mainly is due to the lack of sharp upper and lower bounds for intermediate
solutions, see, e.g., [7, page 3], [9, page 2].

Another interesting problem which arises, is whether all three types of nonoscillatory solutions
can simultaneously exist. This problem has a long history. For equation (2), it started sixty years
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ago by Moore–Nehari [10] in case β > 1 and Belohorec [3] in case β < 1. This study was continued
in some papers by Kamo, Kusano, Naito, Tanigawa, Usami for the more general equation(

a(t)|x′|α sgnx′
)′
+ b(t)|x|β sgnx = 0, (3)

where a is a positive continuous function, in both cases α = β and α ̸= β. In particular, under
additional assumptions, it is proved that this triple coexistence is impossible, see [6] for more
details. Finally, in [4] the study has been completed with a negative answer.

A much more subtle question concerns the possible coexistence between oscillatory solutions
and nonoscillatory solutions. For the special case of (2) with b(t) = 1/4, that is for the equation

x′′ +
1

4
t−(β+3)/2|x|β sgnx = 0, t ∈ I, β > 1, (4)

it has been proved in [10] that (4) has both oscillatory solutions and nonoscillatory ones. These
nonoscillatory solutions are either subdominant solutions or intermediate solutions and both types
exist. Moreover, intermediate solutions of (4) intersect the intermediate solution

√
t infinitely many

times.
Observe that, in view of [8, Theorem 8.5], equation (4) can be considered, roughly speaking, as

the border equation between oscillation of at least one solution and nonoscillation of all solutions.
Our aim here is to present some results concerning the existence of oscillatory solutions and

intermediate solutions for (1) and its special case (2). Moreover, we show also how the results
in [10] for (4) concerning the coexistence between oscillatory solutions and intermediate solutions
can be extended to the perturbed equation (2). These results are taken from [1, 2] and we refer
these papers for more details.

Theorem 1. Assume that tγb(t) is nonincreasing on I, where γ = (αβ + 2α+ 1)(α+ 1)−1 and

g(u) sgnu is nonincreasing on (−∞, 0) and (0,∞); lim
u→∞

g(u) = M > 0,

lim
u→∞

g(u) = M > 0.
(5)

If
∞∫
1

sβb(s) ds = ∞,

then equation (1) has infinitely many intermediate solutions.

A necessary condition for the existence of intermediate solutions follows from the following
oscillation result.

Theorem 2. Assume (5). Then any solution of (1) is oscillatory if and only if
∞∫
1

( ∞∫
t

b(s) ds

)1/α

dt = ∞.

For equation (2) we have the coexistence of oscillatory solutions and intermediate solutions, as
the following result shows.

Theorem 3. Consider equation (2) with

b(t) = t−(β+3)/2c(t),
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where c is a positive absolute continuous function on I. If

lim
t→∞

c(t) = c0 > 0 and
∞∫
1

|c′(t)| dt < ∞, (6)

then we have:

(i1) Equation (2) has infinitely many oscillatory solutions. In addition, if c′(t) ≥ 0, then every
solution with zero is oscillatory.

(i2) Equation (2) has infinitely many intermediate solutions x defined on I such that

C0t
1/2 ≤ x(t) ≤ C1t

1/2 for large t, (7)

where C0 and C1 are suitable positive constants which does not depend on the choice of x.
Moreover, intermediate solutions intersect the function

(4c(t))
1

1−β
√
t

infinitely many times.

If
∞∫
1

a−1/α(s) ds = ∞,

Theorem 1 and Theorem 2 can be extended to the more general equation (3) using the change of
the independent variable

s = A(t) + 1− c, X(s) = x(t), t ∈ [1,∞), s ∈ [1,∞),

see [1, Section 6] for more details. Moreover, Theorem 1 extends recent results in [4, 5] and The-
orem 2 shows that the oscillation property reads in the same way for (1) and the Emden–Fowler
equation (1) with g(t) ≡ 1, see, e.g., [8, Chapter V].

For equation (2), Theorem 3(i3) extends analogues results in [5, Theorem 2.1] and [1, Theo-
rem 3.1], where b is required to be nonincreasing for t ≥ 1.
The proof of Theorem 1 is mainly based on certain asymptotic property of a suitable associated
energy function, see [1, Lemma 3.3 and Lemma 3.4]. The proof of Theorem 3 uses some auxiliary
results, which concerns with the equation

ü− u

4
+ c(es)|u(s)|β sgnu(s) = 0, s ∈ [0,∞), (8)

where “ · ” denotes the derivative with respect to the variable s.

Lemma 1. The change of variable

x(t) = t1/2u(s), s = log t, t ∈ [1,∞), (9)

transforms equation (2) into equation (8). Moreover, equation (8) has two types of nonoscillatory
solutions. Namely:
Type (1): solution u satisfies for large s

0 < |u(s)| ≤ De−s/2 (10)
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where |u| is decreasing and D > 0 is a suitable constant.

Type (2): solution u intersects the function

Z(s) = (4c(es))
1

1−β (11)

infinitely many times, i.e., there exists a sequence {sn}∞n=1, limn sn = ∞ such that

|u(sn)| = Z(sn).

Observe that solutions u of Type (1) in Lemma 1 correspond, via the transformation (9), to
subdominant solutions of equation (2) because

x(t) = t1/2u(s) ≤ t1/2K2e
−s/2 = K2,

while solutions u of Type (2) correspond to intermediate solutions of (2).

Concluding remark. Consider equation (2) with

b(t) = t−(β+3)/2tλ, 0 < λ <
β − 1

2
.

Then Theorem 3 is not applicable. However, it is possible to construct equation for which interme-
diate solutions exist. Observe that for λ = (β − 1)/2 all solutions of such equation are oscillatory.
How to relax conditions (6) in order to exist intermediate solutions?
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The first difference schemes with sixth order accuracy for approximation of elliptic equations
were offered by S. Mikeladze [6, 7], and further were being studied by a number of authors. Con-
vergence of these schemes with rate O(h6) were stated under condition that the solution of the
differential problem belongs to the class C8(Ω).

One of the most frequently encountering equations of numerical weather prediction, and fluid
dynamics generally, is the Helmholtz-type diagnostic equation [5]. Below, we propose and investi-
gate difference schemes approximating the following problem

∆u− λu = f(x), x ∈ Ω, u(x) = 0, x ∈ Γ, (1)

where λ ≥ 0 is a constant and Ω = {x = (x1, x2) : 0 < xα < l, α = 1, 2} is the square with
boundary Γ.

In Ω = Ω ∪ Γ we introduce a grid ω = ω1 × ω2, where

ωα =
{
xα = iαh : iα = 0, 1, . . . , N, h =

l

N

}
, γ = ω \ ω.

Besides

ωα = ωα ∩ (0; l), ω+
α = ωα ∩ (0; l], ω = ω1 × ω2, ω+ = ω+

1 × ω+
2 ,

ω(1) = ω+
1 × ω2, ω(2) = ω1 × ω+

2 , γ = ω \ ω.

Let
(y, v)ω̃ =

∑
x∈ω̃

h2y(x)v(x), ∥y∥2ω̃ = (y, y)ω̃ for ω̃ ⊆ ω.

Let’s denote by H the set of grid functions given on ω and vanishing on γ, with the scalar production
and norm (y, v) = (y, v)ω, ∥y∥ = ∥y∥ω.

Also, in space H, we introduce the norms

∥y∥2(α) = (y, y)ω(α), α = 1, 2,

∥y∥21 = ∥y∥2W 1
2 (ω)

= ∥yx1∥2(1) + ∥yx2∥2(2),

∥y∥22 = ∥y∥2W 2
2 (ω)

= ∥yx1x1∥2 + ∥yx2x2∥2 + 2∥yx1x2∥2ω+ ,
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It is supposed that
∥y∥W 0

2 (ω)
= ∥y∥.

For functions with continuous argument we will use the following averaging operators

Tαu =

1∫
−1

(
1− |t|

)
u
(
x1 + (2− α)th, x2 + (α− 1)th

)
dt, α = 1, 2.

We will approximate problem (1) with the help of family of difference schemes dependent on a
parameter ε:

Ay = φ(x), x ∈ ω, y(x) = 0, x ∈ γ, (2)
where

A ≡
(
1− λ2h4

360
− (1− ε)

λh2

12

(
1− λh2

12

))
(A1 +A2)

− h2

6

(
1− λh2

60
(7− 5ε)

)
A1A2 + λ

(
1 +

λh2

12
ε
)
E,

Aαy ≡ −yxαxα , α = 1, 2, Ey ≡ y, φ =
(
1 +

λh2

12
ε
)
T1T2f +

h2

240
(A1A2f + λ(A1 +A2)f).

It can be proved that operator A is self-conjugate and positively defined in H; the following
estimations

A ≥ δ(A1 +A2) +
4

9
λE, δ∥y∥21 ≤ (Ay, y), δ∥y∥2 ≤ ∥Ay∥,

where
δ =

2

3

(
1 +

λh2

12
ε
)
,

are valid for it.
Positive definiteness of operator A ensures unique solvability of the difference scheme (2).
Substituting y = z + u in (2), we get the problem

Az = ψ, x ∈ ω, z(x) = 0, x ∈ γ (3)

for error z, where ψ = φ−Au is an approximation error.
Using equation (1) and the identity Tα ∂2u

∂x2
α
= uxαxα we represent ψ in the form

ψ =
(
1 +

λh2

12
ε
)
(A1η1 +A2η2 +A3η3) + λη4,

where

η3−α = Tαu− u+
h2

12
Aαu− h2

240
Aα

∂2u

∂x2α
, α = 1, 2,

η3 = T1T2u− u+
h2

12
(A1 +A2)u− 11

720
h4A1A2u− h4

240
(A1 +A2)∆u,

η4 =
(
A1A2∆u+ λ(A1 +A2)∆u+

11

3
λA1A2u

) εh6

12 · 240
.

For the solution of problem (3) the following estimations are true:

∥z∥ ≤ 3

2

(
∥η1∥+ ∥η2∥+

λl2

16

(
∥η3∥+ ∥η4∥

))
,

∥z∥1 ≤
3

2

(
∥η1x1∥(1) + ∥η2x2∥(2) +

λl

4

(
∥η3∥+ ∥η4∥

))
,

∥z∥2 ≤
3

2

(
∥η1x1x1∥(1) + ∥η2x2x2∥(2) + λ

(
∥η3∥+ ∥η4∥

))
.
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It can be checked that expansions of linear (with respect to u(x)) functionals η1, η2, η3, η4 in the
class of sufficiently smooth functions start from sixth order derivatives.

With the help of technique of investigation [1, 4, 8], based on using of approximating lemma of
Bramble–Hilbert [2, 3], we become convinced in validness of the following

Theorem 1. Let the solution of problem (1) belong to the space Wm
2 (Ω), m > 3. Then the

convergence of the difference scheme (2) at ε ≥ 0 is characterized by the estimation

∥y − u∥W s
2 (ω)

≤Mhm−s∥u∥Wm
2
(Ω), s = 0, 1, 2, m ∈ (3, 6 + s].

References
[1] G. Berikelashvili, Construction and analysis of difference schemes for some elliptic problems,

and consistent estimates of the rate of convergence. Mem. Differential Equations Math. Phys.
38 (2006), 1–131.

[2] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to
Hermite interpolation. Numer. Math. 16 (1970/71), 362–369.

[3] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math.
Comp. 34 (1980), no. 150, 441–463.

[4] B. S. Jovanović, The Finite Difference Method for Boundary-Value Problems with Weak So-
lutions. Posebna Izdanja [Special Editions], 16. Matematički Institut u Beogradu, Belgrade,
1993.

[5] J. A. Leslie, An inverse problem in super geometry. Analysis on infinite-dimensional Lie groups
and algebras (Marseille, 1997), 235–243, World Sci. Publ., River Edge, NJ, 1998.

[6] S. Mikeladze, Über die numerische Lösung der Differentialgleichung ∂2u
∂x2 +

∂2u
∂y2

+ ∂2

∂z2
= φ(x, y, z).

(German) C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 14 (1937), 177–179.
[7] S. E. Mikeladze, Über die numerische Lösung der Differentialgleichungen von Laplace und

Poisson. (Russian) Bull. Acad. Sci. URSS, Ser. Math. 1938, No. 2, 271–292.
[8] A. A. Samarskii, R. D. Lazarov and V. L. Makarov. Difference Schemes for Differential Equa-

tions with Generalized Solutions. Vysshaya Shkola, Moscow (1987).



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 31

Existence of a Complete Unstable Differential System with
Perron and Upper-Limit Partial Stability

A. A. Bondarev
Lomonosov Moscow State University, Moscow, Russia

E-mail: albondarev1998@yandex.ru

The present report deals with a recently introduced [7] concept of the Qualitative Theory
of Differential Equations, namely the Perron stability. It continues the series of papers by the
author [1] and [2], reinforcing their results. The first of these works corrected the defect stated
in Remark 4 to Theorem 1 [8], but the differential system constructed there possessed a non-zero
(though limited on the whole semi-axis of time) linear approximation at zero. In the second paper
the system with the same properties, but already with a zero linear approximation at zero, was
constructed.

The following reinforcement of the above results consists in constructing a system with both
Perron and upper-limit complete instability (and thus also Lyapunov global instability) and at
the same time not just partial (as in all the examples discussed above) but even massive partial
instability.

For a number n ∈ N and for a region G ∋ 0 of the Euclidean space Rn, consider the system

ẋ = f(t, x), t ∈ R+ ≡ [0,∞), x ∈ G, (1)

with the right hand side f : R+ ×G → Rn satisfying the conditions

f, f ′
x ∈ C(R+ ×G), f(t, 0) = 0, t ∈ R+, (2)

and therefore admitting the zero solution. Let us denote by S∗(f) the set of all non-continuable
non-zero solutions to system (1) and by Sδ(f) – the subset in S∗(f) consisting of those and only
those solutions x which satisfy the initial condition |x(0)| < δ (here | · | is the Euclidean norm in
the space Rn).

Definition 1. Let us say that for system (1) (more exactly, for its zero solution, which we will not
mention further for brevity) the following Perron property takes place:

1) Perron stability if for any ε > 0 there exists such δ > 0 that any solution x ∈ Sδ(f) satisfies
the condition

lim
t→+∞

|x(t)| < ε; (3)

2) Perron instability if there is no Perron stability, namely, if there exists such ε > 0 that for
any δ > 0 some solution x ∈ Sδ(f) does not satisfy condition (3);

3) complete Perron instability if for some ε, δ > 0 no solution x ∈ Sδ(f) satisfies condition (3);

4) particular Perron stability if there is no complete Perron instability, namely, if for any ε, δ > 0
some solution x ∈ Sδ(f) satisfies condition (3);
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5) asymptotic Perron stability if for some δ > 0 any solution x ∈ Sδ(f) satisfies condition

lim
t→+∞

|x(t)| = 0; (4)

6) asymptotic Perron instability if there is no asymptotic Perron stability, namely, if for any
δ > 0 some solution x ∈ Sδ(f) does not satisfy condition (4).

The definition of the Perron properties essentially relies on the transition to the lower limit
when t → +∞ (see conditions (3) and (4) in Definition 1). Therefore they could also be called
lower-limit ones and it would be appropriate to consider also their natural analogues using the
upper limit instead of the lower limit. To do this, let us formulate

Definition 2. Let us compare to each Perron property from Definition 1 its upper-limit analogue,
namely: stability, instability, complete instability, particular stability, asymptotic stability, asymp-
totic instability are obtained by repeating respectively the descriptions from steps 1–6 of Definition
1 with replacement in them conditions (3) and (4) by conditions

lim
t→+∞

|x(t)| < ε (5)

and, respectively,
lim

t→+∞
|x(t)| = 0. (6)

Let us emphasize that in Definition 1 of the Perron properties conditions (3) and (4), as well as
in Definition 2 of the upper-limit properties, conditions (5) and (6) are considered as not fulfilled, in
particular already in the case when the solution x is simply not defined on the whole semi-axis R+,
which takes place if and only if its corresponding phase curve reaches the limit of the phase region
G in finite time (according to the solution continuity theorem; see, for example, Theorem 23 [9]).
Each Perron and upper-limit property 2–5 of Definitions 1 and 2 according to Theorem 3 from [10] is

(a) local in its initial value, i.e. to establish it is sufficient for an arbitrary fixed value of r > 0 to
consider those and only those solutions x which satisfy the condition |x(0)| < r;

(b) local in the phase variable, i.e. to establishit is sufficient for an arbitrary fixed value of r > 0
to know the values of each solution x at those and only those moments t ∈ R+ for which it
satisfies the condition |x(t)| < r.

Therefore to complete the picture it seems appropriate also to consider the properties charac-
terizing the behaviour not only of near-zero solutions but of all solutions in general, i.e. having, so
to speak, a global character. For this purpose let us formulate

Definition 3. Let us consider that the following property for system (1) takes place:

1) Perron or upper-limit global stability if any of its solutions x ∈ S∗(f) satisfies conditions (4)
or (6), respectively;

2) Perron or upper-limit partial instability if it does not possess Perron or upper-limit global
stability, namely, there is at least one its solution x ∈ S∗(f) that does not satisfy conditions
(4) or (6), respectively;

3) Perron or upper-limit partial stability if for any ε > 0 at least one of its solution x ∈ S∗(f)
satisfies, conditions (3) or (5), respectively;
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4) Perron or upper-limit global instability if it does not possess Perron or upper-limit partial
stability, namely, for some ε > 0 none of its solutions x ∈ S∗(f) satisfies conditions (3) or (5),
respectively.

The main result of this paper is to prove the existence of the differential system, all the near-
zero solutions of which tend to infinity at t → +∞ (hence the system is completely unstable both
Perron and upper-limit) and all other solutions tend to zero. This means that such system is not
globally unstable (neither Perron nor upper-limit) but it does possess both types of partial stability
and not just partial one, but even massive partial stability (i.e. the condition of satisfying one of
conditions (3) or (5) is imposed on the set of solutions of system (1)).

Theorem. When n = 2, there exists system (1) satisfying conditions (2) and posessing the following
three properties:

1) the right hand side of systen (1) is infinitely differentiable and

f ′
x(t, 0) = 0, t ∈ R+;

2) for each solution x to system (1), satisfying initial conditions 0 < |x(0)| < 1 or x(0) = (1, 0)T

and also |x(0)| = 1 and x2(0) < 0, there exists the equality

lim
t→+∞

|x(t)| = +∞;

3) for all other solutions x to system (1), satisfying initial conditions |x(0)| > 1 or x(0) = (−1, 0)T

and also |x(0)| = 1 or x2(0) > 0, there exists the equality

lim
t→+∞

|x(t)| = 0.
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We consider a boundary value problem
ẋ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1], (1)

x(0) + x(1) = 2x(c), (2)
where c ∈ (0, 1) is a given point, T+ and T− are linear positive operators, acting from the space
of real continuous functions C[0, 1] into the space of real integrable functions L[0, 1] with the
standard norms, f ∈ L[0, 1] (here positive operators map continuous non-negative functions into
non-negative integrable functions). An absolutely continuous function x : [0, 1] → R is called a
solution of problem (1), (2) if it satisfies equation (1) for almost all t ∈ [0, 1] and satisfies three
point boundary value condition (2).

If we put c = 0 or c = 1, then condition (2) coincides with the periodic boundary value condition.
Integral necessary and sufficient conditions for the unique solvability of the periodic boundary value

problem for equation (1) in terms of two quantities
1∫
0

(T+1)(s) ds and
1∫
0

(T−1)(s) ds are known [1]

(here 1 : [0, 1] → R is the unit function). We formulate these conditions in the following form.
Theorem 1 ( [1]). Let two nonnegative numbers T + and T − be given. The periodic boundary
value problem for equation (1) is uniquely solvable for all linear positive operators T+, T− satisfying
equalities

1∫
0

(T+1)(s) ds = T +,

1∫
0

(T−1)(s) ds = T −,

if and only if the inequalities
X

1−X
< Y < 2

(
1 +

√
1−X

)
, X < 1,

are fulfilled, where
X = min{T +, T −}, Y = max{T +, T −}.

Various three-point boundary value problems are also considered for functional differential
equations (see, for example, [2]). Similar integral necessary and sufficient conditions for three point
problems, in particular, problem (1), (2), as far as we know, have not yet been obtained. It is natu-
ral to consider the conditions for the unique solvability of this problem in terms of four parameters,
namely, the integrals of T+1 and T−1 over intervals [0, c] and [c, 1]:

c∫
0

(T+1)(s) ds ≡ PL,

1∫
c

(T+1)(s) ds ≡ PR, (3)

c∫
0

(T−1)(s) ds ≡ ML,

1∫
c

(T−1)(s) ds ≡ MR. (4)
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We are interested in the structure of the uniquely solvable set Ω ∈ R4, that is, the set of
all points (PL, PR,ML,MR) for which any problem (1), (2) with positive linear operators T+, T−

satisfying equalities (3), (4) is uniquely solvable. These conditions of solvability (necessary and
sufficient) turn out to be rather complicated.

Define
∆ ≡ PL +MR − PR −ML, P ≡ PL + PR, M ≡ ML +MR.

Theorem 2. Let four non-negative numbers PL, PR, ML, MR be given, ∆ > 0. Then the boundary
value problem (1), (2) is uniquely solvable for all linear positive operators T+, T− satisfying equalities
(3), (4) if and only if the following conditions are fulfilled:

∆ > MLPL +MRPR + 2MLMR; ∆ > MLPL +MRPR + 2PLPR;

PR +ML < 1; ∆ >
(PL +MR)

2

4
;

∆ + s2p − sp(P +MR) > 0,

∆+ s2p − sp(P + 2MR) + 2MRPR +MRML > 0,

∆+ s2p − sp(P + 2MR) + 2MPR > 0 for all sp ∈ [PR, P ];

∆ + s2m − sm(PL +M) > 0,

∆+ s2m − sm(2PL +M) + 2PLML + PRPL > 0,

∆+ s2m − sm(2PL +M) + 2P ML > 0 for all sm ∈ [ML,M ].

Some conditions of the previous theorem can be simplified. Define several values

r1 ≡ (PL + PR)MR +
(PL + PR −MR)

2
+

4
,

r2 ≡ (ML +MR)PL +
(ML +MR − PL)

2
+

4
,

r3 ≡ 2PLMR +
(PL + PR − 2MR)

2
+

4
−MLmin{MR, 2PR},

r4 ≡ 2PLMR +
(ML +MR − 2PL)

2
+

4
− PR min{PL, 2ML},

r5 ≡ MLPL +MRPR + 2max{MLMR, PLPR},

where (a)+ = max{0, a} for every a ∈ R. The numbers r′i can be obtained from the numbers ri,
respectively, when replacing PL with MR, PR with ML, ML with PR, MR with PL; ∆′ ≡ −∆.

Theorem 3. Let four non-negative numbers PL, PR, ML, MR be given. Then the boundary value
problem (1), (2) is uniquely solvable for all linear positive operators T+, T− satisfying equalities
(3), (4) if and only if

∆ > 0, ∆ > max
{
r1, r2, r3, r4, r5

}
,

or
∆′ > 0, ∆′ > max

{
r′1, r

′
2, r

′
3, r

′
4, r

′
5

}
.

Corollary 1. If the conditions of Theorem 3 are satisfied, then

PR +ML < 1, PL +MR < 2
(
1 +

√
1− PR −ML

)
.

or
PL +MR < 1, PR +ML < 2

(
1 +

√
1− PL −MR

)
.
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Corollary 2. The uniquely solvable set Ω is non-empty and consists of two path-connected com-
ponents, Ω+, for whose points ∆ > 0, and Ω−, for whose points ∆ < 0. For each point of each
component of the uniquely solvable set, the intersection of this component with each straight line
that is parallel to one of the axes and passes through this point is an open interval or a half-open
interval of the form [0, d).

Thus, Corollary 2 gives a good idea of the structure of the uniquely solvable set. It remains
only to study the boundaries of the set in more detail.

If PL = 0 or MR = 0, then the conditions for the solvability turn out to be simple (and close to
the conditions for the solvability of the periodic boundary value problem).

Theorem 4. Let MR = 0 and non-negative numbers PL, PR, ML be given. Suppose

PL > PR +ML.

Then problem (1), (2) is uniquely solvable for all linear positive operators T+, T− satisfying equalities
(3), (4) if and only if

PR +ML

1− 2PR −ML
< PL < 2− PR + 2

√
1− 2PR −ML , 2PR +ML < 1.

Let PL = 0 and non-negative numbers MR, PR, ML be given. Suppose

MR > PR +ML.

Then problem (1), (2) is uniquely solvable for all linear positive operators T+, T− satisfying equalities
(3), (4) if and only if

PR +ML

1− PR − 2ML
< MR < 2− PR + 2

√
1− PR − 2ML , PR + 2ML < 1.

It is also easy to construct the set of unique solvability for two zero parameters ML = 0 and
PR = 0. This section plays an important role in the construction of the entire solvability set (one
should pay attention to Corollary 3 below).

Theorem 5. Let ML = 0 and PR = 0. Let non-negative numbers PL, MR be given. The boundary
value problem (1), (2) is uniquely solvable for all linear positive operators T+, T− satisfying the
equalities (3), (4) if and only if

PL ∈ (0, 4), MR = 0, (5)

0 ≤ PL <


2
(
1−MR +

√
1−MR

)
, MR ∈

(
0,

3

4

)
,

MR

2MR − 1
, MR ∈

[3
4
,
3

2

)
,

1−MR +
√
2MR + 1

2
, MR ∈

[3
2
, 4
)
.

(6)

Let Ω0,0 = {(t, s) : (PL, 0, 0,MR) ∈ Ω+} be the set of all points (PL,MR) satisfying (5), (6). It
is the section of the solvability set Ω+ for PR = 0, ML = 0. Constructing a section of the solvability
set when only one of the numbers PR and ML is zero is not such an easy task.

The components Ω+ and Ω− of the solvability set are symmetric. We investigate the set Ω+,
that is, the case when

∆ = PL +MR − PR −ML > 0.
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It turns out that the relations defining the boundaries of the solvability set in this case are
easily resolved with respect to “small” parameters PR ≡ t, ML ≡ s, and have the form

s < PL +MR − PLMR − t(1 +MR)−
(PL + t−MR)

2
+

4
,(

1−min{MR, 2t}
)
s < PL +MR − t− 2PLMR −

(PL + t− 2MR)
2
+

4
,

(1 + PL)s < PL +MR − t(1 +MR + 2PL),

(7)

and
t < PL +MR − PLMR − s(1 + PL)−

(MR − PL + s)2+
4

,(
1−min{PL, 2s}

)
t < PL +MR − 2PLMR − s−

(MR − 2PL + s)2+
4

,

(1 +MR)t < PL +MR − s(1 + 2MR + PL).

(8)

Let (PL, PR = t,ML = s,MR) ∈ Ω+. Therefore, inequalities (7), (8) are fulfilled. Then it is
easy to show that (PL, 0, 0,MR) ∈ Ω+.

Let sections of Ω+ be defined by

ΩPL,MR
=

{
(t, s) : (PL, t, s,MR) ∈ Ω+

}
.

Corollary 3. The set ΩPL,MR
is not empty if and only if (PL,MR) ∈ Ω0,0.

Corollary 4. Let (PR,ML) ∈ ΩPL,MR
. Then (t, s) ∈ ΩPL,MR

for all t ∈ [0, PR], s ∈ [0,ML].
For some pairs of PL and MR, the border of ΩPL,MR

is relatively simple. Due to symmetry, it
is sufficient to consider the case PL ≤ MR.
Theorem 6. Let MR ∈ [0, 1], PL ≤ max{MR, 1/2}. Then

ΩPL,MR
=

{
(t, s) : t ∈

[
0,

PL +MR − s(1 + PL)

1 +MR + 2PL

)
, s ∈

[
0,

PL

1 +MR + PL

]
;

t ∈
[
0,

PL +MR − s(1 + 2MR + PL)

1 +MR

)
, s ∈

[ PL

1 +MR + PL
,
PL +MR

1 + PL

]}
.

Theorem 7. Let MR ∈ [1, 1 +
√
2), PL ∈ [0, (1 +

√
2−MR)

2/4). Then

ΩPL,MR
=

{
(t, s) : t ∈

[
0,

PL +MR − 2PLMR − s

1 +MR

)
, s ∈

[
0,

PLMR

2MR + PL

]
;

t ∈
[
0,

PL +MR − s(1 + 2MR + PL)

1 +MR

)
, s ∈

[ PLMR

2MR + PL
,

PL +MR

1 + 2MR + PL

]}
.

Theorem 8. Let (ML, PR) ∈ Ω0,0, ML ∈ [8/11, 4), 2(4−MR)/9 ≤ PL ≤ MR. Then

ΩPL,MR
=

{
(t, s) : 0 ≤ t <

PL +MR − 2PLMR − s− (MR − 2PL + s)2/4

1− 2s
,

s ∈
[
0, 2

√
(1− PL)(1 + 2MR)−MR − 2 + 2PL

)}
.

Theorem 9. Let ML ∈ [3, 4), PL ≤ (1−MR +
√
2MR + 1)/4. Then

ΩPL,MR
=

{
(t, s) : t ∈

[
0,

PL +MR − 2PLMR − s− (MR − PL + s)2/4

1−min{PL, 2s}

)
,

s ∈
[
0, 2

√
(1− PL)(1 + 2MR)−MR − 2 + 2PL

)}
.
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We consider the following differential equation

y′′ = α0p(t)φ0(y
′)φ1(y). (1)

In this equation α0 ∈ {−1; 1}, functions p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) and φi : ∆Yi →
]0,+∞[ (i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi is either the interval [y0i , Yi[ or the interval
]Yi, y

0
i ]. If Yi = +∞ (Yi = −∞), we put y0i > 0 (y0i < 0).

We also suppose that function φ1 is a regularly varying as y → Y1 function of index σ1 [7, p. 10-
15], function φ0 is twice continuously differentiable on ∆Y0 and satisfies the next conditions

φ′
0(y) ̸= 0 as y ∈ ∆Y0 , lim

y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (2)

It follows from the above conditions (2) that the function φ0 and its derivative of the first order
are rapidly varying functions as the argument tends to Y0 [1]. Thus, the investigated differential
equation contains the product of a regularly varying function of unknown function and a rapidly
varying function of its first derivative in its right-hand side.

Previously we obtained results for this kind of equation containing a rapidly varying function
of unknown function and a regularly varying function of its first derivative [2].

The main aim of the article is the investigation of conditions of the existence of following class
of solutions of equation (1).

Definition 1. The solution y of equation (1), defined on the interval [t0, ω[⊂ [a, ω[ , is called
Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞), if the following conditions take place

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

This class of solutions was defined in the work by V. M. Evtukhov [3] for the n-th order diffe-
rential equations of Emden–Fowler type and was concretized for the second-order equation. Due to
the asymptotic properties of functions in the class of Pω(Y0, Y1, λ0)-solutions [4], every such solution
belongs to one of four non-intersecting sets according to the value of λ0 : λ0 ∈ R \ {0, 1}, λ0 = 0,
λ0 = 1, λ0 = ±∞.
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Now we consider the case λ0 ∈ R \ {0, 1} of such solutions, every Pω(Y0, Y1, λ0)-solution and its
derivative satisfy the following limit relations

y′(t)

y(t)
=

λ0

(λ0 − 1)πω(t)
[1 + o(1)],

y′′(t)

y′(t)
=

1

(λ0 − 1)πω(t)
[1 + o(1)] as t ↑ ω, (3)

From conditions (3) it follows that such Pω(Y0, Y1, λ0)-solutions are regularly varying functions
of index λ0

λ0−1 , and their derivatives are regularly varying functions of index 1
λ0−1 as t ↑ ω [7].

To formulate the main result, we introduce the following definitions.

Definition 2. Let Y ∈ {0,∞}, ∆Y is some one-sided neighborhood of Y . Continuous-differentiable
function L : ∆Y →]0;+∞[ is called ( [6], p.2-3) a normalized slowly varying function as z → Y
(z ∈ ∆Y ) if the next statement is valid

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0.

Definition 3. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies
the condition S as z → Y , if for any continuous differentiable normalized slowly varying as z → Y
(z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y, z ∈ ∆Y .

Definition 4. We say that a slowly varying as z → Y (z ∈ ∆Y ) function L0 : ∆Y → ]0;+∞[
satisfies the condition S1 as z → Y if for any finite segment [a; b] ⊂ ]0;+∞[ the next inequality is
true

lim sup
z→Y
z∈∆Y

∣∣∣ ln |z| · (L(λz)
L(z)

− 1
)∣∣∣ < +∞ for all λ ∈ [a; b].

Conditions S and S1 are satisfied by functions ln |y|, | ln |y||µ (µ ∈ R), ln | ln |y|| and many
others.

Introduce the necessary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
θ1(y) = φ1(y)|y|−σ1 ,

Φ0(z) =

z∫
Aω

ds

|s|σ1φ0(s)
, Aω =



y01 as
Y1∫

y01

ds

|s|σ1φ0(s)
= ±∞,

Y1 as
Y1∫

y01

ds

|s|σ1φ0(s)
= const,

Z0 = lim
z→Y1
z∈∆Y1

Φ0(z), Φ1(z) =

z∫
Aω

Φ0(s) ds, Z1 = lim
z→Y1
z∈∆Y1

Φ1(z),

F (t) =
πω(t)I

′
1(t)

Φ−1
1 (I1(t))Φ′

1(Φ
−1
1 (I1(t)))

,

and in the case
y00 lim

t↑ω
|πω(τ)|

λ0
λ0−1 = Y0,
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we have

I(t) = α0y
0
0 ·

∣∣∣λ0 − 1

λ0

∣∣∣σ1

·
t∫

B0
ω

|πω(τ)|σ1p(τ)θ1
(
|πω(τ)|

λ0
λ0−1 y00

)
dτ,

B0
ω =


b if

ω∫
b

|πω(τ)|σ1p(τ)θ1
(
|πω(τ)|

λ0
λ0−1 y00

)
dτ = +∞,

ω if
ω∫
b

|πω(τ)|σ1p(τ)θ1
(
|πω(τ)|

λ0
λ0−1 y00

)
dτ < +∞,

I1(t) =

t∫
B1

ω

I(τ)Φ−1
0 (I(τ))

(λ0 − 1)πω(τ)
dτ, B1

ω =


b if

ω∫
b

I(τ)Φ−1
0 (I(τ))

(λ0 − 1)πω(τ)
dτ = ±∞,

ω if
ω∫
b

I(τ)Φ−1
0 (I(τ))

(λ0 − 1)πω(τ)
dτ < +∞,

where b ∈ [a;ω[ is chosen so that

y00 lim
t↑ω

|πω(τ)|
λ0

λ0−1 ∈ ∆Y0 as t ∈ [b;ω].

Note 1. From conditions (3) of the function φ0 it follows that Z0, Z1 ∈ {0,+∞} and

lim
z→Y1
z∈∆Y1

Φ′′
0(z) · Φ0(z)

(Φ′
0(z))

2
= 1, lim

z→Y1
z∈∆Y1

Φ′′
1(z) · Φ1(z)

(Φ′
1(z))

2
= 1. (4)

Note 2. The following statements are true:

1)

Φ0(z) = (σ1 − 1)
φ

σ1
σ1−1

0 (z)

φ′
0(z)

[1 + o(1)] as z → Y1, y ∈ ∆Y1 .

Hence we have
sign(φ′

0(z)Φ0(z)) = sign(σ1 − 1) as z ∈ ∆Y1 .

2)

Φ1(z) =
Φ2
0(z)

yΦ′
0(z)

[1 + o(1)] as z → Y1, z ∈ ∆Y1 .

Hence we have
sign(Φ1(z)) = y00 as z ∈ ∆Y1 .

3) The functions Φ−1
0 and Φ−1

1 exist and are slowly varying functions as inverse to rapidly varying
functions as the arguments tend to Y1 functions.

4) The function Φ′
1(Φ

−1
1 ) is a regularly varying function of the index 1 as the argument tends

to Y1.
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Indeed, from (4) we have

lim
z→Z1

(Φ′
1(Φ

−1
1 (z)))′z

Φ′
1(Φ

−1
1 (z))

= lim
z→Z1

Φ′′
1(Φ

−1
1 (z))z

(Φ′
1(Φ

−1
1 (z)))2

= lim
y→Y1

Φ′′
1(Φ

−1
1 (Φ1(y)))Φ1(y)

(Φ′
1(Φ

−1
1 (Φ1(y))))2

= lim
y→Y1

Φ′′
1(y)Φ1(y)

(Φ′
1(y))

2
= 1.

Let Y ∈ {0,∞}, ∆Y be some one-sided neighborhood of Y . A continuous-differentiable function
L : ∆Y → ]0;+∞[ is called [6, p. 2-3] a normalized slowly varying function as z → Y (z ∈ ∆Y ) if
the next statement is valid

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0. (5)

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the
condition S as z → Y , if for any normalized slowly varying as z → Y (z ∈ ∆Y ) function L : ∆Yi →
]0;+∞[ the following equality takes place as z → Y (z ∈ ∆Y ),

θ(zL(z)) = θ(z)(1 + o(1)).

We will consider that a slowly varying as z → Y (z ∈ ∆Y ) function L0 : ∆Y → ]0;+∞[ satisfies
the condition S1 as z → Y if for any finite segment [a; b] ⊂ ]0;+∞[ the next inequality is true

lim sup
z→Y
z∈∆Y

∣∣∣ ln |z| · (L(λz)
L(z)

− 1
)∣∣∣ < +∞ for all λ ∈ [a; b].

Conditions S and S1 are satisfied by functions ln |y|, | ln |y||µ (µ ∈ R), ln | ln |y|| and many
others.

The following theorem takes place.

Theorem. Let σ1 ∈ R \ {1}, the function θ1 satisfy the condition S, and the functions θ1 and
Φ−1
1 · Φ

′
1

Φ1
(Φ−1

1 ) satisfy the condition S1. Then for the existence of Pω(Y0, Y1, λ0)-solutions of equation
(1), in case λ0 ∈ R \ {0, 1}, it is necessary, and if the following condition takes place

I(t)I1(t)σ1(λ0 − 1) < 0 if t ∈ ]b, ω[ ,

and there is a finite or infinite limit √
|πω(t)I′1(t)

I1(t)
|

ln |I1(t)|
,

it is sufficient that the next conditions

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0, y01α0(λ0 − 1)πω(t) > 0 as t ∈ [a;ω[ ,

y00 · lim
t↑ω

|πω(t)|
λ0

λ0−1 = Y0, lim
t↑ω

I1(t) = Z1,

lim
t↑ω

I ′(t)I1(t)

I ′1(t)I(t)
= 1, lim

t↑ω

Φ(Φ−1
1 (I1(t)))

I(t)
= 1, lim

t↑ω
F (t) =

1

λ0 − 1

are fulfilled. Moreover, for each such solution the next asymptotic representations as t ↑ ω take
place

y′(t) = Φ−1
1 (I1(t))[1 + o(1)], y(t) =

(λ0 − 1)Φ−1
1 (I1(t))πω(t)

λ0
[1 + o(1)].
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For the equation under the investigation the question of the active existence of Pω(Y0, Y1, λ0)-
solutions, in case λ0 ∈ R \ {0, 1}, that have the received asymptotic representations, has been
reduced to the question of the existence of infinitely small as arguments tend to ω solutions of the
corresponding, equivalent to the investigated equation, systems of non-autonomous quasi-linear dif-
ferential equations that admit applications of the known results from the works by V. M. Evtukhov
and A. M. Samoilenko [5].
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We investigate the problem of finding solutions [1]

y(t) ∈ D2[a; b], y′(t) ∈ L2[a; b]

of linear Noetherian (n ̸= υ) boundary value problem for a system of linear integral-differential
equations of Fredholm type with degenerate kernel

A(t)y′(t) = B(t)y(t) + Φ(t)

b∫
a

F (y(s), y′(s), s) ds+ f(t), ℓy( · ) = α, α ∈ Rp. (1)

We seek a solution of the Noetherian boundary value problem (1) in a small neighborhood of the
solution

y0(t) ∈ D2[a; b], y′0(t) ∈ L2[a; b]

of the generating problem

A(t)y′0(t) = B(t)y0(t) + f(t), ℓy0( · ) = α. (2)

Here
A(t), B(t) ∈ L2

m×n[a; b] := L2[a; b]⊗ Rm×n, Φ(t) ∈ L2
m×q[a; b], f(t) ∈ L2[a; b].

We assume that the matrix A(t) is, generally speaking, rectangular: m ̸= n. It can be square,
but singular. Assume that the function F (y(t), y′(t), t) is linear with respect to unknown y(t) in a
small neighborhood of the generating solutions and with respect to the derivative y′(t) in a small
neighborhood of the function y′0(t). In addition, we assume that the function F (y(t), y′(t), t) is
continuous in the independent variable t on the segment [a, b];

ℓy( · ) : D2[a; b] → Rp

is a linear bounded vector functional defined on a space D2[a; b]. The problem of finding solu-
tions of the boundary value problem (1) in case A(t) = In was solved by A. M. Samoilenko and
A. A. Boichuk [12]. Thus, the boundary value problem (1) is a generalization of the problem solved
by A. M. Samoilenko and A. A. Boichuk.

Provided that the differential-algebraic system (2) with the constant-rank matrix A(t) satisfies
the conditions of the theorem from the paper [13, p. 15] in the case of p-order degeneration. Then,
in the case of the p-order degeneration, the differential-algebraic system (2) has a solution which
can be written the form

y0(t, cρp−1) = Xp(t)cρp−1 +K[f(s), νp(s)](t), cρp−1 ∈ Rρp−1 .
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The solvability of the differential-algebraic boundary-value problem (2) substantially depends on
the choice of the continuous vector function νp(t). If and only if condition

PQ∗
{
α− ℓK[f(s), νp(s)]( · )

}
= 0 (3)

is satisfied, the solution of the differential-algebraic boundary-value problem (2), namely,

y0(t, cr) = Xr(t)cr +G[f(s);α](t), cr ∈ Rr

determines the generalized Green operator of the differential-algebraic boundary-value problem (2)

G[f(s);α](t) := Xp(t)Q
+
{
α− ℓK[f(s), νp(s)]( · )

}
+K[f(s), νp(s)](t),

where K[f(s), νp(s)](t) is the generalized Green operator of the Cauchy problem z(a) = 0 for the
differential-algebraic system (2). Here Xr(t) := Xp(t)PQr , Xp(t) is fundamental matrix of the
differential-algebraic system (2),

PQ∗ : Rυ → N(Q∗), PQ : Rρp−1 → N(Q), Q := ℓXp( · ) ∈ Rυ×ρp−1

are matrix-orthoprojectors [1, 2, 13], PQr ∈ Rυ×r is an (ρp−1 × r)-matrix composed of r linearly
independent columns of the orthoprojector PQ. Thus, the following lemma is proved [13].

Lemma 1. Provided that the differential-algebraic system (2) with the constant-rank matrix A(t)
satisfies the conditions of the theorem from the paper [13, p. 15] in the case of p-order degeneration.
Then, in the case of the p-order degeneration, the differential-algebraic system (2) has a solution
which can be written in the form

y0(t, cρp−1) = Xp(t)cρp−1 +K[f(s), νp(s)](t), cρp−1 ∈ Rρp−1 .

In the critical case PQ∗ ̸= 0 the singular differential-algebraic boundary value problem (2) is solvable
iff (3) holds. In the critical case the singular differential-algebraic boundary value problem (2) has
a solution of the form

y0(t, cr) = Xr(t)cr +G[f(s);α](t), Xr(t) := X(t)PQr , cr ∈ Rr,

which depends on the arbitrary vector-function νp(t) ∈ L2[a; b]. Here, PQr is an (p × r)-matrix
composed of r linearly independent columns of the (p× p)-matrix-orthoprojector: PQ : Rp → N(Q);

G[f(s);α](t) := X(t)Q+
{
α− ℓK[f(s)]( · )

}
+K[f(s)](t)

is the generalized Green operator of the linear integral-differential problem (1);

K[f(s)](t) := X(t)

t∫
a

X−1(s)F0(s, ν0(s)) ds

is the generalized Green operator of the Cauchy problem for the integral-differential system (2).

The results of the proved Lemma 1 were obtained making no use of the central canonical form,
perfect pairs, and matrix triplets [1, 2].

Denote the matrix
Ψ(t) := K[Φ(s)](t) ∈ D2

n×q[a; b]

and PRω ∈ Rρp−1×ω matrix composed of ω linearly independent columns of the matrix-orthopro-
jector

PR : Rq → N(R), R := ℓΨ( · ).
Thus, the following theorem has been proved [10].
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Theorem 1. Provided that the differential-algebraic system (2) with the constant-rank matrix A(t)
satisfies the conditions of the theorem from the paper [13, c. 15]. In the critical case (PQ∗ ̸= 0)
under condition (3) singular (PA∗(t)) ̸= 0 integral-differential boundary value problem (2) has a
solution of the form

y0(t, cr) = Xr(t)cr +G[f(s);α](t), Xr(t) := X(t)PQr , cr ∈ Rr,

which depends on the arbitrary vector-function νp(t) ∈ L2[a; b]. The singular integral-differential
boundary value problem (1) has a solution of the form

y(t) = y0(t, cr) + x(t), x(t) = Xp(t)v +Ψ(t)u,

u(cr) = PQrcr, v(cω) = PRωcω, č :=

cr
cr
c1

 ,

where

φ(č) := u(c0)−
b∫

a

F
(
y0(t, cr) + x

(
t, u(cr), v(cω)

)
, y′0(t, cr) + x′

(
t, u(cr), v(cω)

)
, t
)
dt = 0. (4)

Suppose that for equation (4) the following conditions are satisfied:

1. A non-linear vector-function φ(č), twice continuously differentiable with respect to č in some
region Ω ⊆ R2r+ω, in a neighborhood of the point č0 has a root č.

2. In the neighborhood of the zeroth approximation č0 there are inequalities

∥J+
k ∥ ≤ σ1(k), ∥d2φ(ξk; č− čk)∥ ≤ σ2(k) · ∥č− čk∥.

3. The following constant exists
θ := sup

k∈N

{σ1(k)σ2(k)

2

}
.

Then, under conditions

PJ∗
k
= 0, Jk := φ′(čk) ∈ Rn×(2r+ω), θ · ∥č− č0∥ < 1 (5)

to find the solution č of equation (4) the iteration scheme (6)

čk+1 = čk − J+
k φ(čk), k ∈ N, (6)

is applicable, and the rate of convergence of the sequence č of equation (4) is quadratic.

Here PJ∗
k
: Rm → N(J∗

k ) is an orthogonal projector of the matrix Jk and J+
k is the pseudoinverse

Moore–Penrose matrix [1]. Note that condition (5) is equivalent [5, 7, 8] to the requirement of
completeness of the rank matrix Jk and is possible only in case m ≤ n.

The results of the proved Theorem 1 were obtained making no use of the central canonical form,
perfect pairs, and matrix triplets [1, 2].

The proposed scheme of studies of the nonsingular integral-differential boundary value prob-
lem (1) can be transferred analogously to [1, 4, 6, 11] onto nonlinear singular integral-differential
boundary value problem. On the other hand, in the case of nonsolvability, the nonsingular integral-
differential boundary value problems can be regularized analogously [3, 14].

Conditions for the solvability of the linear boundary-value problem for systems of differential-
algebraic equations with the variable rank of the leading-coefficient matrix and the corresponding
solution construction procedure have been found in the paper [9].
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The study of differential-algebraic boundary value problems was initiated in the works of
K. Weierstrass, N. N. Luzin and F. R. Gantmacher. Systematic study of differential-algebraic
boundary value problems is devoted to the works of S. Campbell, Yu. E. Boyarintsev, V. F. Chis-
tyakov, A. M. Samoilenko, M. O. Perestyuk, V. P. Yakovets, O. A. Boichuk, A. Ilchmann and
T. Reis [3]. The study of the differential-algebraic boundary value problems is associated with
numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, bi-
ology, radio engineering, theory of control, theory of motion stability. At the same time, the
study of differential algebraic boundary value problems is closely related to the study of pulse
boundary value problems for differential equations, initiated by M. O. Bogolybov, A. D. Myshkis,
A. M. Samoilenko, M. O. Perestyk and O. A. Boichuk. Consequently, the actual problem is the
transfer of the results obtained in the articles by S. Campbell, A. M. Samoilenko, M. O. Perestyuk
and O. A. Boichuk on pulse linear boundary value problems for differential-algebraic equations, in
particular finding the necessary and sufficient conditions for the existence of the desired solutions,
and also the construction of the Green operator of the Cauchy problem and the generalized Green
operator of a pulse linear boundary value problem for a differential-algebraic equation [2, 3, 5].

In this article we found the conditions of the existence and constructive scheme for finding the
solutions

z(t) ∈ C1
{
[a, b] \ {τi}I

}
of the linear Noetherian differential-algebraic boundary value problem for a differential-algebraic
equation with the singular impulse action [2–5,11]

A(t)z′(t) = B(t)z(t) + f(t), t ̸= τi, (1)
∆z(τi) = Siz(τi − 0) + ai, i = 1, 2, . . . , p, ℓz( · ) = α ∈ Rq, (2)

where A(t), B(t) ∈ Cm×n[a, b], f(t) ∈ C[a, b], ℓz( · ) is a linear bounded functional:

ℓz( · ) : C1{[a, b] \ {τi}I} → Rq.

We assume that the matrix A(k) is, generally speaking, rectangular: m = n. It can be square, but
singular. The proposed scheme of the research of the linear differential-algebraic boundary value
problem for a differential-algebraic equation with impulse action in the critical case in this article can
be transferred to the linear differential-algebraic boundary value problem for a differential-algebraic
equation with a singular impulse action. The above scheme of the analysis of the seminonlinear
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differential-algebraic boundary value problems with an impulse action generalizes the results of
S. Campbell, A. M. Samoilenko, M. O. Perestyuk and O. A. Boichuk and can be used for proving
the solvability and constructing solutions of weakly nonlinear boundary value problems with a
singular impulse action in the critical and noncritical cases [2–6,8, 11]. For the case in which all

A(t) ≡ In, In + Si, i = 1, 2, . . . , p

are non-degenerate matrices, we obtain the problem investigated in [2, 3]; in particular, if

A(t) ≡ In, Si = 0, i = 1, 2, . . . , p,

then we have the problem considered in [12]. If

Si = 0, ai = 0, ℓz( · ) := Mi(τi − 0) +Niz(τi + 0), i = 1, 2, . . . , p,

then we obtain the problem analyzed in [10]. If A(t) ≡ In and In + Si are degenerate matrices for
some i, then we have a degenerate impulse action [5, 6].

The analysis of differential-algebraic equations with the help of the central canonical form,
perfect pairs, and matrix triplets was made in the monographs [3, 4]. Sufficient conditions for the
reducibility of a differential-algebraic linear system to the central canonical form were obtained by
A. M. Samoilenko and V. P. Yakovets. In papers [8, 11], sufficient solvability conditions, as well
as the procedure of constructing the generalized Green operator for the linear differential-algebraic
boundary-value problem (1) without making use of the central canonical form, perfect pairs, and
matrix triplets, were proposed.

Provided that the differential-algebraic system (1) with the constant-rank matrix A(t) satisfies
the condition

PA∗(t) ≡ 0. (3)

Then, in the case (3), the differential-algebraic system (1) has a solution, which can be written in
the form [8,11]

z(t, c) = X0(t)c+K0

[
f(s), ν0(s)

]
(t), c ∈ Rn,

where

K0

[
f(s), ν0(s)

]
(t) := X0(t)

t∫
a

X−1
0 (s)F0(s, ν0(s)) ds, a ≤ t < τ1

is the generalized Green operator of the Cauchy problem z(a) = 0 for the differential-algebraic
system (1), X0(t) is normal fundamental matrix:

X ′
0(t) = A+(t)B(t)X0(t), X0(a) = In

and
F0(t, ν0(t)) := A+(t)f(t) + PAρ0

(t)ν0(t),

A+(t) is a pseudoinverse matrix, PA∗(t) is matrix-orthoprojectors [3]:

PA∗(t) : Rm → N(A∗(t)),

PAρ0
(t) is an (n× ρ0)-matrix composed of ρ0 linearly independent columns of the (n× n)-matrix-

orthoprojector [3]:
PA(t) : Rn → N(A(t)).
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The solvability of the differential-algebraic boundary-value problem (1), (2) substantially depends
on the choice of the continuous vector function ν0(t). In the case (3) the differential-algebraic
system (1) has a solution which can be written in the form [5,6, 9]

z(t, c) = X1(t)c+K1

[
f(s), ν0(s)

]
(t), c ∈ Rn,

where
X1(t) = X0(t)X

−1
0 (τ1)(In + S1)X0(τ1), τ1 ≤ t < τ2,

and

K1

[
f(s), ν0(s)

]
(t) := X0(t)X

−1
0 (τ1)(In + S1)K0

[
f(s), ν0(s)

]
(τ1)

+X0(t)X
−1
0 (τ1) a1 +X0(t)

t∫
τ1

X−1
0 (s)F0(s, ν0(s)) ds, τ1 ≤ t < τ2.

Denote the matrix

Xp(t) = X0(t)X
−1
0 (τp)(In + Sp)Xp−1(τp), τp ≤ t ≤ b,

and

Kp

[
f(s), ν0(s)

]
(t) := X0(t)X

−1
0 (τp)(In + Sp)Kp−1

[
f(s), ν0(s)

]
(τp)

+X0(t)X
−1
0 (τp) ap +X0(t)

t∫
τp

X−1
0 (s)F0(s, ν0(s)) ds, τp ≤ t ≤ b

is the generalized Green operator of the Cauchy problem for the differential-algebraic system (1)
with the singular impulse action (2). Thus, the following lemma is proved.

Lemma 1. In the case (3) the differential-algebraic system (1) with the singular impulse action
(2) with the constant-rank matrix A(t) has a solution which can be written in the form

z(t, c) = X(t) c+K
[
f(s), ν0(s)

]
(t), c ∈ Rn,

where

X(t) =


X0(t), a ≤ t < τ1,

. . . . . . . . . . . . . . . . .

Xp(t), τp ≤ t ≤ b,

and

K
[
f(s), ν0(s)

]
(t) =


K0

[
f(s), ν0(s)

]
(t), a ≤ t < τ1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kp

[
f(s), ν0(s)

]
(t), τp ≤ t ≤ b

is the generalized Green operator of the Cauchy problem for the differential-algebraic system (1)
with the singular impulse action (2).

If and only if the condition

PQ∗
d
{α− ℓK

[
f(s), ν0(s)

]
( · )} = 0 (4)
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is satisfied, the solution of the differential-algebraic boundary-value problem (1), (2) which can be
written in the form

z(t, cr) = Xr(t)cr +X(t)Q+{α− ℓK
[
f(s), ν0(s)

]
( · )}+K

[
f(s), ν0(s)

]
(t), cr ∈ Rr.

Here Xr(t) := X(t)PQr is a fundamental matrix of the boundary-value problem (1), (2)

PQ∗ : Rq → N(Q∗), PQ : Rn → N(Q), Q := ℓX( · ) ∈ Rq×n

are matrices-orthoprojectors [3], PQr ∈ Rq×r is an (n×r)-matrix composed of r linearly independent
columns of the orthoprojector PQ. Thus, the following lemma is proved.

Lemma 2. In the case (3) the differential-algebraic system (1) with the singular impulse action
(2) with the constant-rank matrix A(t) has a solution which can be written in the form

z(t, c) = X(t)c+K
[
f(s), ν0(s)

]
(t), c ∈ Rn

is the generalized Green operator of the Cauchy problem for the system (1) with the singular impulse
action (2). If and only if condition (4) holds, the solution of the differential-algebraic system (1)
with the singular impulse action (2)

z(t, cr) = Xr(t)cr +G
[
f(s); ν0(s);α

]
(t), cr ∈ Rr,

determines the generalized Green operator of the differential-algebraic system (1) with the singular
impulse action (2)

G
[
f(s); ν0(s);α

]
(t) := X(t)Q+

{
α− ℓK

[
f(s), ν0(s)

]
( · )

}
+K

[
f(s), ν0(s)

]
(t).

The above scheme of the analysis of the boundary value problems with the impulse action
(1), (2) generalizes the results of [2–6,9] and can be used for proving the solvability and constructing
solutions of weakly nonlinear boundary value problems with singular impulse action in the critical
and noncritical cases [1, 3,7]. The results of the proved Lemmas 1 and 2 were obtained making no
use of the central canonical form, perfect pairs, and matrix triplets [3, 4].
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We investigate the problem of finding bounded solutions [2, 3, 6]

z(k) ∈ Rn, k ∈ Ω := {0, , 2, . . . , ω}

of the linear Noetherian (n ̸= υ) boundary value problem for a system of linear difference-algebraic
equations [2, 6]

A(k)z(k + 1) = B(k)z(k) + f(k), ℓz( · ) = α, α ∈ Rυ; (1)

here A(k), B(k) ∈ Rm×n are bounded matrices and f(k) are real bounded column vectors,

ℓz( · ) : Rn → Rυ

is a linear bounded vector functional defined on a space of bounded functions. We assume that
the matrix A(k) is, generally speaking, rectangular: m = n. It can be square, but singular. The
problem of finding bounded solutions z(k) of a boundary value problem for a linear non-degenerate
(detB(k) ̸= 0, k ∈ Ω) system of first-order difference equations

z(k + 1) = B(k)z(k) + f(k), ℓz( · ) = α ∈ Rυ

was solved by A. A. Boichuk [2]. We investigate the problem of finding bounded solutions of the
linear Noetherian boundary value problem for a system of linear difference-algebraic equations (1)
in case

1 ≤ rankA(k) = σ0, k ∈ Ω.

As is known [1,14], any (m× n)-matrix A(k) can be represented in a definite basis in the form

A(k) = R0(k) · Jσ0 · S0(k), Jσ0 :=

(
Iσ0 O
O O

)
;

here, R0(k) and S0(k) are nonsingular matrices. The nonsingular change of the variable

y(k + 1) = S0(k)z(k + 1)

reduces system (1) to the form [12]

A1(k)φ(k + 1) = B1(k)φ(k) + f1(k); (2)

Under the condition [14], when
PA∗(k) ̸= 0, PA∗

1
(k) ≡ 0, (3)

we arrive at the problem of construction of solutions of the linear difference-algebraic system

φ(k + 1) = A+
1 (k)B1(k)φ(k) + F1(k, ν1(k)), ν1(k) ∈ Rρ1 ; (4)
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here,
F1(k, ν1(k)) := A+

1 (k)f1(k) + PAϱ1
(k)ν1(k),

ν1(k) ∈ Rρ1 is an arbitrary bounded vector function, A+
1 (k) is a pseudoinverse (by Moore–Penrose)

matrix [3]. In addition, PA∗
1(k)

is a matrix-orthoprojector [3]: PA∗
1
(k) : Rσ0 → N(A∗

1(k)), PAρ1
(k)

is an (ρ0 × ρ1)-matrix composed of ρ1 linearly independent columns of the (ρ0 × ρ0)-matrix-
orthoprojector: PA1(k) : Rρ0 → N(A1(k)). By analogy with the classification of pulse boundary-
value problems [3, 7, 8] we say in the (3), that, for the linear difference-algebraic system (1), the
first-order degeneration holds. Thus, the following lemma is proved [12].

Lemma. The first-order degeneration difference-algebraic system (1) has a solution of the form

z(k, cρ0) = X1(k) cρ0 +K[f(j), ν1(j)](k), cρ0 ∈ Rρ0 ;

which depends on the arbitrary continuous vector-function ν1(k) ∈ Rρ1, where X1(k) is fundamental
matrix, K[f(j), ν1(j)](k) is the generalized Green operator of the Cauchy problem for the linear
difference-algebraic system (1).

Denote the vector ν1(k) := Ψ1(k)γ, γ ∈ Rθ; here, Ψ1(k) ∈ Rρ1×θ is an arbitrary bounded full
rank matrix. Generalized Green operator of the Cauchy problem for the linear difference-algebraic
system (1) of the form

K[f(j), ν1(j)](k) = K[f(j)](k) +K[Ψ1(j)](k) γ;

here,
K[Ψ1(j)](k) := S−1

0 (k − 1)PDρ0
K[Ψ1(s))](k),

and

K[Ψ1(j)](0) := 0, K[Ψ1(j)](1) := PAρ1
(0)Ψ1(0),

K[Ψ1(j)](2) := A+
1 (1)B1(1)K[Ψ1(j)](1) + PAρ1

(1)Ψ1(1), . . . ,

K[Ψ1(j)](k + 1) := A+
1 (k)B1(k)K[Ψ1(j)](k) + PAρ1

(k)Ψ1(k).

Denote the matrix
D1 :=

{
Q1; ℓK[Ψ1(j)]( · )

}
∈ Rυ×(ρ0+θ).

Substituting the general solution of the system of the linear difference-algebraic equations (1) into
the boundary condition (1), we arrive at the linear algebraic equation

D1 č = α− ℓK[A+(j)f(j)]( · ), č := col(cρ0 , γ) ∈ Rρ0+θ. (5)

Equation (5) is solvable iff
PD∗

1

{
α− ℓK[f(j)]( · )

}
= 0. (6)

Here, PD∗
1

is a matrix-orthoprojector: PD∗
1
: Rυ → N(D∗

1). In this case, the general solution of
equation (5)

č = D1
+
{
α− ℓK[f(j)]( · )

}
+ PD1δ, δ ∈ Rρ0+θ

determines the general solution of the boundary-value problem (1)

z(k, δ) =
{
X1(k);K[Ψ1(j)](k)

}
D+

1

{
α− ℓK[f(j)]( · )

}
+K[f(j)](k) +

{
X1(k);K[Ψ1(j)](k)

}
PD1δ.

Here, PD1 is a matrix-orthoprojector: PD1 : Rρ0+θ → N(D1). Thus, the following theorem is
proved [12].
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Corollary. The problem of finding bounded solutions of a system of linear difference-algebraic
equations (1) in the case of first-order degeneracy, under condition (3), in the case of first-order
degeneracy for a fixed full rank bounded matrix Ψ1(k), has a solution of the form

z(k, cρ0) = X1(k) cρ0 +K
[
f(j), ν1(j)

]
(k), cρ0 ∈ Rρ0 .

Under condition PQ∗
1
̸= 0, PD∗

1
= 0, the general solution of the difference-algebraic boundary value

problem (1)
z(k, cr) = Xr(k)cr +G

[
f(j);Ψ1(j);α

]
(k), cr ∈ Rr

is determined by the Green operator of a difference-algebraic boundary value problem (1)
G
[
f(j);Ψ1(j);α

]
(k) := K[f(j)](k) +

{
X1(k);K[Ψ1(j)](k)

}
D+

1

{
α− ℓK[f(j)]( · )

}
.

The matrix Xr(k) is composed of r linearly independent columns of the matrix{
X1(k);K[Ψ1(j)](k)

}
PD1 .

Under condition PD∗
1
̸= 0, we say that the difference-algebraic boundary-value problem (1) in the

case of first-order degeneracy is a critical case, and vice versa: under condition PQ∗
1
̸= 0, PD∗

1
= 0,

we say that the difference-algebraic boundary-value problem (1) is reduced to the non-critical case.
Example. The requirements of the proved Corollary 1 satisfy the problem of construction solutions
of the difference-algebraic boundary-value problem

Az(k + 1) = B(k) z(k) + f(k), ℓz( · ) := M (z(0)− z(3)) = 0, k = 0, 1, 2, 3, (7)
here

A :=

0 0 1 0
0 0 0 1
0 0 0 0

 , B :=

0 0 1 0
0 0 0 0
0 k + 1 0 0

 , f(k) :=

1
k
1

 , M :=

(
1 0 0 0
0 0 0 1

)
.

The first-order degeneration difference-algebraic system (7) has a solution of the form
z(k) = Xr(k) cr +G

[
f(j), ν1(j), α

]
(k), G

[
f(j), ν1(j), α

]
(k) = K

[
f(j), ν1(j)

]
(k), cr ∈ R1,

where

Xr(k) := X1(k)PQr = PQr =

0
1
0

 , ν1(k) := 0, k ∈ Ω := {0, 1, 2, 3},

in addition,

K
[
f(j), ν1(j)

]
(0) = −


0
1
0
0

 , K
[
f(j), ν1(j)

]
(1) =

1

2


0
−1
2
0

 ,

K
[
f(j), ν1(j)

]
(2) =

1

3


0
−1
6
3

 , K
[
f(j), ν1(j)

]
(0) =

1

4


0
−1
12
8

 .

The proposed scheme of studies of difference-algebraic boundary-value problems can be transfer-
red analogously to [2–4, 10] onto nonlinear difference-algebraic boundary-value problems. On the
other hand, in the case of nonsolvability, the difference-algebraic boundary-value problems can be
regularized analogously [9, 15]. The proposed scheme of studies of difference-algebraic boundary-
value problems can be transferred analogously to [5, 11, 12] onto nonlinear difference-algebraic
boundary-value problems with variable rank of leading coefficient matrix an analogously to [13] an
inverse problem to the Cauchy problem for the difference-algebraic equation.
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In 1955 J. Kurzweil and O. Vejvoda proved that the system of almost periodic differential
equations can have an almost periodic solution such that the intersection of the frequency modules of
the solution and the right-hand side is trivial [3]. In what follows, such almost periodic solutions will
be called strongly irregular, the frequency spectrum – asynchronous, and the described vibrations
– asynchronous [1, 4]. Various aspects of control theory for ordinary differential systems of almost
periodic equations were studied in a number of works (see, for example, [5] and others), the essential
a feature of which is the consideration the regular case, when the frequency of the system itself and
its solution coincide.

Now we will study the solvability of the control problem of the asynchronous spectrum of linear
almost periodic systems for which the mean value of the coefficient matrix is lower triangular. Let’s
consider a linear non-stationary control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where x is the phase vector, u is the input, B is the constant n × n-matrix under control, A(t)
is a continuous almost periodic matrix with a modulus of frequencies Mod(A). Suppose that the
control is specified in the form of a linear feedback in the phase variables

u = U(t)x (2)

with a continuous almost periodic n×n-matrix U(t) (feedback coefficient), the frequency modulus
of which is contained in the frequency modulus of the coefficient matrix, i.e.

Mod(U) ⊆ Mod(A).

It is required to obtain conditions on the right-hand side of system (1) such that for any choice
of the feedback coefficient from the indicated admissible set, the closed-loop system

ẋ = (A(t) +BU(t))x, (3)

has a strongly irregular almost periodic solution, the frequency spectrum of which contains a given
subset (target set).

Let L be the target frequency set. We will assume that

rankB = r < n (n− r = d). (4)
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In this case, there is a constant non-singular real (n×n)-matrix S such that in the matrices D = SB
the first d columns are zero, while the rest r columns are linearly independent.

Let us introduce the transformation of phase variables

y = Sx, (5)

which transform system (3) to the system

ẏ = (C(t) +DV (t))y, (6)

where
C(t) = SA(t)S−1, V (t) = U(t)S−1, D = QB.

System (6) has a strongly irregular almost periodic solution if and only if this solution satisfies the
system

ẏ = (Ĉ +DV̂ )y, (C̃(t) +DṼ (t))y = 0, (7)

where sign “̂” denotes a averaging, for example,

Ĉ = lim
T→+∞

1

T

T∫
0

C(s) ds, C̃(t) = C(t)− Ĉ, Ṽ (t) = V (t)− V̂ .

Let us denote the matrix composed of the last r rows of the matrix D, by Dr,n. It follows from the
construction of the matrix D that the following condition is fulfilled

rankDr,n = r. (8)

The rank condition (8) means that the matrix Dr,n rows are linearly independent. Since their
number is less than the number of columns, then adding any columns to such a matrix does not
change its rank.

Let us represent the matrix of coefficients C(t) in the block form, corresponding to the structure
of the matrix D. Let C

(11)
d,d (t), C

(21)
r,d (t) – its upper and lower left, and C

(12)
d,r (t), C

(22)
r,r (t) – its

upper and lower right blocks (the lower indices indicate the dimensionality). According to this
representation, the averaged matrix Ĉ will be decomposed into four blocks of the same dimensions
Ĉ

(11)
d,d , Ĉ(21)

r,d , Ĉ(12)
d,r , Ĉ(22)

r,r .
Taking into account the structure of the matrix D and the block representation averaging of

the matrix of coefficients C(t), we write system (7) in the form

ẏ[d] = Ĉ
(11)
d,d y[d] + Ĉ

(12)
d,r y[r], ẏ[r] =

(
Ĉ

(21)
r,d +Dr,nV̂n,d

)
y[d] +

(
Ĉ(22)
r,r +Dr,nV̂n,r

)
y[r],

C̃
(11)
d,d (t)y[d] + C̃

(12)
d,r (t)y[r] = 0,

(
C̃

(21)
r,d (t) +Dr,nṼn,d(t)

)
y[d] +

(
C̃(22)
r,r (t) +Dr,nṼn,r(t)

)
y[r] = 0,

(9)

where

y = col(y[d], y[r]), y[d] = col(y1, . . . , yd), y[r] = col(yd+1, . . . , yn),

V̂ = {V̂n,dV̂n,r}, Ṽ (t) = {Ṽn,d(t)Ṽn,r(t)}

are the corresponding‘ representation of the stationary and oscillatory components of the matrix
V (t).

Thus, it is true

Lemma. If conditions (4), (8) are fulfilled, systems (3) and (9) are equivalent in the sense of
existence of strongly irregular almost periodic solutions.
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Suppose that the averaging of the matrix of coefficients of the original system with using the
transforming matrix S is reduced to the lower-triangular form. In other words, this means that the
matrix Ĉ has the form

Ĉ =


ĉ11 0 0 . . . 0
ĉ21 ĉ22 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
ĉn1 ĉn2 ĉn3 . . . ĉnn

 . (10)

Let’s give the conditions to solve the posed problem. Taking into account the lemma, this
problem is reduced to finding conditions for the existence of strongly irregular almost periodic
solutions y = y(t) = col(y[d](t), y[r](t)) with the frequencies L of system (9).

We have

Theorem. The control problem of asynchronous spectrum of system (1), (4), (10) with the target
set L is solvable if and only if the conditions

rankcolC12 = r1 < r

and
|L| ≤

[r − r1
2

]
are satisfied.
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Consider the differential equation

y′′′ = α0p(t)φ(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a twice continuously differentiable function such that

φ′(y) ̸= 0 as y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
0,

or +∞,
lim
y→Y0
y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (2)

Y0 is equal either to zero or to ±∞, ∆Y0 is a one-sided neighborhood of the point Y0.
It follows directly from conditions (2) that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
as y → Y0, y ∈ ∆Y0 and lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

By virtue of these conditions, the function φ and its first-order derivative are (see the monograph
by M. Maric [10, Chapter 3, § 3.4, Lemmas 3.2, 3.3, pp. 91-92]) rapidly varying as y → Y0.

For second-order differential equations with the right-hand side the same as in (1), the asymp-
totic behavior of solutions was studied in [2, 3, 5–7,10].

In the work of V. M. Evtukhov, N. V. Sharay (see [9]) for the differential equation (1) the
questions on the existence and asymptotics of so-called Pω(Y0, λ0) – solutions for λ0 ∈ R \ {0; 1; 12}
were solved.

Definition. A solution y of the differential equation (1) is called Pω(Y0, λ0) – solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

lim
t↑ω

y(t) = Y0, lim
t↑ω

y(k)(t) =

{
0,

or ±∞
(k = 1, 2), lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.

The aim of the present report is to obtain the asymptotics of Pω(Y0, λ0) – solutions of the
differential equation (1) in the special case when λ0 = 1. For each such solution, due to a priori
asymptotic properties of Pω(Y0, 1) – solutions (see [4, Chapter 3, § 10]), the following relations

y′(t)

y(t)
∼ y′′(t)

y′(t)
∼ y′′′(t)

y′′(t)
as t ↑ ω, lim

t↑ω

πω(t)y
′(t)

y(t)
= ±∞, (3)

hold, where

πω(t) =

{
t if ω = +∞,

t− ω if ω = −∞.
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Hence, in particular, it follows that Pω(Y0, 1) – solution of equation (1) and its derivatives up to
the second order inclusive are rapidly varying functions as t ↑ ω.

Moreover, here and in the sequel, without loss of generality, we assume that

∆Y0 = ∆Y0(y0), where ∆Y0(y0) =

{
[y0, Y0[ if ∆Y0 is a left neighborhood of Y0,
]Y0, y0] if ∆Y0 is a right neighborhood of Y0,

(4)

where y0 ∈ ∆Y0 is such that |y0| < 1 as Y0 = 0 and y0 > 1 (y0 < −1) as Y0 = +∞ (as Y0 = −∞).
Let us introduce the necessary auxiliary notations and assume that the definition area of the

function φ in equation (1) is determined by formula (4). Further, we put

µ0 = signφ′(y), ν0 = sign y0, ν1 =

{
1 if ∆Y0 = [y0, Y0[ ,

−1 if ∆Y0 = ]Y0, y0],

and introduce the following functions

J0(t) =

t∫
A0

p
1
3
0 (τ) dτ, Φ(y) =

y∫
B

ds

s
2
3φ

1
3 (s)

,

where p0 : [a, ω[→ ]0,+∞[ is a continuous or continuously differentiable function such that p(t) ∼
p0(t) as t ↑ ω,

A0 =


ω if

ω∫
a

p
1
3
0 (τ) dτ < +∞,

a if
ω∫

a

p
1
3
0 (τ) dτ = +∞,

B =



Y0 if
Y0∫

y0

ds

s
2
3φ

1
3 (s)

= const,

y0 if
Y0∫

y0

ds

s
2
3φ

1
3 (s)

= ±∞.

It is clear that the conditions

ν0ν1 < 0 if Y0 = 0, ν0ν1 > 0 if Y0 = ±∞,

are necessary for the existence of Pω(Y0, 1)–solutions. Moreover, by virtue of (1), Definition and
(3), it is also necessary that the inequalities

α0ν1 > 0, ν0 sign y′′(t) > 0

hold.
The entered function Φ keeps a sign on ∆Y0 , tends either to zero or to ±∞ as y → Y0 and is

increasing on ∆Y0 , since on this interval Φ′(y) = y−
2
3φ− 1

3 (y) > 0. Therefore, there is an inverse
function Φ−1 : ∆Z0 −→ ∆Y0 , where, by virtue of the second of conditions (2) and the monotonic
increase of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
0,

or +∞,

∆Z0 =

{
[z0, Z0[ if ∆Y0 = [y0, Y0[ ,

]Z0, z0] if ∆Y0 = ]Y0, y0],
z0 = Φ(y0).
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We also introduce auxiliary functions:

q(t) =
(Φ−1(α0J0(t)))

′

α0J2(t)
, H(t) =

Φ−1(α0J0(t))φ
′(Φ−1(α0J0(t)))

φ(Φ−1(α0J0(t)))
,

J1(t) =

t∫
A1

p0(τ)φ(Φ
−1(α0J0(τ))) dτ, J2(t) =

t∫
A2

J1(τ) dτ,

where

A1 =


t1 if

ω∫
t1

p0(τ)φ
(
Φ−1(α0J0(τ))

)
dτ = +∞,

ω if
ω∫

t1

p0(τ)φ
(
Φ−1(α0J0(τ))

)
dτ < +∞,

t1 ∈ [a, ω],

A2 =


t1 if

ω∫
t1

J1(τ)dτ = +∞,

ω if
ω∫

t1

J1(τ)dτ < +∞.

Note that with the implementation of the properties with regular varying and rapid varying
functions [1,11], as well as the results of work [4,8] for equation (1) conditions for the existence of
solutions are established.

Theorem 1. For the existence of Pω(Y0, 1) – solutions of the differential equation (1), it is necessary
that the inequalities

α0ν1 > 0, α0µ0J0(t) < 0 as t ∈ ]a, ω[ , (5)
ν0α0 < 0 if Y0 = 0, ν0α0 > 0 if Y0 = ±∞ (6)

and the conditions

α0J2(t)

Φ−1(α0J0(t))
∼ J1(t)

J2(t)
∼ J ′

1(t)

J1(t)
∼ (Φ−1(α0J0(t)))

′

Φ−1(α0J0(t))
as t ↑ ω, (7)

α0 lim
t↑ω

J0(t) = Z0, lim
t↑ω

πω(t)(Φ
−1(α0J0(t)))

′

Φ−1(α0J0(t))
= ±∞, lim

t↑ω

πω(t)J
′
0(t)

J0(t)
= ±∞ (8)

hold. Moreover, each such solution of that kind admits the asymptotic, as t ↑ ω, representations

y(t) = Φ−1(α0J0(t))
[
1 +

o(1)n

H(t)

]
, (9)

y′(t) = α0(t)J2(t)[1 + o(1)], y′′(t) = α0J1(t)[1 + o(1)]. (10)

Theorem 2. Let p0 : [a, ω[→ ]0,+∞[ be a continuously differentiable function and along with
(5)–(8) the conditions

lim
t↑ω

q′(t)H
1
3 (t)J2(t)

J ′
2(t)

= 0, lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

(yφ′(y)

φ(y)

) 2
3
= 0
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hold. Then the differential equation (1) in case α0µ0 > 0 has a two-parameter and in case α0µ0 < 0
has a one-parameter family of Pω(Y0, 1) – solutions that admit asymptotic, as t ↑ ω, representations
(9) and moreover, their derivatives of the first and second order satisfy the asymptotic, as t ↑ ω,
relations

y′(t) = α0J2(t)
[
q(t) + o((H(t))−

2
3 )
]
, y′′(t) = α0J1(t)

[
q(t) + o((H(t))−

1
3 )
]
.

It is possible to notice that in the asymptotic relations (7)

(Φ−1(α0J0(t)))
′

Φ−1(α0J0(t))
= α0

(p0(t)φ(Φ−1(α0J0(t)))

Φ−1(α0J0(t))

) 1
3
.

Therefore, it follows from (7) that

J2(t) =
(
p0(t)(Φ

−1(α0J0(t)))
2φ(Φ−1(α0J0(t)))

) 1
3
[1 + o(1)] as t ↑ ω,

J1(t) = α0(Φ
−1(α0J0(t)))

1
3

(
p0(t)φ(Φ

−1(α0J0(t)))
) 2

3
[1 + o(1)] as t ↑ ω.

These relations allow to rewrite the asymptotic relations (10) without integrals.

Theorem 3. Let p0 : [a, ω[→ ]0,+∞[ be a continuous function and, along with (5)–(8), the condi-
tions

lim
t↑ω

[1− q(t)]H
2
3 (t) = 0, lim

y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

(yφ′(y)

φ(y)

) 2
3
= 0

hold. Then the differential equation (1) in case α0µ0 > 0 has a two-parameter family, and in case
α0µ0 < 0 has a one-parameter family of Pω(Y0, 1)– solutions, admitting as t ↑ ω the asymptotic
representations (9) and

y′(t) = α0J2(t)
[
1 +

o(1)

H
2
3 (t)

]
, y′′(t) = α0J1(t)

[
1 +

o(1)

H
1
3 (t)

]
.
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1 Introduction
Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1.1)
y(0) = y(1) = 0, (1.2)

where Q belongs to the set Tα,β,γ of all measurable locally integrable on (0, 1) functions with
non–negative values such that the following integral conditions hold:

1∫
0

xα(1− x)βQγ(x) dx = 1, γ ̸= 0, (1.3)

1∫
0

x(1− x)Q(x) dx < ∞. (1.4)

A function y is a solution to problem (1.1), (1.2) if it is absolutely continuous on the segment
[0, 1], satisfies (1.2), its derivative y′ is absolutely continuous on any segment [ρ, 1 − ρ], where
0 < ρ < 1

2 , and equality (1.1) holds almost everywhere in the interval (0, 1).
This work gives estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q) and Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q).

Some of these results were obtained using approaches and ideas applied in works [1, 4–6].
In Theorem 1 [3], it was proved that if condition (1.4) does not hold, then for any 0 ≤ p ≤ ∞,

there is no non-trivial solution y of equation (1.1) with the properties y(0) = 0, y′(0) = p.
From the results of [4, Chapter 1, § 2, Theorem 3] it follows that Tα,β,γ is empty provided γ < 0,

α ≤ 2γ − 1 or β ≤ 2γ − 1, for other values α, β, γ, γ ̸= 0, the set Tα,β,γ is not empty. Thus, for
γ < 0, α ≤ 2γ − 1 or β ≤ 2γ − 1, there is no function Q satisfying (1.3) and (1.4) taken together
and, as a consequence, the first eigenvalue of problem (1.1), (1.2) does not exist.

Consider the functional

R[Q, y] =

1∫
0

y ′2 dx−
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

.
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If condition (1.4) is satisfied, then the functional R[Q, y] is bounded below in H1
0 (0, 1). In order

to show it, let us consider the set Γ∗ of functions y ∈ H1
0 (0, 1) such that

1∫
0

y2 dx = 1

and the functional

I[Q, y] =

1∫
0

y ′2 dx−
1∫

0

Q(x)y2 dx.

For any y ∈ H1
0 (0, 1) and x ∈ (0, 1), by the Hölder inequality, we have

y2(x) =

( x∫
0

y′(t) dt

)2

≤ x

x∫
0

y ′2(t) dt,

y2(x) =

(
−

1∫
x

y′(t) dt

)2

≤ (1− x)

1∫
x

y ′2(t) dt.

Then
y2

x(1− x)
=

y2

x
+

y2

1− x
≤

x∫
0

y ′2(t) dt+

1∫
x

y ′2(t) dt =

1∫
0

y ′2(t) dt

and
1∫

0

Q(x)y2dx ≤
( 1∫

0

y ′2 dx

) 1∫
0

x(1− x)Q(x) dx.

For some positive k, consider

Ek =
{
x ∈ [0, 1] | Q(x) ≤ k

}
, Ek =

{
x ∈ [0, 1] | Q(x) > k

}
.

We have
1∫

0

Q(x)y2 dx =

∫
Ek

Q(x)y2 dx+

∫
Ek

Q(x)y2 dx ≤ k

1∫
0

y2dx+

1∫
0

y ′2 dx

∫
Ek

x(1− x)Q(x) dx.

Since the integral
1∫
0

x(1− x)Q(x) dx is finite and the measure of Ek tends to 0 as k → ∞, then∫
Ek

x(1− x)Q(x) dx tends to 0 as k → ∞ and we can choose k = k∗ so that

∫
Ek∗

x(1− x)Q(x) dx ≤ 1

2
.

Then
1∫

0

Q(x)y2dx ≤ k∗ +
1

2

1∫
0

y ′2 dx
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and
1∫

0

y ′2 dx−
1∫

0

Q(x)y2 dx ≥ 1

2

1∫
0

y ′2 dx− k∗ ≥ −k∗.

Thus, if condition (1.4) is satisfied, then for any Q ∈ Tα,β,γ , I[Q, y] is bounded below in Γ∗,
R[Q, y] is bounded below in H1

0 (0, 1), and

inf
y∈H1

0 (0,1)\{0}
R[Q, y] = inf

y∈Γ∗
I[Q, y].

It was proved [3] that for any Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈H1

0 (0,1)\{0}
R[Q, y].

For any Q ∈ Tα,β,γ , we have

Mα,β,γ = sup
Q∈Tα,β,γ

inf
y∈H1

0 (0,1)\{0}
R[Q, y] ≤ inf

y∈H1
0 (0,1)\{0}

1∫
0

y ′2 dx

1∫
0

y2 dx

= π2.

2 Main results
Theorem 2.1. If γ > 1, α, β < 2γ − 1, then there exist functions Q∗ ∈ Tα,β,γ and u ∈ H1

0 (0, 1),
u > 0 on (0, 1), such that mα,β,γ = R[Q∗, u]. Moreover, u satisfies the equation

u′′ +mu = −x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 (2.1)

and the integral condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1. (2.2)

Theorem 2.2.
(1) If γ = 1, α, β 6 0, then mα,β,γ > 3

4 π
2.

(2) If γ = 1, β 6 0 < α 6 1 or α 6 0 < β 6 1, then mα,β,γ > 0.

(3) If γ = 1, 0 < α, β 6 1, then mα,β,γ > 0.

(4) If γ > 1, α, β 6 γ, then mα,β,γ = 0.

(5) If γ > 1, α > γ or β > γ, then mα,β,γ < 0.

(6) If γ < 0, α, β > 2γ − 1 or 0 < γ < 1, −∞ < α, β < ∞, then mα,β,γ = −∞.
Theorem 2.3.

(1) If γ > 1, −∞ < α, β < ∞ or 0 < γ ≤ 1, α ≤ 2γ − 1, −∞ < β < ∞ (β ≤ 2γ − 1,
−∞ < α < ∞), then Mα,β,γ = π2.

(2) If γ < 0 or 0 < γ < 1, α, β > 2γ − 1, then Mα,β,γ < π2.

(3) If γ < −1, α, β > 2γ − 1, then there exist functions Q∗ ∈ Tα,β,γ and u ∈ H1
0 (0, 1), u > 0

on (0, 1), such that Mα,β,γ = R[Q∗, u]. Moreover, u satisfies equation (2.1) and the integral
condition (2.2).
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Consider a boundary value problem for a functional differential equation

u′(t) = ℓ(u)(t) + λF (u)(t) for a.e. t ∈ [a, b], h(u) = 0. (1)

Here, ℓ : C([a, b];R) → L([a, b];R) and h : C([a, b];R) → R are linear bounded operators, F :
C([a, b];R) → L([a, b];R) is a continuous operator satisfying the Carathéodory conditions, and
λ ∈ R is a parameter. By a solution to the problem (1) we understand an absolutely continuous
function u : [a, b] → R that satisfies the equation in (1) almost everywhere on [a, b] and satisfies
the boundary condition in (1). We say that a solution u to (1) is positive if u(t) > 0 for t ∈ [a, b].

Although the assumptions of the main results do not exclude the case when F (0) ̸≡ 0, the main
importance of our results is that they are applicable in the case when the problem (1) possesses a
trivial solution, i.e., F (0)(t) = 0 for a.e. t ∈ [a, b].

Notation 1.
N is the set of all natural numbers, R is the set of all real numbers, R+ = ]0,+∞[ , R+

0 = [0,+∞[ .
C([a, b];R) is the Banach space of continuous functions v : [a, b] → R with the norm ∥v∥C =

max{|v(t)| : t ∈ [a, b]}.
If D ⊂ R, then Ch([a, b];D) = {u ∈ C([a, b];R) : u(t) ∈ D for t ∈ [a, b], h(u) = 0}.
L([a, b];R) is the Banach space of Lebesgue integrable functions p : [a, b] → R with the norm

∥p∥L =
b∫
a
|p(s)| ds.

If D ⊂ R, then L([a, b];D) = {p ∈ L([a, b];R) : p(t) ∈ D for a.e. t ∈ [a, b]}.
If A : C([a, b];R) → C([a, b];R) is a linear bounded operator, by ∥A∥ we denote the norm of A.

Definition 1. We say that a pair of operators (ℓ, h) belongs to the set V+ if every nontrivial
absolutely continuous function u : [a, b] → R, satisfying

u′(t) ≥ ℓ(u)(t) for a.e. t ∈ [a, b], h(u) = 0, (2)

admits the inequality
u(t) > 0 for t ∈ [a, b].
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Definition 2. We say that a pair of operators (ℓ, h) belongs to the set U+ if there exists c > 0
such that every absolutely continuous function u : [a, b] → R satisfying (2) admits the inequality

u(t) ≥ c

b∫
a

[u′(s)− ℓ(u)(s)] ds for t ∈ [a, b].

It can be easily seen that if (ℓ, h) ∈ V+, resp. (ℓ, h) ∈ U+, then the homogeneous problem

u′(t) = ℓ(u)(t) for a.e. t ∈ [a, b], h(u) = 0 (3)

has only the trivial solution. Note also that U+ ⊆ V+. However, U+ ̸= V+ in general.
Now we formulate some of the assumptions of the main results.

(H.1) F transforms Ch([a, b];R+
0 ) into L([a, b];R+

0 ) and it is not the zero operator, i.e., there exists
x0 ∈ Ch([a, b];R+) such that

b∫
a

F (x0)(s) ds > 0.

(H.2) F is sublinear with respect to Ch([a, b];R+
0 ), i.e., there exists a Carathéodory function η :

[a, b]× R+
0 → R+

0 non-decreasing in the second variable such that

F (v)(t) ≤ η(t, ∥v∥C) for a.e. t ∈ [a, b], v ∈ Ch([a, b];R+
0 )

and

lim
x→+∞

1

x

b∫
a

η(s, x) ds = 0.

(H.3) F is nondecreasing in the neighbourhood of zero, i.e., for every ρ > 0 there exists mρ ∈
Ch([a, b];R+) such that mρ(t) ≤ ρ for t ∈ [a, b] and

F (y)(t) ≤ F (x)(t) for a.e. t ∈ [a, b]

whenever x, y ∈ Ch([a, b];R+),

y(t) ≤ mρ(t) and y(t) ≤ x(t) ≤ ρ for t ∈ [a, b].

(H.4) F is concave in the neighbourhood of zero, i.e., for every x ∈ Ch([a, b];R+) there exists µx > 0
such that

µF (x)(t) ≤ F (µx)(t) for a.e. t ∈ [a, b], µ ∈ ]0, µx[ .

Notation 2. Let λ ∈ R. Then by S(λ) we denote the set of all positive solutions to (1) for
corresponding λ.

Theorem 1. Let (ℓ, h) ∈ V+ and let (H.1)–(H.4) be fulfilled. Then there exists a critical parameter
λc ≥ 0 such that

(i) the problem (1) has a positive solution provided λ > λc;

(ii) the problem (1) has no positive solution provided λ < λc.
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Moreover,
lim

λ→+∞
inf

{
∥u∥C : u ∈ S(λ)

}
= +∞.

If, in addition, (ℓ, h) ∈ U+, then for every ρ > 0 there exists λ(ρ) > λc such that

u(t) > ρ for t ∈ [a, b], u ∈ S(λ), λ > λ(ρ).

As for the critical case λ = λc, the existence or nonexistence of a positive solution to (1) depends
on the properties of the operator F ; both cases can occur. If we slightly strengthen the assumption
(H.4), in particular, if we assume

(H.4 ′) For every x ∈ Ch([a, b];R+) there exists µx > 0 such that

µF (x)(t) ≤ F (µx)(t) for a.e. t ∈ [a, b], µ ∈ ]0, µx[

and

µ0

b∫
a

F (x)(s) ds <

b∫
a

F (µ0x)(s) ds

for some µ0 ∈ ]0, µx[

instead, we can establish a result about the nonexistence of a positive solution to (1) with λ = λc.

Theorem 2. Let (ℓ, h) ∈ V+ and let (H.1)–(H.3), and (H.4 ′) be fulfilled. Then S(λc) = ∅ and

lim
λ→λ+

c

sup
{
∥u∥C : u ∈ S(λ)

}
= 0.

Suppose that the operator F includes a linear part, i.e.,

F (v)(t) = F̃ (v, v)(t) for a.e. t ∈ [a, b], v ∈ C([a, b];R),

where F̃ : C([a, b];R)×C([a, b];R) → L([a, b];R) is a continuous operator satisfying the Carathéo-
dory conditions and it is linear and nondecreasing in the first variable. Therefore, instead of (1)
we consider the problem

u′(t) = ℓ(u)(t) + λF̃ (u, u)(t) for a.e. t ∈ [a, b], h(u) = 0, (4)

where ℓ and λ are the same as in (1) and F̃ is described above. The set of all positive solutions to
(4) we denote again by S(λ) as (4) is a particular case of (1).

Theorem 3. Let (ℓ, h) ∈ V+ and let (H.1)–(H.3) and (H.4 ′) be fulfilled. Then λc > 0, the problem

u′(t) = ℓ(u)(t) + λcF̃ (u, 0)(t) for a.e. t ∈ [a, b], h(u) = 0 (5)

has a positive solution uc, the set of solutions to (5) is one-dimensional (generated by uc), and

(Tλ, h) ∈ V+, resp. (Tλ, h) ∈ U+, for λ ∈ ]0, λc[ ,

where
Tλ(v)(t)

def
= ℓ(v)(t) + λF̃ (v, 0)(t) for a.e. t ∈ [a, b], v ∈ C([a, b];R),

provided (ℓ, h) ∈ V+, resp. (ℓ, h) ∈ U+.
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Theorem 3 gives us a method how to calculate the precise value of λc in the cases where F
includes a linear part. Indeed, define an operator A : C([a, b];R) → C([a, b];R) by

A(x)(t)
def
=

b∫
a

G(t, s)F̃ (x, 0)(s) ds for t ∈ [a, b], x ∈ C([a, b];R),

where G is Green’s function to (3). Then

uc(t) = λcA(uc)(t) for t ∈ [a, b],

i.e., 1/λc is the first eigenvalue to A corresponding to the positive eigenfunction uc. Therefore,
according to Krasnoselski’s theory and Gelfand’s formula,

λc = lim
n→+∞

1
n
√
∥An∥

.

Application
Most of population models with a delayed harvesting term can be represented as an equation

u′(t) = −δ(t)u(t)−H(t)u(t− σ(t)) + λ
N∑
k=1

Pk(t)u(t− τk(t))fk(u(t− τk(t))), (6)

where N ∈ N,

(A.1) (i) δ,H, Pk : R → R+
0 (k = 1, . . . , N) are T -periodic locally integrable functions,

T∫
0

[
δ(s) +H(s)

]
ds > 0,

T∫
0

N∑
k=1

Pk(s) ds > 0,

(ii) σ : R → [0, σ∗], τk : R → [0, τ∗] (k = 1, . . . , N) are T -periodic locally measurable
functions (σ∗ and τ∗ are non-negative constants),

(iii) fk : R+
0 → R+ (k = 1, . . . , N) are continuous decreasing functions that are continuously

differentiable at some neighbourhood of zero, and

lim
x→+∞

fk(x) = 0 (k = 1, . . . , N).

By a T -periodic solution to (6) we understand a T -periodic locally absolutely continuous function
defined on R and satisfying the equality (6) for almost every t ∈ R.

Theorem 4. Let (A.1) be fulfilled, and let there exist γ : R → R+ that is locally absolutely
continuous such that

γ′(t) ≤ −δ(t)γ(t)−H(t)γ(t− σ(t)) for a.e. t ∈ R. (7)

Then (ℓ, h) ∈ U+ and F satisfies (H.1)–(H.3) and (H.4 ′) with µx = 1 for all x ∈ C([0, T ];R+),
where the operators ℓ, F : C([0, T ];R) → L([0, T ];R) and h : C([0, T ];R) → R are defined by

ℓ(v)(t)
def
= −δ(t)v(t)−H(t)v(σ0(t)), h(v)

def
= v(0)− v(T ) for v ∈ C([0, T ];R),
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F (v)(t)
def
=

N∑
k=1

Pk(t)v(τ0k(t))fk(v(τ0k(t))) for v ∈ C([0, T ];R),

σ0(t)
def
= t− σ(t) +

⌊
T − (t− σ(t))

T

⌋
T for a.e. t ∈ [0, T ],

τ0k(t)
def
= t− τk(t) +

⌊
T − (t− τk(t))

T

⌋
T for a.e. t ∈ [0, T ] (k = 1, . . . , N).

One of the efficient conditions guaranteeing the existence of a positive γ satisfying (7) is

t∫
t−σ(t)

H(s) exp

( s∫
s−σ(s)

δ(ξ) dξ

)
ds ≤ 1

e
for a.e. t ∈ [0, T ].

Another conditions guaranteeing the inclusion (ℓ, h) ∈ U+ are

either
T∫
0

[
δ(s) +H(s)

]
ds < 1 or

T∫
0

H(s) exp

( s∫
s−σ(s)

δ(ξ) dξ

)
ds < 1

provided (A.1)(i) is fulfilled.
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Consider the linear differential systems

ẋ = A(t)x, x ∈ Rn, t ≥ t0, (1)

with bounded infinitely differentiable coefficients and positive characteristic exponents λn(A) ≥
· · · ≥ λ1(A) > 0, as well as the perturbed systems

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ t0, (2)

with infinitely differentiable exponentially decreasing perturbation n× n-matrices Q satisfying the
estimate

∥Q(t)∥ ≤ CQe
−σt, σ > 0, CQ = const, t ≥ t0. (3)

There arises the question on the existence of such, for example, two-dimensional system (1) and
perturbation (3) that the perturbed system (2) has a nontrivial solution with a negative Lyapunov
exponent. The solution to this (first) problem may serve as a preliminary step in solving the more
important (second) problem about the existence of nontrivial solutions with negative exponents of
a nonlinear differential system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0, (4)

with an infinitely differentiable m-perturbation f(t, y):

∥f(t, y)∥ ≤ Cf∥y∥m, y ∈ Rn, Cf = const, t ≥ t0

of m > 1 order of smallness in the nighbourhood of the origin y = 0 and admissible growth outside it
in the “anti-Perron” case when all characteristic exponents of linear approximation (1) are positive.
Indeed, according to the principle of linear inclusion [1, p. 159], any solution y0(t) ̸= 0 of system
(4), infinitely extendably to the right, with a negative exponent, is likewise a solution of system (2)
with exponentially decresing perturbation Qy0(t), satisfying the condition

∥Qy0(t)∥ ≤ Cf∥y0(t)∥m−1, t ≥ t0.

Therefore, in the case of admissible negative solution of the first problem there follows the same
solution of the second problem.
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Note that in the Perron effect ([5], [4, pp. 50-51]) of changing the values of negative characteristic
exponents of system (1) by positive exponents of solutions of system (4) we have obtained in [4]
and [5] a finale complete description of sets of all positive and all negative (including those in the
absence of the latter) exponents of solutions of system (4) for which all nontrivial solutions are
infinitely extendable to the right and have bounded finite exponents.

The present paper is devoted to the positive solution of the first problem.

Theorem 1. For any parameters λ2 ≥ λ1 > 0, θ > 1 and σ ∈ (0, λ1 + θ−1λ2) there exist:

1) the two-dimensional linear system (1) with bounded infinitely differentiable coefficients and
characteristic exponents λi(A) = λi, i = 1, 2;

2) the infinitely differentiable exponentially decreasing and satisfying estimate (3) perturba-
tion Q(t)

such that the perturbed linear system (2) has a unique (among all its linear independent) solution
y(t) with a negative Lyapunov exponent, equal to

λ0 =
θσ − θλ1 − λ2

θ − 1
.

There likewise arises the question on a possible number of linearly independent solutions with
negative Lyapunov exponents for the n-dimensional linear perturbed system (2) in which the first
approximation system (1) has all positive characteristic exponents, and the perturbation Q(t) is
exponentially decreasing.

The following theorem is valid.

Theorem 2. For any parameters

λn ≥ · · · ≥ λ2 ≥ λ1 > 0, n ≥ 3, θ > 1, 0 < σ < λ1 + θ−1λ2

there exist:

1) the n-dimensional system (1) with bounded infinitely differentiable coefficients and character-
istic exponents λi(A) = λi, i = 1, . . . , n;

2) the infinitely differentiable exponentially decreasing and satisfying estimate (3) perturba-
tion Q(t)

such that the n-dimensional perturbed system (2) has exactly n− 1 linear independent solutions

Y1(t), . . . , Yn−1(t)

with negative exponents

λ[Yi] =
σθ − θλ1 − λi+1

θ − 1
≡ Λi, i = 1, . . . , n− 1.

Proof of Theorem 2 is based on the statement of Theorem 1 and its proof.

Remark. Is the statement:

if λi(A) > 0, i = 1, . . . , n, then λn(A+Q) > 0

valid for any piecewise continuous bounded n× n-matrix A(t) and exponentially decreasing n× n-
perturbation Q(t)?
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The integro-differential equations are applied in many branches of science, such as physics,
engineering, biochemistry, etc. A lot of scientific works are dedicated to the investigation and
numerical resolution of integro-differential models (see, for example, [2, 7, 11, 13, 16, 18] and the
references therein).

One type of nonlinear integro-differential parabolic model is obtained at the mathematical
simulation of processes of electromagnetic field penetration into a substance. Based on Maxwell
system [14], the mentioned model at first appeared in [3]. The integro-differential system obtained
in [8] describes many other processes as well (see, for example, [7, 11] and the references therein).
Equations and systems of such types still yield to the investigation for special cases. In this direction
the latest and rather complete bibliography can be found in the following monographs [7, 11].

The purpose of this note is to analyze degenerate one-dimensional case of such type models.
Unique solvability and convergence of the constructed semi-discrete scheme with respect to the
spatial derivative and fully discrete finite difference scheme are studied.

The investigated problem has the following form. In the rectangle Q = (0, 1)× (0, T ], where T
is a fixed positive constant, we consider the following initial-boundary value problem:

∂U

∂t
− ∂

∂x

{[ t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dτ +

(∂U
∂x

)2
+
(∂V
∂x

)2
]
∂U

∂x

}
= f(x, t), (1)

∂V

∂t
− ∂

∂x

{[ t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dτ +

(∂U
∂x

)2
+
(∂V
∂x

)2
]
∂V

∂x

}
= g(x, t), (2)

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0, t ∈ [0, T ], (3)
U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1]. (4)

Here f = f(x, t), g = g(x, t), U0 = U0(x), V0 = V0(x) are given functions of their arguments
and U = U(x, t), V = V (x, t) are unknown functions.

It is necessary to mention that (1), (2) is a degenerate type parabolic system with integro-
differential and p-Laplacian (p = 4) terms. Let us note that non-degenerate variants of (1)–
(4) type problem for more general nonlinearities are studied in [6]. Many works are devoted to
the investigation of multi-dimensional cases of such type equations and systems as well (see, for
example, [1, 4, 7, 9–12, 15] and the references therein). We would also like to note that in recent
years special attention has been paid to the construction and investigation of splitting models for
this type and their generalized variants of multi-dimensional integro-differential equations (see, for
example, [7, 9, 10] and the references therein).
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As it was already mentioned, (1), (2) type models arise, on the one hand, when solving real
applied problems, and on the other hand, as a natural generalization of some nonlinear parabolic
equations and systems studied for example, in [16,17] and in many other works as well.

Problems of (1)–(4) type at first were studied in [1], where the monotonicity of the considered
operator is proved and the unique solvability is obtained.

Applying one modification of compactness method developed in [17] (see also [16]) the following
uniqueness and existence statement takes place.

Theorem 1. If f, g ∈ W 1
2 (Q), f(x, 0) = g(x, 0) = 0, U0, V0 ∈

◦
W 1

2(0, 1), then there exists the unique
solution U , V of problem (1)–(4) satisfying the following properties:

U, V ∈ L4(0, T ;
◦
W 1

4(0, 1) ∩W 2
2 (0, 1)),

∂U

∂t
,
∂V

∂t
∈ L2(Q),

√
T − t

∂2U

∂t
,
√
T − t

∂2V

∂t
∈ L2(Q).

Here usual well-known spaces are used.
In order to describe the space-discretization for problem (1)–(4), let us introduce nets: ωh =

{xi = ih, i = 1, 2, . . . ,M − 1}, ωh = {xi = ih, i = 0, 1, . . . ,M} with h = 1/M . The boundaries are
specified by i = 0 and i = M . The semi-discrete approximation at (xi, t) is designed by ui = ui(t),
vi = vi(t). The exact solution of problem (1)–(4) at point (xi, t) is denoted by Ui = Ui(t), Vi = Vi(t).

Approximating the space derivatives by a forward and backward differences:

wx,i =
wi+1 − wi

h
, wx,i =

ui − wi−1

h
,

let us correspond the following semi-discrete scheme to problem (1)–(4):

dui
dt

−
{[ t∫

0

[
(ux,i)

2 + (vx,i)
2
]
dτ + (ux,i)

2 + (vx,i)
2

]
ux,i

}
x,i

= f(xi, t), i = 1, . . . ,M − 1, (5)

dvi
dt

−
{[ t∫

0

[
(ux,i)

2 + (vx,i)
2
]
dτ + (ux,i)

2 + (vx,i)
2

]
vx,i

}
x,i

= g(xi, t), i = 1, . . . ,M − 1, (6)

u0(t) = uM (t) = v0(t) = vM (t) = 0, t ∈ [0, T ], (7)
ui(0) = U0,i, i = 0, 1, . . . ,M, (8)

which approximates problem (1)–(4) on smooth solutions with the first order of accuracy with
respect to spatial step h.

The semi-discrete scheme (5)–(8) represents a Cauchy problem for nonlinear system of ordi-
nary integro-differential equations. It is stable with respect to initial data and right-hand side of
equations (5), (6) in the norm

∥w∥h = (w,w)
1/2
h , (w, z)h =

M−1∑
i=1

wizih.

It is not difficult to obtain the following estimate for (5)–(8)

∥u∥2h + ∥v∥2h +
t∫

0

[
||ux]|2h + ||vx]|2h

]
dτ < C,
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where the norm under the integral is defined as follows

||w]|2h = (w,w]h =
M∑
i=1

wiwih.

Here C denotes the positive constant independent of the mesh parameter h. This estimate gives
the above-mentioned stability as well as the global existence of a solution to problem (5)–(8).

In Theorems 2 and 3, using an approach of the work [5] for investigation the finite-difference
scheme, the convergence of the approximate solutions are stated.

For earlier work on discretization in time or space, or both, of models such as (1), (2), see,
e.g., [5–12].

The following statement takes place.

Theorem 2. The solution

u(t) =
(
u1(t), u2(t), . . . , uM−1(t)

)
, v(t) =

(
v1(t), v2(t), . . . , vM−1(t)

)
of the semi-discrete scheme (5)–(8) converges to the solution of problem (1)–(4)

U(t) =
(
U1(t), U2(t), . . . , UM−1(t)

)
, V (t) =

(
V1(t), V2(t), . . . , VM−1(t)

)
in the norm ∥ · ∥h as h → 0.

In order to describe the fully discrete analog of problem (1)–(4), let us construct grid on the
rectangle Q. For using the time-discretization in equations (1), (2) the net is introduced as follows
ωτ = {tj = jτ, j = 0, 1, . . . , J}, with τ = T/J and ωhτ = ωh × ωτ , uji = u(xi, tj).

Let us correspond the following implicit finite difference scheme to problem (1)–(4), where the
terms with time derivatives in (5), (6) are approximated using the forward finite difference formula:

uj+1
i − uji

τ
−
{[

τ

j+1∑
k=1

[
(ukx,i)

2 + (vkx,i)
2
]
+ (uj+1

x,i )2 + (vj+1
x,i )2

]
uj+1
x,i

}
x,i

= f j+1
i , (9)

vj+1
i − vji

τ
−
{[

τ

j+1∑
k=1

[
(ukx,i)

2 + (vkx,i)
2
]
+ (uj+1

x,i )2 + (vj+1
x,i )2

]
vj+1
x,i

}
x,i

= gj+1
i , (10)

i = 1, 2, . . . ,M − 1, j = 0, 1, . . . , J − 1;

uj0 = ujM = vj0 = vjM = 0, j = 0, 1, . . . , J, (11)
u0i = U0,i, v0i = V0,i, i = 0, 1, . . . ,M. (12)

Thus, the system of nonlinear algebraic equations (9)–(12) is obtained, which approximates
problem (1)–(4) on sufficiently smooth solution with the first order of accuracy with respect to
time and spatial steps τ and h.

The following estimate can be obtained easily for the solution of the finite difference scheme
(9)–(12)

max
0≤jτ≤T

(
∥uj∥2h + ∥vj∥2h

)
+

J∑
k=1

(
||ukx]|2h + ||vkx]|2h

)
τ < C,

which guarantees the stability and solvability of scheme (9)–(12). It is proved also that system
(9)–(12) has a unique solution. Here C represents positive constant independent from time and
spatial steps τ and h.

The following main conclusion is valid for scheme (9)–(12).
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Theorem 3. The solution

uj =
(
uj1, u

j
2, . . . , u

j
M−1

)
, vj =

(
vj1, v

j
2, . . . , v

j
M−1

)
, j = 1, 2, . . . , J

of the difference scheme (9)–(12) converges to the solution

U j =
(
U j
1 , U

j
2 , . . . , U

j
M−1

)
, V j =

(
V j
1 , V

j
2 , . . . , V

j
M−1

)
, j = 1, 2, . . . , J

of problem (1)–(4) in the norm ∥ · ∥h as τ → 0 and h → 0.

Note that for solving the difference scheme (9)–(12) Newton iterative process is used. Various
numerical experiments are done. These experiments agree with theoretical research.

Statements such Theorems 1–3 for (1), (2) type equation are stated in [8]. As it was mentioned
in [8], it is very interesting to looking for assumptions on the data of the considered problem (1)–(4)
that provide the regularity for the solution U(x, t), V (x, t), which is required for obtaining rates of
convergence in Theorems 2 and 3 as well as the optimal rates of convergence. It is important also
to study more general nonlinearities for such kind degenerate and non-degenerate equations and
systems.
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1 Introduction
Consider the second order half-linear differential equation

(p(t)φα(x
′))′ + q(t)φα(x) = 0, (HL)

where α is a positive constant, p(t) and q(t) are positive, continuously differentiable functions on
[a,∞), a = 0, and φγ : R → R denotes the odd function defined by

φγ(u) = |u|γ sgnu = |u|γ−1u, u ∈ R, γ > 0.

It is known that all proper solutions of (HL) are either oscillatory, in which case equation (HL)
itself is called oscillatory, or else nonoscillatory, in which case (HL) itself is called nonoscillatory.
Our attention will be focused on oscillatory equations of the form (HL).

Let x(t) be an oscillatory solution of (HL) existing on [a,∞). We denote by {σk}∞k=1 (σk < σk+1)
the sequence of zeros of x(t), and by {τk}∞k=1 (τk < τk+1) the sequence of points at which x(t) takes
on extrema (i.e. local maxima or minima). Naturally, x(σk) = 0 and x′(τk) = 0 for all k. The
values |x′(σk)| and |x(τk)| are referred to as the slope and amplitude, respectively, of the k-th wave
of x(t). We use the following notations:

A∗[x] = sup
k

|x(τk)|, A∗[x] = inf
k
|x(τk)|, S∗[x] = sup

k
|x′(σk)|, S∗[x] = inf

k
|x′(σk)|.

An oscillatory solution x(t) of (HL) is bounded if A∗[x] < ∞, and unbounded if A∗[x] = ∞.
Two cases are possible for a bounded oscillatory solution: either lim

k→∞
|x(τk)| = 0 which is equivalent

to lim
t→∞

x(t) = 0, or lim inf
k→∞

|x(τk)| > 0 which amounts to A∗[x] > 0. In the former case x(t) is called
a decaying oscillatory solution, while in the latter case x(t) is called an non-decaying oscillatory
solution of (HL).



84 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

Recently, Kusano and Yoshida [1] have shown the existence and the qualitative properties, i.e.,
“amplitudes” and “slopes”, of oscillatory solutions x(t) of the linear differential equation

(p(t)x′)′ + q(t)x = 0, t = a. (L)

The purpose of this paper is to report to the QUALITDE – 2021 that some of their results can be
extended to half-linear differential equations of the form (HL).

2 Main results
Our first result concerns the estimation of A∗[x] and A∗[x].

Theorem 2.1. Let (HL) be oscillatory and let x(t) be a solution of it satisfying the initial condition

x(a) = l, x′(a) = m, (2.1)

where l and m are any given constants such that (l,m) ̸= (0, 0).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) > 0, (2.2)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) < ∞. (2.3)

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(a)

] 1
α+1 if p(∞) > 0, (2.4)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(∞)

] 1
α+1 if q(∞) < ∞. (2.5)

(iii) Suppose that (p(t) 1
α q(t))′ = 0 for t = a. Then,

A∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

, (2.6)

A∗[x] =
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) < ∞. (2.7)

(iv) Suppose that (p(t) 1
α q(t))′ 5 0 for t = a. Then,

A∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
p(∞)

1
α q(∞)

] 1
α+1 if p(∞)

1
α q(∞) > 0, (2.8)

A∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

q(a)

] 1
α+1

. (2.9)

Since the constants l and m in (2.1) are arbitrary, the above inequalities (2.2)–(2.9) guarantee
under the indicated conditions on p(∞) and/or q(∞) that A∗[x] < ∞ and/or A∗[x] > 0 for all
solutions x(t) of (HL). Then, A∗[x] < ∞ gives the boundedness of x(t) on [a,∞) and A∗[x] < ∞
and A∗[x] > 0 imply the non-decaying boundedness of x(t) on [a,∞).
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Corollary 2.1. Suppose that (HL) is oscillatory. All of its solutions are bounded on [a,∞) if p(t)
and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0;

(iii) (p(t)
1
α q(t))′ = 0 for t = a;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

Corollary 2.2. Supposet that (HL) is oscillatory. All of its solutions are non-decaying bounded
on [a,∞) if p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) = 0, q′(t) 5 0 for t = a and p(∞) < ∞, q(∞) > 0;

(ii) p′(t) 5 0, q′(t) = 0 for t = a and p(∞) > 0, q(∞) < ∞;

(iii) (p(t)
1
α q(t))′ = 0 for t = a and p(∞)

1
α q(∞) < ∞;

(iv) (p(t)
1
α q(t))′ 5 0 for t = a and p(∞)

1
α q(∞) > 0.

The estimation of S∗[x] and S∗[x] are given in the following
Theorem 2.2. Let (HL) be oscillatory and let x(t) be a solution of it satisfying (2.1).

(i) Suppose that p′(t) = 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

,

S∗[x] =
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) < ∞ and q(∞) > 0.

(ii) Suppose that p′(t) 5 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α q(∞){q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α q(a)

] 1
α+1 if p(∞) > 0 and q(∞) < ∞,

S∗[x] =
[q(a)|l|α+1 + αp(a)|m|α+1

αp(a)

] 1
α+1

.

(iii) Suppose that p′(t) = 0 and q′(t) = 0 for t = a. Then,

S∗[x] 5
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) < ∞,

S∗[x] =
[p(a) 1

α

{
q(a)|l|α+1 + αp(a)|m|α+1

}
αp(∞)1+

1
α

] 1
α+1 if p(∞) < ∞.

(iv) Suppose that p′(t) 5 0 and q′(t) 5 0 for t = a. Then,

S∗[x] 5
[p(a) 1

α {q(a)|l|α+1 + αp(a)|m|α+1}
αp(∞)1+

1
α

] 1
α+1 if p(∞) > 0,

S∗[x] =
[q(∞){q(a)|l|α+1 + αp(a)|m|α+1}

αp(a)q(a)

] 1
α+1 if q(∞) > 0.

Corollary 2.3. Let (HL) be oscillatory. If p(t) and q(t) are monotone functions such that 0 <
p(∞) < ∞ and 0 < q(∞) < ∞, then S∗[x] < ∞ and S∗[x] > 0 for all solutions x(t) of (HL).



86 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

3 Example
Example. Consider the half-linear differential equation(

(coth(t+ τ))αφα(x
′)
)′
+ k tanh(t+ τ)φα(x) = 0 (3.1)

on [0,∞), where τ = 0 and k > 0 are constants. Equation (3.1) is oscillatory since the functions
p(t) = (coth(t+ τ))α and q(t) = k tanh(t+ τ) are not integrable on [0,∞). It is clear that p(t) and
q(t) satisfy p′(t) 5 0, q′(t) = 0, (p(t) 1

α q(t))′ = 0, p(0) = (coth τ)α, p(∞) = 1, q(0) = k tanh τ and
q(∞) = k, all nontrivial solutions of equation (3.1) are bounded and non-decaying by (ii) and (iii)
of Corollary 2.2. As regards the estimates for upper and lower amplitudes and upper and lower
slopes of solutions of (3.1), we obtain, for example,

A∗[x] 5
[
coth τ |l|α+1 +

α

k
(coth τ)α+2|m|α+1

] 1
α+1

,

A∗[x] =
[
tanh τ |l|α+1 +

α

k
(coth τ)α|m|α+1

] 1
α+1

from (ii) of Theorem 2.1, and

S∗[x] 5
[k
α

coth τ |l|α+1 + (coth τ)α+2|m|α+1
] 1

α+1
,

S∗[x] =
[k
α
(tanh τ)α+1|l|α+1 + |m|α+1

] 1
α+1

from (ii) of Theorem 2.2. If in particular τ = 0 and k = α, then the upper and lower amplitudes
and slopes coincide, that is,

A∗[x] = A∗[x] = S∗[x] = S∗[x] =
[
|l|α+1 + |m|α+1

] 1
α+1 .

This value may well be called the amplitude A[x] and the slope S[x] of the solution x(t) of the
equation (

(coth t)αφα(x
′)
)′
+ α tanh t φα(x) = 0. (3.2)

Notice that (3.2) is reduced to the generalized harmonic oscillator

(φα(ż))
· + αφα(z) = 0, · = d

dσ
, (3.3)

by means of the change of variables (t, x) → (σ, z) given by σ = log(cosh t), z(σ) = x(t). Equation
(3.3) is known as a differential equation generating a generalized trigonometic function. Its solution
z(σ) determined by the initial condition z(0) = 0, ż(0) = 1 is the generalized sine function z = S(σ)
which exists on R, is periodic with period 2πα, πα = 2π

α+1/ sin(
π

α+1), and vanishes at σ = kπα,
k ∈ Z. It follows that (3.2) has an oscillatory solution x(t) = S(log(cosh t)) on [0,∞) whose zeros
are located at tn = cosh−1(enπα), n = 0, 1, 2, . . . , and whose amplitude and slope are given by
A[x] = 1 and S[x] = 1, respectively.
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On the plane of independent variables x and y we consider the general system of second-order
linear homogeneous differential equations

Auxx +Buxy + Cuyy + aux + buy + cu = 0, (1)

where A, B, C, a, b and c are given real N × N matrices and u = (u1, . . . , uN ) is the unknown
N -dimensional real vector. We assume that detC ̸= 0 and N > 1 is a natural number.

By P (x, y; ξ, η) we denote the characteristic determinant of system (1), i.e.

P (x, y; ξ, η) := detQ(x, y; ξ, η),

where
Q(x, y; ξ, η) := A(x, y)ξ2 +B(x, y)ξη + C(x, y)η2

and ξ, η are arbitrary real parameters.
Since detC ̸= 0, we have the following representation

P (x, y; 1, λ) = detC

l∏
i=1

(λ− λi(x, y))
ki ,

l∑
i=1

ki = 2N, l = l(x, y), ki = ki(x, y), i = 1, . . . , l.

System (1) is said to be hyperbolic at the point (x, y) if l > 1 and all roots λ1(x, y), . . . , λl(x, y)
of the polynomial P (x, y; 1, λ) are real (see, e.g., [1, 6]).

One can readily show that [1, 6]

ki(x, y) ≥ N − rank Q(x, y; 1, λi(x, y)), i = 1, . . . , l.

The hyperbolic system (1) is said to be normally hyperbolic at the point (x, y) if

ki(x, y) = N − rank Q(x, y; 1, λi(x, y)), i = 1, . . . , l.

In the formulation of the characteristic Goursat problem for system (1), in contrast to scalar
hyperbolic equations, generally speaking as was shown in [1–4], it can be ill-posed and one should
be careful. In these works there are considered linear second order hyperbolic systems, for which
the corresponding homogeneous characteristic Goursat problem has infinite number of linearly
independent solutions. In the works [1,3–5,7] there are considered the question of the influence of
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lower terms on the correctness of the statement of the Goursat characteristic problem for second
order hyperbolic systems with non-split principal part. As it is investigated in [6], the Goursat and
Darboux first and second type problems for normally hyperbolic systems are well-posed. For the
author until this day it is not known what will happen when in the case of Darboux first problem
the condition of normally hyperbolicity is violated. The presented note is devoted to this question.

Suppose in system (1) that

N = 2, A =

∥∥∥∥1 0
0 1

∥∥∥∥ , B =

∥∥∥∥−1 1
1 −1

∥∥∥∥ , C =

∥∥∥∥ 0 −1
−1 0

∥∥∥∥ , a = b = c = 0,

and thus consider the following system{
u1xx − u1xy + u2xy − u2yy = 0,

u2xx + u1xy − u2xy − u1yy = 0.
(2)

System (2) is hyperbolic, since its characteristic determinate

D(λ) := (λ− 1)3(λ+ 1)

has the real roots λ = 1, λ = −1.
By D1 (D2) we denote the domain on the plane of independent variables x and y bounded by

the characteristic x− y = 0 (x+ y = 0), x ≥ 0 of system (2) and by the non-characteristic y = 0,
x ≥ 0.
The Darboux first problem: in the domain D1(D2) find a regular solution u of system (2) under
the conditions

u
∣∣
y=x

= f1(x)
(
u
∣∣
y=−x

= f2(x)
)
, x ≥ 0, (3)

and
u
∣∣
y=0

= f3, x ≥ 0, (4)
where the functions f1, i = 1, . . . , 3 are given twice continuously differentiable functions with respect
to their arguments, satisfying the matching conditions: f1(0) = f2(0) = f3(0).

System (2) is rewritten in the following form{
w̃ξη = 0,

ṽηη = 0,
(5)

where

ξ = x+ y, η = x− y, w̃(ξ, η) := w
(ξ + η

2
,
ξ − η

2

)
, ṽ(ξ, η) := v

(ξ + η

2
,
ξ − η

2

)
,

w := u1 + u2, v := u1 − u2.

By integrating system (5), we obtain

w̃(ξ, η) = 2φ1(ξ) + 2φ2(η), ṽ(ξ, η) = 2ηφ3(ξ) + 2φ4(ξ),

where φi, i = 1, . . . , 4 are arbitrary twice continuously differentiable functions with respect to their
arguments.

Returning to the previous variables, we obtain that the general classical solution of system (2)
has the following form{

u1(x, y) = φ1(x+ y) + φ2(x− y) + (x− y)φ3(x+ y) + φ4(x+ y),

u2(x, y) = φ1(x+ y) + φ2(x− y)− (x− y)φ3(x+ y)− φ4(x+ y).
(6)

Based on formulas (6), we conclude that:
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1) The unique solution of problem (2)–(4) in the domain D1 is given by the formulas

u1(x, y) =
y − x

2(x+ y)

[
f1
1

(x+ y

2

)
− f2

1

(x+ y

2

)
− f1

2 (x+ y) + f2
2 (x+ y)

]
+ f1

1

(x+ y

2

)
− 1

2

[
f1
1

(x− y

2

)
+ f2

1

(x− y

2

)
− f1

2 (x− y)− f2
2 (x− y)

]
,

u2(x, y) =
x− y

2(x+ y)

[
f1
1

(x+ y

2

)
− f2

1

(x+ y

2

)
− f1

2 (x+ y) + f2
2 (x+ y)

]
+ f2

1

(x+ y

2

)
− 1

2

[
f1
1

(x− y

2

)
+ f2

1

(x− y

2

)
− f1

2 (x− y)− f2
2 (x− y)

]
.

2) The corresponding to (2)–(4) homogeneous problem in the domain D2 has infinitely many
linearly independent solutions given by the formulas

u1(x, y) = −yφ0(x+ y), u2(x, y) = yφ0(x+ y), φ0(0) = 0,

where φ0 is an arbitrary twice continuously differentiable function with respect to its argu-
ments.

3) The inhomogeneous problem (2)–(4) in the domain D2 is not always solvable for an arbitrary
right-hand side.

Remark. The question of finding the well-posed problems for system (2) is certainly of scientific
interest and will be the subject of further research by the author.
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Semidiscrete systems of equations constitute an important subclass of so-called “hybrid systems”
characterized by the presence of two components in the state space: discrete and continuous.
Intuitively, this means that the dynamics is mostly continuous, but at certain instants is exposed
to abrupt influences. Such systems naturally appear in applications, for example, in biological
and ecological models [10, 12] as well as in the control theory [11]. Some models with impulsive
actions [9] are also an important example of semidiscrete problems.

Finally, accounting for stochastic effects is an important part of any realistic approach to model-
ing. For example, in the population dynamics, demographic and ecological stochasticity arises due
to a change in time of factors external to the system, but affecting the survival of the population,
and in control theory, random coefficients can simulate, for example, inaccuracies in measure-
ments. Therefore, the study of hybrid stochastic systems has recently attracted the attention of
many specialists (see e.g. [7] and the references therein).

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space.

To describe semidiscrete systems, we fix a natural number l (1 ≤ l < n), for which x1(t), . . . , xl(t)
(t ≥ 0) will be the continuous components of the state vector of the system, while xl+1(s), . . . , xn(s)
(s ∈ N+ ≡ {0, 1, 2, . . . }) will be its discrete components. In the vector notation it will look as
follows:

x̂(t) = col(x1(t), . . . , xl(t)) (t ≥ 0), x̃(s) = col(xl+1(s), . . . , xn(s)) (s ∈ N+),

x(t) = col
(
x1(t), . . . , xl(t), xl+1([t]), . . . , xn([t])

)
(t ≥ 0),

where [t] is the integer part of the number t.
We study the moment exponential stability of solutions of the following system of linear diffe-

rential and difference Itô equations with aftereffect:

dx̂(t) = −
m1∑
j=1

A1j(t)x(h1j(t)) dt+

m∑
i=2

mi∑
j=1

Aij(t)x(hij(t)) dBi(t) (t ≥ 0),

x̃(s+ 1) = x̃(s)−
s∑

j=−∞
A1(s, j)x(j)h

+
m∑
i=2

s∑
j=−∞

Ai(s, j)x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+)

(0.1)
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with respect to the initial conditions

x(ς) = φ(ς) (ς < 0), (0.1a)
x(0) = b. (0.1b)

Here

• x(t) = col(x1(t), . . . , xl(t), xl+1([t]), . . . , xn([t])) (t ≥ 0) is a n-dimensional unknown stochastic
process;

• Aij(t) are l × n - matrices (i = 1, . . . ,m, j = 1, . . . ,mi), where the entries of the matrices
A1j(t), j = 1, . . . ,m1 are progressively measurable scalar stochastic processes on interval
[0,∞) with almost surely (a.s.) locally integrable trajectories, and the entries of the matrices
Aij(t), i = 2, . . . ,m, j = 1, . . . ,mi are progressively measurable scalar stochastic processes
on [0,∞), whose trajectories a.s. locally square-integrable;

• hij(t), i = 1, . . . ,m, j = 1, . . . ,mi are Borel measurable functions defined on [0,∞) and such
that hij(t) ≤ t (t ≥ 0) are almost everywhere Lebesgue measurable for all i = 1, . . . ,m,
j = 1, . . . ,mi;

• h is some positive real number;

• Ai(s, j) – (n − l) × n are matrices whose entries are Fs-measurable scalar random variables
for all i = 1, . . . ,m, s ∈ N+, j = −∞, . . . , s;

• φ(ς) = col(φ1(ς), . . . , φl(ς), φl+1([ς]), . . . , φn([ς])) (ς < 0) is a F0-measurable, n-dimensional
stochastic process with a.s. essentially bounded trajectories;

• b = col(b1, . . . , bn) is a F0-measurable n-dimensional random variable.

Under these assumptions, the problem (0.1)–(0.1b) has a unique global solution.
The moment exponential stability is defined in

Definition 0.1. System (0.1) is called exponentially q-stable with respect to the initial data if
there are positive numbers c, λ such that all solutions x(t, b, φ) (t ∈ (−∞,∞)) of the initial value
problem (0.1), (0.1a), (0.1b) satisfy the estimate(

E|x(t, b, φ)|q
)1/q ≤ c exp{−λt}

((
E|b|q

)1/q
+ ess supς<0

(
E|φ(ς)|q

)1/q)
(t ≥ 0).

The next definition is used in the main result of the paper.

Definition 0.2. An invertible matrix B = (bij)
m
i,j=1 is called positive invertible if all elements of

the matrix B−1 are positive.

According to [3], the matrix B will be positive invertible if bij ≤ 0 for i, j = 1, . . . ,m, i ̸= j
and all diagonal minors of the matrix B are positive. In particular, matrices with strict diagonal
dominance and non-positive off-diagonal elements are positive invertible.

1 Sufficient stability conditions
In this section we use a special constant cp, which is defined in
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Lemma. For any scalar, progressive measurable stochastic process f(ς)

(
E

∣∣∣∣
t∫

0

f(ς) dB(ς)
∣∣∣∣2p) 1

2p

≤ cp

(
E

( t∫
0

|f(ς)|2dς
)p) 1

2p

, (1.1)

where cp is some number depending on p ≥ 1. Here B(ς) is the scalar Wiener process.

Estimate (1.1) follows from the inequality given in the monograph [8, p. 65], where the formulas
for cp can also be found.

Let µ be the Lebesgue measure on [0,∞). Consider three groups of conditions on the coefficients
of System (0.1).

Assume that

• there exist numbers τij ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi such that 0 ≤ t− hij(t) ≤ τij (t ≥ 0)
µ-almost everywhere for all these indices;

• there exist numbers a ij
kr ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi, k = 1, . . . , l, r = 1, . . . , n such that

|aijkr(t)| ≤ a ij
kr (t ≥ 0) P × µ-almost everywhere for all these indices.

In addition, assume that there exist λk ≥ 0, k = 1, . . . , n, for which

• the diagonal entries of the matrices A1(s, s) (s ∈ N+) can be represented as a1kk(s, s) + λk

(s ∈ N+), k = l + 1, . . . , n;

•
∑
j∈Ik

a1jkk(t) ≥ λk (t ≥ 0) P × µ-almost everywhere (k = 1, . . . , l) and some subsets Ik ⊂

{1, . . . ,m1}, k = 1, . . . , l;

• 0 < λkh < 1 if k = l + 1, . . . , n.

Finally, assume that there exist numbers di ∈ N+, i = 1, . . . ,m, for which

• the entries of the matrices Ai(s, j) are equal to 0 P -almost everywhere for all s ∈ N+,
j = −∞, . . . , s− di − 1, i = 1, . . . ,m;

• |aikr(s, j)| ≤ a i
kr(s, j) P -almost everywhere for all i = 1, . . . ,m, k = l + 1, . . . , n, r = 1, . . . , n,

s ∈ N+, j = s− di, . . . , s, and, in addition,

sup
τ∈N+

τ∑
j=νi(τ)

a 1
kr(τ, j) < ∞ for all i = 1, . . . ,m, k = l + 1, . . . , n, r = 1, . . . , n,

where νi(τ) = 0 if 0 ≤ τ ≤ di and νi(τ) = τ − di if τ > di.

The entries of the n× n-matrix C are defined by

ckk =
1

λk

( ∑
j∈Ik

a 1j
kk

( m1∑
ν=1

a 1ν
kk τ1j + cp

m∑
i=2

mi∑
ν=1

a iν
kr
√
τ1j

)
+

m1∑
j=1, j∈{1,...,m1}/Ik

a 1j
kk

)

+
cp√
2λk

m∑
i=2

mi∑
j=1

a ij
kk, k = 1, . . . , l,

ckr =
1

λk

( ∑
j∈Ik

a 1j
kr

( m1∑
ν=1

a 1ν
kr τ1j + cp

m∑
i=2

mi∑
ν=1

a iν
kr
√
τ1j

)
+

m1∑
j=1

a 1j
kr

)
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+
cp√
2λk

m∑
i=2

mi∑
j=1

a ij
kr, k = 1, . . . , l, r = 1, . . . , n, k ̸= r,

ckr =
1

λkh

(
h sup

τ∈N+

τ∑
j=ν1(τ)

a 1
kr(τ, j) + cp

√
h

m∑
i=2

sup
τ∈N+

τ∑
j=νi(τ)

a i
kr(τ, j)

)
,

k = 1, . . . , l, r = 1, . . . , n.

The above assumptions enable us to formulate the main result of this paper.

Theorem. If the matrix E − C is positive invertible, then System (0.1) is exponentially 2p-stable
with respect to the initial data, i.e. in the sense of Definition 0.1. Moreover, the exponential decay
rate λ of all solutions can be estimated as

0 < λ < min
{
λi, i = 1, . . . , l; − ln(1− λih), i = l + 1, . . . , n

}
. (1.2)

The proof of the theorem is based on the regularization method, also known as a method of
model (auxiliary) equations or “N. V. Azbelev’s W -method”, see the monographs [1, 2] and the
references therein. This approach has proven to be efficient in the theory of stochastic differential
[4] and difference [5] equations. The main idea of the method is to replace functionals on the
space of trajectories of solutions by the so-called “model” equation that already has the necessary
property of stability and which is used to regularize the initial equation. Checking stability of the
latter amounts, then, to estimating the norm of a certain integral operator or checking a positive
invertibility of some matrix. The latter version of the W -method was developed in [6].

2 An example
Consider a semidiscrete system of stochastic equations with constant coefficients and bounded
delays of the form:

dx̂(t) = −
m1∑
j=1

A1jx(t− h1j) dt+
m∑
i=2

mi∑
j=1

Aijx(t− hij)dBi(t) (t ≥ 0),

x̃(s+ 1) = x̃(s)−A1

s∑
j=s−d1

x(j)h+

m∑
i=2

Ai

s∑
j=s−di

x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+),

(2.1)

where Aij = (aijkr)
l,n
k,r=1, i = 1, . . . ,m, j = 1, . . . ,mi are real l×n-matrices and Ai = (aikr)

n
k=l+1,r=1,

i = 1, . . . ,m are real (n− l)×n-matrices, and hij ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi are real numbers,
h > 0 is some (sufficiently small) real number. Put also

m1∑
j=1

a1jkk = ak, k = 1, . . . , l an define the

entries of the n× n-matrix C as follows:

ckk =
1

ak

m1∑
j=1

|a1jkk|
( m1∑

ν=1

|a1νkk|h1j + cp

m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+

cp√
2ak

m∑
i=2

mi∑
j=1

|aijkk|, k = 1, . . . , l,

ckr =
1

ak

( m1∑
j=1

|a1jkr|
( m1∑

ν=1

|a1νkr |h1j + cp

m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+

m1∑
j=1

|a1jkr|
)

+
cp√
2ak

m∑
i=2

mi∑
j=1

|aijkr|, k = 1, . . . , l, r = 1, . . . , n, k ̸= r,
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ckk =
cp(di + 1)

a1kk
√
h

m∑
i=2

|aikk|, k = 1 + 1, . . . , l,

ckr =
(d1 + 1)|a1kr|

a1kk
+

cp(di + 1)

a1kk
√
h

m∑
i=2

|aikr|, k = 1 + 1, . . . , l, r = 1, . . . , n, k ̸= r.

Then from Theorem we can deduce the following

Proposition. If ak > 0, k = 1, . . . , l, a1kk > 0, k = l+ 1, . . . , n, and the matrix E −C is positively
invertible, then system (2.1) is exponentially 2p-stable with respect to the initial data.

In particular, we obtain

Corollary. Let n = 2, l = 1 in system (2.1) and let the entries cij, i, j = 1, 2 of the 2× 2-matrix
C be defined as described right before Proposition. If now 1− c11 > 0; (1− c11)(1− c22) > c12c21,
then system (2.1) is exponentially 2p-stable with respect to the initial data.

The corollary follows from Proposition and from the fact that under the conditions of the
corollary the 2× 2-matrix E − C is positive invertible, since its diagonal minors are positive.
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Differential equations on time scales were introduced by S. Hilger in [9]. His approach gave a
possibility to unified theory for both discrete and continuous analysis. The theory was thoroughly
stated in [1, 2]. The behavior of the solutions of the dynamic equations, defined on a family of
time scales Tλ when graininess function µλ → 0 as λ → 0 is of interest for study. In this case
intervals of the time scale [t0, t1]λ = [t0, t1] ∩ Tλ approach [t0, t1] (e.g. in the Hausdorff metric).
The question arises about relation between properties of the solutions of equations on time scales
and the solutions of boundary equations which are ordinary differential ones. It is obviously, on
the finite time intervals it is not complicated to establish the convergence of solutions of dynamical
equations to the corresponding solutions of differential equations. However, in case of infinite
intervals this problem is not trivial.

This work is devoted to the study of existence of a bounded solution of the differential equation,
defined on a family of time scales Tλ provided the graininess function µλ converges to zero as λ → 0.
This work extends the results of [12] about the relation between the existence of bounded solutions
of differential equations and the corresponding difference equations to the case of general time scales.
The main difficulty here is to obtain estimation between the solutions of differential equation and
its analog for the time scale for any Tλ. This makes this analysis significantly different from [12],
where only special case for T = Z was obtained.

Note, the question about existence of the two-sided solutions for dynamical equations on time
scales is not trivial by itself. In comparison with the classic theorem about existence of solutions
of the system of ordinary differential equations, where local both sides existence with respect to
initial point holds, for the equations on time scales it is more complicated. To extend the solution
to the left it is necessary the very strong regression condition holds [5]. Here we got the existence
of the two-sided global bounded solution without using regression condition.

The proof of the theorems requires continuous dependence of the solutions on initial data
uniformly over all time scales. It does not influence, for example, from [10], where investigation
was on the fixed scale. This question is not trivial due to the topological complexity of the time
scale.

The relation between properties also of the solutions of the system of ordinary differential
equation and the solutions of equations on Eulerian time scales was studied before.

The paper [3] showed that the solutions of differential and the corresponding difference equations
have the same oscillatory properties. The relation between stability and attractors of differential



96 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

and difference equations was studied in [7]. The relation between optimal control of the systems of
ordinary differential equations and dynamical equations on time scales considered in [4, 6, 11].

Let present few concepts from the monograph [1], which are used here.
Time scale T is an arbitrary, non-empty, closed subset of the real axis. For every A ⊂ R, we

denote AT = A ∩ T.
Define the forward and backward jump operators as σ, ρ : T → T by σ(t) = inf{s ∈ T : s > t}

and ρ(t) = sup{s ∈ T : s < t} (supplemented by inf ∅ := supT and sup∅ := inf T).
The graininess function µ : T → [0,∞) is defined by µ(t) = σ(t) − t. A point t ∈ T is called

left-dense (LD) (left-scattered (LS), right-dense (RD) or right-scattered (RS)) if ρ(t) = t (ρ(t) < t,
σ(t) = t or σ(t) > t) hold. If T has a left-scattered maximum M , then we define Tk = T \ {M};
otherwise, we set Tk = T.

A function f : T → Rd is said to be ∆-differentiable at t ∈ Tk if the limit

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s

exists in Rd.
Consider the following system of differential equations

dx

dt
= X(t, x), (1)

t ∈ R, x ∈ D, D is a domain in Rd.
Consider the set of time scales Tλ and system (1) defined on Tλ

x∆λ (t) = X(t, xλ), (2)

where t ∈ Tλ, xλ : Tλ → Rd, x∆λ (t) be delta derivative x∆ for a function x(t) defined on Tλ,
inf Tλ = −∞, supTλ = ∞, λ ∈ Λ ⊂ R, and λ = 0 is a limit point of Λ.

Assume that the function X(t, x) is continuously differentiable and bounded together with its
partial derivatives, i.e. ∃C > 0 such that

|X(t, x)|+
∣∣∣∂X(t, x)

∂t

∣∣∣+ ∥∥∥∂X(t, x)

∂x

∥∥∥ ≤ C (3)

for t ∈ R, x ∈ D, where ∂X
∂x is the corresponding Jacobi matrix.

Let µλ = sup
t∈Tλ

µλ(t), where the graininess function µλ : Tλ → [0,∞). Obviously, if µλ(t) → 0

when λ → 0, then Tλ coincide (for example, in the Hausdorff metric) to a continuous time scale
T0 = R (according classification [8]).

The following theorem holds.

Theorem 1. Let system (1) has a bounded on R, asymptotically stable uniformly in t0 ∈ R solution
x(t), which lies in the domain D with some ρ-neighborhood. Then there exists λ0 > 0 such that for
all λ < λ0 system (2) has a bounded on Tλ solution xλ(t).

Theorem 2. If there exists λ0 > 0 such that for all λ < λ0 system (2) has an asymptotically stable
uniformly in t0 ∈ Tλ and λ bounded on axis solution xλ(t), which lies in the domain D with some
ρ-neighborhood, then system (1) has a bounded on axis solution.
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In the space Rn+1 of the variables x = (x1, . . . , xn) and t, we consider the semilinear hyperbolic
system of the form

�2ui + fi(u1, u2, . . . , uN ) = Fi(x, t), i = 1, . . . , N, (1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given, and u = (u1, . . . , uN ) is an unknown real
vector function, n ≥ 2, N ≥ 2, � := ∂2

∂t2
−∆, ∆ :=

n∑
i=1

∂2

∂x2
i
.

For the system (1) we consider the boundary value problem: find in the cylindrical domain
DT := Ω× (0, T ), where Ω is an open Lipschitz domain in Rn, a solution u = u(x, t) of that system
according to the boundary conditions

u
∣∣
∂DT

= 0,
∂u

∂ν

∣∣∣
∂DT

= 0, (2)

where ν = (ν1, . . . , νn, νn+1) is the unit vector of the outer normal to ∂DT .
Let

◦
Ck(DT , ∂DT ) :=

{
u ∈ Ck(DT ) : u

∣∣
∂DT

=
∂u

∂ν

∣∣∣
∂DT

= 0
}
, k ≥ 2.

Assume u ∈
◦
C4(DT , ∂DT ) is a classical solution of the problem (1), (2). Multiplying both parts

of the system (1) scalarly by an arbitrary vector function φ = (φ1, . . . , φN ) ∈
◦
C2(DT , ∂DT ) and

integrating the obtained equation by parts over the domain DT , we obtain∫
DT

�u �φ dx dt+

∫
DT

f(u)φ dx dt =

∫
DT

Fφ dx dt. (3)

When deducing (3), we have used the equality∫
DT

�u �φ dx dt =

∫
∂DT

∂φ

∂N
�u ds−

∫
∂DT

φ
∂

∂N
�u ds+

∫
DT

φ�2 u dx dt,

where
∂

∂N
= νn+1

∂

∂t
−

n∑
i=1

νi
∂

∂xi

is the derivative with respect to the conormal, as well as the equalities

∂φ

∂N

∣∣∣
Γ
= −∂φ

∂ν

∣∣∣
Γ
,

∂φ

∂N

∣∣∣
∂DT \Γ

=
∂φ

∂ν

∣∣∣
∂DT \Γ

, Γ := ∂Ω× (0, T ), φ
∣∣
∂DT

=
∂φ

∂ν

∣∣∣
∂DT

= 0.
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Introduce the Hilbert space
◦
W 1

2,�(DT ) as a completion with respect to the norm

∥u∥2◦
W 1

2,�(DT )
=

∫
DT

[
u2 +

(∂u
∂t

)2

+
n∑

i=1

( ∂u

∂xi

)2

+ (�u)2
]
dx dt (4)

of the classical space
◦
C2(DT , ∂DT ). It follows from (4) that if u ∈

◦
W 1

2,�(DT ), then u ∈
◦
W 1

2(DT )

and �u ∈ L2(DT ). Here W 1
2 (DT ) is the well-known Sobolev space consisting of the elements of

L2(DT ), having the first order generalized derivatives from L2(DT ) and
◦
W 1

2(DT ) = {u ∈ W 1
2 (DT ) :

u|∂DT
= 0}, where the equality u|∂DT

= 0 is understood in the trace theory.
Below, on the nonlinear vector function f = (f1, . . . , fN ) from (1) we impose the following

requirement
f ∈ C(Rn), |f(u)| ≤ M1 +M2|u|α, u ∈ Rn, (5)

where | · | is the norm of the space Rn and Mi = const ≥ 0, i = 1, 2, and

0 ≤ α = const <
n+ 1

n− 1
. (6)

Remark 1. The embedding operator I : W 1
2 (DT ) → Lq(DT ) is a linear continuous compact

operator for 1 < q < 2(n+1)
n−1 and n > 1. At the same time, the Nemytsky operator K : Lq(DT ) →

L2(DT ), acting according to the formula K(u) = f(u), where u = (u1, . . . , uN ) ∈ L2(DT ) and the
vector function f = (f1, . . . , fN ) satisfies the condition (5), is continuous and bounded if q ≥ 2α.
Therefore, if α < n+1

n−1 , then there exists a number q such that 1 < q < 2(n+1)
n−1 and q ≥ 2α. Thus,

in this case the operator
K0 = KI : W 1

2 (DT ) → L2(DT )

is continuous and compact. Moreover, from u ∈ W 1
2 (DT ) it follows that f(u) ∈ L2(DT ) and, if

um → u in the space W 1
2 (DT ), then f(um) → f(u) in the space L2(DT ).

Definition 1. Let the vector function f satisfy the conditions (5) and (6), F ∈ L2(DT ). The
vector function u ∈

◦
W 1

2,�(DT ) is said to be a weak generalized solution of the problem (1), (2), if

for any vector function φ = (φ1, . . . , φN ) ∈
◦
W 1

2,�(DT ) the integral equality (3) is valid, i.e.∫
DT

�u�φ dx dt+

∫
DT

f(u)φ dx dt =

∫
DT

Fφ dx dt ∀φ ∈
◦
W 1

2,�(DT ). (7)

Notice that in view of Remark 1 the integral
∫
DT

f(u)φ dx dt in the equality (7) is defined

correctly, since from u ∈
◦
W 1

2,�(DT ) it follows f(u) ∈ L2(DT ) and, therefore, f(u)φ ∈ L1(DT ).
It is not difficult to verify that if the solution u of the problem (1), (2) belongs to the class

◦
C4(DT , ∂DT ) in the sense of Definition 1, then it will also be a classical solution of this problem.

Consider the following condition

lim
|u|→∞

inf
uf(u)

||u||2RN

≥ 0. (8)

Theorem 1. Let the conditions (5), (6) and (8) be fulfilled. Then for any F ∈ L2(DT ) the problem
(1), (2) has at least one weak generalized solution u ∈

◦
W 1

2,�(DT ).
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Remark 2. If the conditions of Theorem 1 are fulfilled and the Nemytsky operator K(u) = f(u) :
RN → RN is monotonic, i.e.

(K(u)−K(v)) · (u− v) ≥ 0 ∀u, v ∈ RN , (9)

then there will hold the uniqueness of the solution of this problem.

Thus, the following theorem is valid.

Theorem 2. Let the conditions (5), (6) and (8), (9) be fulfilled. Then for any F ∈ L2(DT ) the
problem (1), (2) has a unique weak generalized solution in the space

◦
W 1

2,�(DT ).

Remark 3. The condition (9) will be fulfilled if f ∈ C1(RN ) and the matrix A = ( ∂fi∂uj
)Ni,j=1 is

defined non-negatively, i.e.

N∑
i,j=1

∂fi
∂uj

(u)ξiξj ≥ 0 ∀ ξ = (ξ1, . . . , ξN ), u = (u1, . . . , uN ) ∈ RN .

As the examples show, if the conditions imposed on the nonlinear vector function f are violated,
then the problem (1), (2) may not have a solution. For example, if

fi(u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N,

where constant numbers aij , βij and bi satisfy inequalities

aij > 0, 1 < βij <
n+ 1

n− 1
,

N∑
i=1

bi > 0,

then the condition (8) will be violated and the problem (1), (2) will not have a solution u ∈
◦
W 1

2,�(DT ) for F = µF o, where F o = (F o
1 , . . . , F

o
N ) ∈ L2(DT ), G =

N∑
i=1

F o
i ≤ 0; ∥G∥L2(DT ) ̸= 0 for

µ > µ0 = µ0(G, βij) = const > 0.
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1 Introduction
There are many approaches for investigation of control problems for differential equations and
inclusions, in particular, asymptotic methods are widely applied. It is worth to emphasize the
averaging method, for which M. M. Krylov and M. M. Bogolyubov proposed the strict mathematical
justification. In works of V. A. Plotnikov and works of his school (see, for example, [12]) there is the
strict justification of the averaging method in application to control problems. In monograph [13]
one ca find a justification of the averaging method, in particular, for ordinary differential inclusions,
partial differential inclusions, inclusions with Hukuhara derivative. In the paper [11] the time
averaging was performed firstly, where time is clearly included in the system, at that the control
function was considered a parameter and averaging was not performed on it. Moreover, the authors
had to impose a condition of asymptotic stability for the control function. In the paper [5] the
approach from [11] is applied to the solvability of the optimal control problem on finite interval,
but however, the rather strict condition of asymptotic stability is removed. In the paper [6] similar
results to [5] are obtained on semi-axis. In the paper [7] authors apply the averaging method
to solve the optimal control problem with fast-oscillating variables which is linear by control on
a finite interval; at that the system of differential inclusions with Lipschitz right-hand side by
phase variable. Optimal control problems on semi-axis in different perturbed problems are studied
in [3, 4, 8–11,14,15].

In this work we apply the averaging method to investigate the optimal control problem with fast
oscillating variables for the system of differential inclusions on semi-axis. In particular, we prove
the solvability of original problem as well as averaged problem using the direct method of calculus
of variations. We justify the convergence of optimal controls and optimal trajectories of solutions
of original problem to optimal control and optimal trajectory of solutions of averaged problem.
We show that optimal control of averaged problem is asymptotically optimal for the original exact
problem.

2 Statement of the problem and the main results
Let us consider an optimal control problem for the system of differential inclusions on semi-axis
with a small parameter and fast-oscillating coefficients

ẋ ∈ f
( t

ε
, x

)
+ f1(x)u(t), x(0, u(0)) = x0 (2.1)
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with the quality criterion

Jε[x, u] =

∞∫
0

(
e−jtA(t, xε(t)) + u2(t)

)
dt → inf . (2.2)

Here ε > 0 is a small parameter, j > 0 is a fixed constant that defines discount, x is a phase
vector in Rd, u(t) is m-measurable control vector which takes values in some set U ⊂ Rm.

Let there be an uniformly by x ∈ Rd averaged value for a multi-valued function

lim
s→∞

1

s

s∫
0

f(t, x) dt = f0(x), (2.3)

where the integral of multi-valued function we consider in the sense of Aumann [1], and the limit
of multi-valued function we consider in the sense of Hausdorf.

The optimal control problem on semi-axis (2.1), (2.2) is matched by the average control problem:

ẏ ∈ f0(y) + f1(y)u(t), y(0, u(0)) = x0 (2.4)

with the quality criterion

J0[x, u] =

∞∫
0

(
e−jtA(t, y(t)) + u2(t)

)
dt → inf . (2.5)

Let for the problem (2.1), (2.2) and the corresponding average problem (2.4), (2.5) the next
conditions are satisfied:

Condition 2.1. We consider m-measurable vector-functions u(·) ∈ L2([0,∞)), which takes values
in closed convex set U ⊂ Rm as admissible controls, and we consider that 0 ∈ U as well.

Condition 2.2. The function A(t, s) is defined for t ≥ 0, x ∈ Rd, u ∈ U , measurable by t and
continuous by x, at that

∃C > 0 : A(t, x) ≥ −C,

and satisfies the next growth condition by x ∈ Rd:

∃K > 0 : |A(t, x)| ≤ K
(
1 + |x|p

)
for each t ≥ 0 and x ∈ Rd, p ≥ 0.

Condition 2.3. The multi-valued function f(t, x) (f : Q = {t ≥ 0, x ∈ Rd} → conv(Rd)) is
defined and continuous in the Hausdorf metrics over the set of variables in Q, and matrix-valued
function f1(x) is continuous by x ∈ Rd and the next conditions are fulfilled:

(1) f(t, x) satisfies the linear growth condition by x with constants L1 and L2 in the domain Q,
namely,

∥f(t, x)∥+ := sup
ξ∈F (t,x)

∥ξ∥ ≤ L1 + L2|x| ∀(t, x) ∈ Q;

f1(x) satisfies the linear growth condition by x in the domain Rd with constants L3 and L4,
namely,

|f1(x)| ≤ L3 + L4|x|,

where
j > L2p; (2.6)
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(2) f(t, x) and f1(x) satisfy Lipschitz condition by x uniformly by t in the definition domain with
K1,K2 > 0, respectively.

Condition 2.4. The averaged value of multi-valued function f in the sense of limit (2.3) is a
single-valued continuous function.

Taking into account conditions for parameters of problem we can obtain the result concerning
solvability of problem (2.1), (2.2). Namely, we have the next

Lemma 1. Under Conditions 2.1, 2.2, 2.3 there exists a solution of the optimal control problem
(2.1), (2.2).

Taking into account the previous Lemma, we can obtain the similar result about the solvability
of the averaged problem (2.4), (2.5).

In the next result we show the convergence of optimal controls, optimal trajectories and optimal
values of quality criterion of the original problem (2.1), (2.2) to corresponding parameters of the
averaged problem (2.4), (2.5).

Theorem 1. Let (x∗ε(t), u
∗
ε(t)) be the solution of the problem (2.1), (2.2). Then for some solution

(y∗(t), u∗(t)) of problem (2.4), (2.5) we have:

(1) J∗
ε → J∗

0 , ε → 0 and J∗
ε = inf

x,u
∈ Ξ1Jε[x, u], J∗

0 = inf
(x,u)∈Ξ2

J0[x, u], Ξ1, Ξ2 are sets of admissible

pairs for problems (2.1), (2.2) and (2.4), (2.5), respectively.

(2) for each η > 0 there exists ε0 = ε0(η) such that 0 < ε < ε0 we have∣∣J∗
ε − J [x∗ε, u

∗]
∣∣ < η, (2.7)

where x∗ε is the solution of Cauchy problem (2.1);

(3) there exists a sequence εn → 0, n → ∞ such that

x∗εn → y(t) (2.8)

uniformly on each interval [0, T ] for any T > 0, and

u∗εn
w−→ u∗ (2.9)

weakly in L2([0,∞)).

If, moreover, there exists a unique solution of the averaged problem (2.4), (2.5), then the convergences
(2.8), (2.9) take place for all ε → 0.
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On a finite open interval ]a, b[ , we consider the linear differential equation

u′′′ = p(t)u+ q(t) (1)

with the boundary conditions

u(a+) = 0, u′(a+) = 0,

k∑
i=0

ℓiu
(i)(b−) = 0. (2)

Here
k ∈ {0, 1, 2}, ℓi ≥ 0 (i = 0, . . . , k), ℓk > 0,

while p and q : ]a, b[→ R are measurable functions such that

b∫
a

(t− a)2(b− t)2−k|p(t)| dt < +∞,

b∫
a

(t− a)(b− t)2−k|q(t)| dt < +∞. (3)

We are mainly interested in the case where the functions p and q have nonintegrable singularities
at the boundary points of the interval ]a, b[ , i.e. the case, where

b∫
a

(
|p(t)|+ |q(t)|

)
dt = +∞.

However, the results below on the unique solvability of problem (1), (2) are new also for the regular
case when the functions p and q are integrable on [a, b].

To formulate the above mentioned results, we need the following notation.

∆k(t) =

k∑
i=0

(b− t)2−i

(2− i)!
ℓi

/ k∑
i=0

(b− a)2−i

(2− i)!
ℓi,

gk(t, s) =


1

2

(
∆k(s)(t− a)2 − (t− s)2

)
for a ≤ s < t ≤ b,

1

2
∆k(s)(t− a)2 for a ≤ t ≤ s ≤ b,

r0(α) = 1, r1(α) =
ℓ0(b− a) + (α+ 3)ℓ1

ℓ0(b− a) + 2ℓ1
,
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r2(α) =
ℓ0(b− a)2 + (α+ 3)ℓ1(b− a) + (α+ 3)(α+ 2)ℓ2

ℓ0(b− a)2 + 2ℓ1(b− a) + 2ℓ2
,

pk(t;α) =
(α+ 1)(α+ 2)(α+ 3)

rk(α)(b− a)α+1 − (t− a)α+1
(t− a)α−2 for 0 < t < b, α > −1,

p−(t) ≡
(
|p(t)| − p(t)

)
/2.

In [1] it is stated that problem (1), (2) is uniquely solvable if and only if the homogeneous problem

u′′′ = p(t)u (10)

under the boundary conditions (2) has only a trivial solution. Based on this fact the following
theorem is proved.

Theorem. Let there exist a continuous function w : ]a, b[→ ]a, b[ such that along with (3) the
following conditions

sup

{ b∫
a

gk(t, s)

w(t)
w(s)p−(s) ds : a < t < b

}
< 1, (4)

lim inf
t→a

w(t)

(t− a)2
> 0, lim inf

t→b

w(t)

(b− t)mk
> 0 (5)

hold, where mk = (1− k + |1− k|)/2. Then problem (1), (2) has a unique solution.

Corollary 1. If for some α > −1 along with (3) the conditions

p(t) ≥ −pk(t;α) for a < t < b, (6)
mes

{
t ∈ ]a, b[ : p(t) > −pk(t;α)

}
> 0 (7)

hold, then problem (1), (2) has a unique solution.

Corollary 2. If along with (3) the condition

b∫
a

(t− a)2∆k(t)p−(t) dt < 2 (8)

holds, then problem (1), (2) has a unique solution.

Remark 1. In the above formulated theorem, inequality (4) is unimprovable and it cannot be
replaced by the nonstrict inequality

sup

{ b∫
a

gk(t, s)

w(t)
w(s)p−(s) ds : a < t < b

}
≤ 1. (9)

Indeed, if
p(t) ≡ −pk(t;α), w(t) ≡

(
rk(α)(b− a)α+1 − (b− t)α+1

)
(t− a)2,

where α > −1, then inequalities (5) are satisfied, while inequality (4) is violated instead of which
inequality (9) holds. On the other hand, in this case the homogeneous problem (10), (2) has a
nontrivial solution u(t) ≡ w(t) and, consequently, problem (1), (2) is not uniquely solvable no
matter how the function q is.
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Remark 2. The strict inequality (7) in Corollary 1 cannot be replaced by the nonstrict one since
if p(t) ≡ −pk(t;α), then the homogeneous problem (10), (2) has a nontrivial solution.

Remark 3. In the case, where k ∈ {1, 2}, the strict inequality (8) in Corollary 2 cannot be replaced
by the condition

b∫
a

(t− a)2∆k(t)p−(t) dt < 2 + ε (10)

no matter how small ε > 0 is. Indeed, if p(t) ≡ −pk(t;α) and α > 0 is so large that

rk(α) > 1 +
2

ε
,

then inequality (8) is violated but inequality (9) holds. On the other hand, as we already mentioned
above, in this case the homogeneous problem (10), (2) has a nontrivilal solution.

Particular cases of the boundary conditions (2) are the Dirichlet boundary conditions

u(a+) = 0, u′(a+) = 0, u(b−) = 0, (20)

and the Nicoletti boundary conditions

u(a+) = 0, u′(a+) = 0, u′(b−) = 0, (21)
u(a+) = 0, u′(a+) = 0, u′′(b−) = 0. (22)

For problem (1), (2k) (k = 0, 1, 2), a pair of conditions (6), (7) has one of the following three forms:

p(t) ≥ − (α+ 1)(α+ 2)(α+ 3)

(b− a)α+1 − (t− a)α+1
(t− a)α−2 for a < t < b, (60)

mes
{
t ∈ ]a, b[ : (t− a)2−αp(t) > − (α+ 1)(α+ 2)(α+ 3)

(b− a)α+1 − (t− a)α+1

}
> 0; (70)

p(t) ≥ − 2(α+ 1)(α+ 2)(α+ 3)

(α+ 3)(b− a)α+1 − 2(t− a)α+1
(t− a)α−2 for a < t < b, (61)

mes
{
t ∈ ]a, b[ : (t− a)2−αp(t) > − 2(α+ 1)(α+ 2)(α+ 3)

(α+ 3)(b− a)α+1 − 2(t− a)α+1

}
> 0; (71)

p(t) ≥ − 2(α+ 1)(α+ 2)(α+ 3)

(α+ 2)(α+ 3)(b− a)α+1 − 2(t− a)α+1
(t− a)α−2 for a < t < b, (62)

mes
{
t ∈ ]a, b[ : (t− a)2−αp(t) > − 2(α+ 1)(α+ 2)(α+ 3)

(α+ 2)(α+ 3)(b− a)α+1 − 2(t− a)α+1

}
> 0. (72)

Corollary 3. Let for some k ∈ {0, 1, 2} along with (3) conditions (6k) and (7k) be satisfied. Then
problem (1), (2k) has a unique solution.

Corollary 4. If for some k ∈ {0, 1, 2} along with (3) the condition

b∫
a

(t− a)2(b− t)2−kp−(t) dt < 2(b− a)2−k (11)

is satisfied, then problem (1), (2k) has a unique solution.
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Remark 4. The strict inequality (7k) in Corollary 3 cannot be replaced by the nonstrict one, while
inequality (11) in Corollary 4 for some k ∈ {1, 2} cannot be replaced by the inequality

b∫
a

(t− a)2(b− t)2−kp−(t) dt < (2 + ε)(b− a)2−k

no matter how small ε > 0 is.
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In the present report, we give necessary and sufficient conditions for the nonoscillation and
strong nonoscillation of second order singular linear homogeneous differential equations. These
results are new for differential equations with continuous coefficients as well and generalize the
classical results by Lyapunov [6], Hartman and Wintner [2], and Vallée Poussin [7]. They also
generalize the theorems on the nonoscillation of singular differential equations given in the papers
[1, 3, 5] and in our report [4].

On a finite open interval ]a, b[ , we consider the differential equation

u′′(t) = p1(t)u(t) + p2(t)u
′(t), (1)

where p1, p2 : ]a, b[→ R are measurable functions, satisfying one of the following three conditions:

b∫
a

(
(t− a)|p1(t)|+ |p2(t)|

)
dt < +∞, (21)

b∫
a

(
(b− t)|p1(t)|+ |p2(t)|

)
dt < +∞, (22)

b∫
a

(
(t− a)(b− t)|p1(t)|+ |p2(t)|

)
dt < +∞. (3)

We do not exclude the case, where
b∫

a

|p1(t)| dt = +∞,

i.e. the case when the function p1 has nonintegrable singularity at least at one of the boundary
points of the interval ]a, b[ . In such case equation (1) is said to be singular.

A continuously differentiable function u : ]a, b[→ R is said to be a solution to equation (1) if
its first derivative is absolutely continuous on every closed interval contained in ]a, b[ and equation
(1) is satisfied almost everywhere in ]a, b[ .
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We assume that the values of a solution to equation (1) and its derivative at the points a and
b are the corresponding one-sided limits of those functions if such limits exist.

It is well-known [5] that if condition (3) is satisfied, then any solution to equation (1) has finite
right and left limits at the points a and b, and if the right limit (the left limit) of this solution is
zero at the point a (at the point b), then its first derivative has a finite right (left) limit at the
point a (at the point b).

Definition 1. Equation (1) is said to be nonoscillatory on the interval [a, b] if its every solution
has no more than one zero on that interval.

Definition 2. Equation (1) is said to be strongly nonoscillatory from the right (strongly
nonoscillatory from the left) on the interval [a, b] if for any t0 ∈ [a, b[ (for any t0 ∈ ]a, b]), an
arbitrary nontrivial solution u to equation (1), satisfying the condition

u(t0) = 0,

satisfies also the inequality

u′(t) ̸= 0 for t0 < t ≤ b
(
u′(t) ̸= 0 for a ≤ t < t0

)
.

We use the following notation.

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
for x ∈ R.

If w : ]a, b[→ R is a differentiable function, then

h1(p1, p2, w)(t) = [p1(t)]−w(t) + [p2(t)]−w
′(t),

h2(p1, p2, w)(t) = [p1(t)]−w(t)− [p2(t)]+w
′(t).

Theorem 11. Let condition (21) hold and let there exist a continuously differentiable function
w : [a, b] → [0,+∞[ such that

w(a) = 0, w′(t) > 0,

b∫
t

h1(p1, p2, w)(s) ds ≤ w′(t) for a ≤ t < b, (41)

lim sup
t→b

b∫
t

h1(p1, p2, w)(s)

w′(t)
ds < 1. (51)

Then the differential equation (1) is strongly nonoscillatory from the right on [a, b].
Theorem 12. Let condition (22) hold and let there exist a continuously differentiable function
w : [a, b] → [0,+∞[ such that

w(b) = 0, w′(t) < 0,

t∫
a

h2(p1, p2, w)(s) ds ≤ |w′(t)| for a < t ≤ b, (42)

lim sup
t→a

t∫
a

h2(p1, p2, w)(s)

|w′(t)|
ds < 1. (52)

Then the differential equation (1) is strongly nonoscillatory from the left on [a, b].
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Theorem 21. Let along with condition (21) the condition

p1(t) ≤ 0, p2(t) ≤ 0 for a < t < b (61)

hold. Then for the differential equation (1) to be strongly nonoscillatory from the right on [a, b],
necessary and sufficient is the existence of such a continuously differentiable function w : [a, b] →
[0,+∞[ , which satisfies conditions (41) and (51).
Theorem 22. Let along with condition (22) the condition

p1(t) ≤ 0, p2(t) ≥ 0 for a < t < b (62)

hold. Then for the differential equation (1) to be strongly nonoscillatory from the left on [a, b],
necessary and sufficient is the existence of such a continuously differentiable function w : [a, b] →
[0,+∞[ , which satisfies conditions (42) and (52).

Theorems 11 and 12 yield unimprovable effective conditions guaranteeing the strong nonoscil-
lation from the right and left of the differential equation (1) on the interval [a, b]. Namely, the
following statements are valid.
Corollary 11. Let along with condition (21) one of the following three conditions hold:

b∫
a

(
(t− a)[p1(t)]− + [p2(t)]−

)
dt ≤ 1, (71)

p1(t) ≥ − λ1(t− a)α

(α+ 3)(b− a)α+2 − (t− a)α+2
, p2(t) ≥ −λ2(t− a)α+1 for a < t < b, (81)

p1(t) ≥ −ℓ1, p2(t) ≥ −ℓ2 for a < t < b, (91)

where α > −2, while λi and ℓi (i = 1, 2) are nonnegative constants such that

λ1

α+ 3
+ (b− a)α+2λ2 < α+ 2, (10)

+∞∫
0

dx

ℓ1 + ℓ2x+ x2
> b− a. (11)

Then the differential equation (1) is strongly nonoscillatory from the right on [a, b].
Corollary 12. Let along with condition (22) one of the following three conditions hold:

b∫
a

(
(b− t)[p1(t)]− + [p2(t)]+

)
dt ≤ 1, (72)

p1(t) ≥ − λ1(b− t)α

(α+ 3)(b− a)α+2 − (b− t)α+2
, p2(t) ≤ λ2(b− t)α+2 for a < t < b, (82)

p1(t) ≥ −ℓ1, p2(t) ≤ ℓ2 for a < t < b, (92)

where α > −2, while λi and ℓi (i = 1, 2) are nonnegative constants satisfying inequalities (10) and
(11). Then the differential equation (1) is strongly nonoscillatory from the left on [a, b].

Remark 1. In the right-hand sides of inequalities (71) and (72), 1 cannot be replaced by 1 + ε
no matter how small ε > 0 is, and the strict inequalities (10) and (11) cannot be replaced by the
non-strict ones.
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Theorem 3. Let condition (3) hold and there exist a number t0 ∈ ]a, b[ and continuously differen-
tiable functions w1 : [a, t0] → [0,+∞[ , w2 : [t0, b] → [0,+∞[ such that

w1(a) = 0, w′
1(t) > 0,

t0∫
t

h1(p1, p2, w1)(s) ds ≤ w′
1(t) for a ≤ t < t0, (12)

w2(b) = 0, w′
2(t) < 0,

t∫
t0

h2(p1, p2, w2)(s) ds < |w′
2(t)| for t0 < t ≤ b, (13)

lim sup
t→t0

t0∫
t

h1(p1, p2, w1)(s)

w′
1(t)

ds+ lim sup
t→t0

t∫
t0

h2(p1, p2, w2)(s)

|w′
2(t)|

ds < 2. (14)

Then the differential equation (1) is nonoscillatory on [a, b].

Theorem 4. If

p1(t) ≤ 0, p2(t) = 0 for a < t < b,

b∫
a

(t− a)|p1(t)| dt < +∞,

then for the differential equation (1) to be nonoscillatory on [a, b], necessary and sufficient is the
existence of such a number t0 ∈ ]a, b[ and continuously differentiable functions w1 : [a, t0] → [0,+∞[ ,
w2 : [t0, b] → [0,+∞[ , which satisfy conditions (12)–(14).

Corollary 2. Let along with inequality (3), for some t0 ∈ ]a, b[ one of the following three conditions
hold:

t0∫
a

(
(t− a)[p1(t)]− + [p2(t)]−

)
dt ≤ 1,

b∫
t0

(
(b− t)[p1(t)]− + [p2(t)]+

)
dt ≤ 1, (15)

p1(t) ≥ − λ11

(2t0 − a− t)(t− a)
, p2(t) ≥ −λ12 for a < t < t0,

p1(t) ≥ − λ21

(b+ t− 2t0)(b− t)
, p2(t) ≤ λ22 for t0 < t < b,

(16)

p1(t) ≥ −ℓ11, p2(t) ≥ −ℓ12 for a < t < t0, p1(t) ≥ −ℓ21, p2(t) ≤ ℓ22 for t0 < t < b, (17)

where λik and ℓik (i, k = 1, 2) are nonnegative constants such that

λ11 + 2(t0 − a)λ12 < 2, λ21 + 2(b− t0)λ22 < 2, (18)
+∞∫
0

dx

ℓ11 + ℓ12x+ x2
> t0 − a,

+∞∫
0

dx

ℓ21 + ℓ22x+ x2
> b− t0. (19)

Then the differential equation (1) is nonoscillatory on [a, b].

Remark 2. In the right-hand sides of inequalities (15), 1 cannot be replaced by 1 + ε no matter
how small ε > 0 is, and the strict inequalities (18) and (19) cannot be replaced by the non-strict
ones.
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If
b∫

a

(
(t− a)(b− t)

b− a
[p1(t)]− + |p2(t)|

)
dt ≤ 1, (20)

then there exists t0 ∈ ]a, b[ such that inequalities (15) are satisfied.
On the other hand, it is obvious that if for some nonnegative constants ℓ1 and ℓ2 the inequalities

p1(t) ≥ −ℓ1, |p2(t)| ≤ ℓ2 for a < t < b, (21)
+∞∫
0

dx

ℓ1 + ℓ2x+ x2
> (b− a)/2 (22)

are satisfied, then inequalities (17) and (19) hold as well, where ℓ11 = ℓ21 = ℓ1, ℓ12 = ℓ22 = ℓ2,
t0 = (a+ b)/2. Therefore, the following statements are valid.
Corollary 3. If

b∫
a

(t− a)(b− t)|p1(t)| dt < +∞ (23)

and inequality (20) holds, then the differential equation (1) is nonoscillatory on [a, b].
Corollary 4. Let there exist nonnegative constants ℓ1 and ℓ2 such that along with (23) conditions
(21) and (22) are satisfied. Then the differential equation (1) is nonoscillatory on [a, b].

In the case, where p1 and p2 are continuous on [a, b] functions, Corollary 3 implies the theorems
by Lyapunov [6] and Hartman–Wintner [2], while Corollary 4 yields the Vallée Poussin theorem [7].

References
[1] N. V. Gogiberidze and I. T. Kiguradze, Concerning nonoscillatory singular linear second order

differential equations. (Russian) Differ. Uravneniya 10 (1974), no. 11, 2064–2067; translation
in Differ. Equ. 10 (1974), 1598–1601.

[2] P. Hartman and A. Wintner, On an oscillation criterion of Liapounoff. Amer. J. Math. 73
(1951), 885–890.

[3] I. Kiguradze, Some optimal conditions for the solvability of two-point singular boundary value
problems. Funct. Differ. Equ. 10 (2003), no. 1-2, 259–281.

[4] I. Kiguradze and N. Partsvania, On a number of zeros of nontrivial solutions to second order
singular linear differential equations. Abstracts of the International Workshop on the Qualitative
Theory of Differential Equations – QUALITDE-2020, Tbilisi, Georgia, December 19-21, 2020,
pp. 113–116; http://rmi.tsu.ge/eng/QUALITDE-2020/workshop−2020.htm.

[5] I. T. Kiguradze and B. L. Shekhter, Singular boundary value problems for second-order ordi-
nary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2340–
2417. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Rus-
sian), 105–201, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow,
1987.

[6] A. M. Liapounoff, Sur one sárie relative à la théorie des équations differéntielles linéaires à
coefficient pèriodiques. C. R. Acad. Sci. Paris 123 (1896), 1248–1252.

[7] C. de la Vallée Poussin, Sur l’équation différentielle linéaire du second ordre. Détermination
d’une intégrale par deux valeurs assignées. Extension aux équations d’ordre n. J. Math. Pures
et Appl. 8 (1929), no. 2, 125–144.



114 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

On a Dirichlet Type
Boundary Value Problem in an Orthogonally Convex Cylinder

for a Class of Linear Partial Differential Equations

Tariel Kiguradze, Reemah Alhuzally
Florida Institute of Technology, Melbourne, USA

E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

Let Ω = (0, ω1)× (0, ω2)× (0, ω3) be an open rectangular box, and let

E =
{
(x1, x2, x3) ∈ Ω : (x1, x2) ∈ D, x3 ∈ (0, ω3)

}
be an orthogonally convex cylinder with a piecewise smooth base inscribed in Ω. In view of the
orthogonal convexity of the cylinder E, its base D admits the representations

D =
{
x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
.

In the domain E consider the boundary value problem

u(2) =
∑
α<2

pα(x)u
(α) + q(x), (1)

u(ηk(x2), x2, x3) = ψ1(ηk(x2), x2, x3), u(2,0,0)(x1, γk(x1), x3) = ψ2(x1, γk(x1), x3),

u(2,2,0)(x1, x2, (k − 1)ω3) = ψ3(x1, x2, (k − 1)ω3) (k = 1, 2). (2)

Here x = (x1, x2, x3), 2 = (2, 2, 2), α = (α1, α2, α3) is a multi-index, u(α)(x) = ∂α1+α2+α3u(x)

∂x
α1
1 ∂x

α2
2 ∂x

α3
3

,
pα ∈ C(E) (α < 2), q ∈ C(E), ψi ∈ C(E) (i = 1, 2, 3) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈ C2,2,2(E)
having continuous on E partial derivatives u(2,0,0) and u(2,2,0), and satisfying equation (1) and the
boundary conditions (2) everywhere in E and ∂E, respectively.

Throughout the paper the following notations will be used:
0 = (0, 0, 0), 1 = (1, 1, 1), αi = (0, . . . , αi, . . . , 0), αij = αi +αj .
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Ξ = {σ

∣∣ 0 < σ < 1}.
Υ2 =

{
α < 2 : αi = 2 for some i ∈ {1, 2, 3}

}
.

O2 =
{
α < 2 : ∥α∥ is odd

}
.

suppα = {i | αi > 0}.
xα = (χ(α1)x1, χ(α2)x2, χ(α3)x3), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0.
x̂α = x− xα.
xα will be identified with (xi1 , . . . , xil), where {i1, · · · il} = suppα. Furthermore, xα will be

identified with (xα, 0̂α), and x will be identified with (xα, x̂α), or with (xα,xα̂).
Ωσ = [0, ωi1 ]× · · · × [0, ωil ], where {i1, · · · il} = suppσ.
Ωij = (0, ωi)× (0, ωj) (1 ≤ i < j ≤ 3).
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Along with problem (1), (2) consider the corresponding homogeneous problem

u(2) =
∑
α<2

pα(x)u
(α), (10)

u(ηk(x2), x2, x3) = 0, u(2,0,0)(x1, γk(x1), x3) = 0, u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2). (20)

For each σ ∈ Ξ in the domain Ωσ consider the homogeneous boundary value problem depending
on the parameter xσ̂ ∈ Ωσ̂:

v(2,0,0) = p022(x1, x̂1)v + p122(x1, x̂1)v
(1,0,0), (1100)

v(η1(x2), x̂1) = 0, v(η2(x2), x̂1) = 0; (2100)

v(0,2,0) = p202(x2, x̂2)v + p212(x2, x̂2)v
(0,1,0), (1010)

v(γ1(x1), x̂2) = 0, v(γ2(x1), x̂2) = 0; (2010)

v(0,0,2) = p220(x3, x̂3)v + p221(x3, x̂3)v
(0,0,1), (1001)

v(0, x̂3) = 0, v(ω3, x̂3) = 0; (2001)

v(212) =
∑

α<212

pα+2̂12
(x12, x̂12)v

(α), (1110)

v(ηk(x2), x̂12) = 0, v(2,0,0)(γk(x1), x̂12) = 0 (k = 1, 2); (2110)

v(213) =
∑

α<213

pα+2̂13
(x13, x̂13)v

(α), (1101)

v(ηk(x2), x̂13) = 0, v(2,0,0)((k − 1)ω3, x̂13) = 0 (k = 1, 2); (2101)

v(223) =
∑

α<223

pα+2̂23
(x23, x̂23)v

(α), (1011)

v(γk(x1), x̂23) = 0, v(2,0,0)((k − 1)ω3, x̂23) = 0 (k = 1, 2). (2011)

Definition 1. Problem (1σ), (2σ) (σ ∈ Ξ) is called σ-associated problem of problem (1), (2).

Two-dimensional versions of problem (1), (2) were studied in [1], [2], where problems were
considered in orthogonally convex smooth domains.

Orthogonal convexity of a domain is essential and cannot be relaxed. Examples attesting the
paramount importance of the orthogonal convexity of a domain were introduced in Remarks 1 and
2 of [2]. Similar examples can be easily constructed for the three-dimensional case.

As follows from Remark 5 below, the C2 regularity of functions ηk (k = 1, 2) is essential for
solvability of problem (1), (2) in a classical sense. However, C2 regularity of functions ηk (k = 1, 2)
on the closed interval [0, ω2] is impossible for smooth domains. Therefore we study the case of a
piecewise smooth domain D separately from the case of a smooth domain D. Surprisingly, some
piecewise domains are better suited for the solvability of problem (1), (2), then domains with a C∞

boundary.
Set

D0,δ = [η1(0)− δ, η1(0) + δ]× [0, δ], E0,δ = D0,δ × [0, ω3],

Dω2,δ = [η1(ω2)− δ, η1(ω2) + δ]× [ω2 − δ, ω2], Eω2,δ = Dω2,δ × [0, ω3],

φ1k(x2, x3) = ψ1(ηk(x2), x2, x3), φ2k(x1, x3) = ψ2(x1, γk(x1), x3),

φ3k(x1, x2) = ψ3(x1, x2, (k − 1)ω3) (k = 1, 2). (3)
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Theorem 1. Let
ηk ∈ C2([0, ω2]) (k = 1, 2), (4)

pα ∈ C(E) (α < 2), q ∈ C(Ω), ψ1 ∈ C2,2,2(E), ψ2 ∈ C0,2,2(E), ψ1 ∈ C0,0,2(E), and let each
σ-associated problem (1σ), (2σ) have only the trivial solution for every xσ̂ ∈ Ωσ̂ (σ ∈ Ξ). Then
problem (1), (2) has the Fredholm property, i.e.:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) if problem (10), (20) has only the trivial solution, then problem (1), (2) is uniquely solvable,
its solution belongs to C2,2,2(E) and admits the estimate

∥u∥C2,2,2(E) ≤M

(
∥q∥C(E) +

2∑
k=1

(
∥φ1k∥C2,2(Ω2,3)

+ ∥φ2k∥C0,2(Ω1,3)
+ ∥φ3k∥C(D)

))
, (5)

where M is a positive constant independent of φ1k, φ2k, φ3k (k = 1, 2) and q.

Theorem 2. Let

γk ∈ C2((0, ω1)), ηk ∈ C2((0, ω2)) (k = 1, 2), (6)
pα ∈ C0,2,0(E) (α2 = 2, α < 2), (7)

pα ∈ C(E) (α < 2), q ∈ C(Ω), ψ1 ∈ C2,2,2(E), ψ2 ∈ C0,2,2(E), ψ1 ∈ C0,0,2(E), and let each
σ-associated problem (1σ), (2σ) have only the trivial solution for every xσ̂ ∈ Ωσ̂ (σ ∈ Ξ). Then
problem (1), (2) has the Fredholm property, i.e.: xσ̂ ∈ Ωσ̂ (σ ∈ Ξ). Then problem (1), (2) has the
Fredholm property, i.e.:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) if problem (10), (20) has only the trivial solution, then problem (1), (2) is uniquely solvable,
its solution belongs to C2,2,2(E) and admits the estimate

∥u∥C(E) + ∥u(2,0,0)∥C(E) + ∥u(2,0,2)∥C(E)

≤M

(
∥q∥C(E) +

2∑
k=1

(
∥φ1k∥C0,2(Ω2,3)

+ ∥φ2k∥C0,2(Ω1,3)
+ ∥φ3k∥C(D)

))
, (8)

where M is a positive constant independent of φ1k, φ2k, φ3k (k = 1, 2) and q.

Furthermore, if:

(F1) D is strongly convex near the points (η1(0), 0) and η2(ω2, ω2), i.e.

γ′′1 (η1(0)) > 0 and γ′′2 (η2(ω2)) < 0; (9)

(F2) γ1 ∈ C5([η1(0)− δ, η1(0) + δ]) and γ2 ∈ C5([η1(ω2)− δ, η1(ω2) + δ]) for some δ > 0;

(F3) ψ1 ∈ C5,0,0(E0,δ ∪ Eω2,δ) for some δ > 0;

(F4) ψ2 ∈ C1,0,0(E0,δ ∪ Eω2,δ) for some δ > 0;

(F5) ψ3 ∈ C3,0,0(D0,δ ∪Dω2,δ) for some δ > 0;

(F6) pα (α < 2), q ∈ C3,0,0(E0,δ ∪ Eω2,δ) for some δ > 0,
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then every solution of problem (1), (2) belongs to C2,2,2(E).

Consider the equation

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2) + p022(x1)u
(0,2,2)

+ p200(x2, x3)u
(2,0,0) + p020(x1, x3)u

(0,2,0) + p002(x1, x2)u
(0,0,2)

+ p201(x2)u
(2,0,1) + p102(x2)u

(1,0,2) + p021(x1)u
(0,2,1) + p012(x1)u

(0,1,2)

+ p111u
(1,1,1) + p100(x2, x3)u

(1,0,0) + p010(x1, x3)u
(0,1,0) + p001(x1, x2)u

(0,0,1)

+ p000(x1, x2, x3)u+ q(x1, x2, x3). (10)

Theorem 3. Let condition (4) hold, let the domain D be convex, i.e.

(−1)k−1η′′k(x2) ≥ 0 for x2 ∈ (0, ω2) (k = 1, 2), (11)

and let

p220(x3) ≥ 0, p202(x2) ≥ 0, p022(x1) ≥ 0, (12)
p200(x2, x3) ≤ 0, p020(x1, x3) ≤ 0, p002(x1, x2) ≤ 0, (13)

p000(x1, x2, x3) ≥ 0. (14)

Then problem (10), (2) is uniquely solvable, and its solution admits estimate (5).

Theorem 4. Let conditions (6) and inequalities (11)–(14) hold. Then problem (10), (2) is uniquely
solvable, its solution belongs to C2,2,2(Ω) and admits estimate (8).
Furthermore, if conditions (F1)−(F6) hold, then the solution of problem (1), (2) belongs to C2,2,2(E).

Remark 1. Condition (F1) on the strong convexity of D is essential for the existence of a classical
solution of problem (1), (2), and it cannot be replaced by strict convexity. Indeed, consider the
problem

u(2,2,2) = 0, (15)
u(ηk(x2), x2, x3)=0; u(2,0,0)(x1, γk(x1), x3)=2x23; u(2,2,0)(x1, x2, (k − 1)ω3)=0 (k=1, 2) (16)

in the domain E = D × (0, ω3), where D = {(x1, x2) : (x1 − 1)4 + (x2 − 1)4 < 1}. It is clear that
D is strictly convex, but not strongly convex, since

γk(x1) = 1 + (−1)k 4
√

1− (x1 − 1)4 (k = 1, 2), γ′′k (x1) > 0 for x1 ∈ (0, 1) ∪ (1, 2),

and
γ′′k (1) = 0 (k = 1, 2).

As a result, the unique solution u(x) =
(
(x1 − 1)2 −

√
1− (x2 − 1)4

)
x23 of problem (15), (16)

does not belong to C2,2,2(E) since u(0,1,2) is discontinuous along the rectangle x2 = 1, (x1, x3) ∈
[0, 2]× [0, ω3].

Remark 2. Consider the problem
u(2,2,2) = 0, (17)

u(ηk(x2), x2, x3) = ψ1(ηk(x2), x2, x3); u(2,0,0)(x1, γk(x1), x3) = 0;

u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2) (18)
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in the domain E = D × (0, ω3), where D = {(x1, x2) : (x1 − 1)2 + (x2 − 1)2 < 1}, and

ψ1(x1, x2, x3) =

{
0 for 0 ≤ x1 ≤ 1

(x1 − 1)4+α for 1 ≤ x1 ≤ 2
.

It is clear that D is strongly convex domain with the C∞ boundary, and ψ1 ∈ C4(E) but
ψ1 ̸∈ C5(E) if α ∈ [0, 1). As a result, the unique solution of problem (17), (18)

u(x) =
x1 − η2(x2)

η1(x2)− η2(x2)
ψ1

(
1 +

√
1− (x2 − 1)2

)
=

√
1− (x2 − 1)2 − x1

2

(
1− (x2 − 1)2

)2+α−1
2

does not belong to C2,2,2(E) since u(0,2,0) and u(1,2,0) are discontinuous along the line segments
(1, 0, x3) and (1, 2, x3), x3 ∈ [0, ω3].

Remark 3. Consider the problem

u(2,2,2) = 0, (19)
u(ηk(x2), x2, x3)= 0; u(2,0,0)(x1, γk(x1), x3) = x23; u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2) (20)

in the domain E = D× (0, ω3), where D is a strongly convex C2 domain inscribed in the rectangle
[0, 2]× [0, 1] such that

γ2(x1) = 1− (x1 − 1)2 + |x1 − 1|4+α for 1

2
< x1 <

3

2
.

It is clear that if α ∈ [0, 1), then γ2 ∈ C4([1 − δ, 1 + δ]) but γ2 ̸∈ C5([1 − δ, 1 + δ]) for any δ > 0.
Also,

η1(x2) = 1 + (1− x2)
1
2

(
1 + c (1− x2)

2+α
2 + o((1− x2)

3
2 )
)

for x2 ∈ [1− δ, 1],

η1(x2) = 1− (1− x2)
1
2

(
1− c (1− x2)

2+α
2 + o((1− x2)

3
2 )
)

for x2 ∈ [1− δ, 1]

for some δ > 0, where c is a nonzero constant. As a result, problem (19), (20) has a unique solution

u(x) = (x1 − η1(x2))(x2 − η1(x2)) = x2 − x(η1(x2) + η2(x2))− η1(x2)η2(x2),

which does not belong to C2,2,2(E) since u(0,2,0) and u(1,2,0) are discontinuous along the line segment
(1, 1, x3), x3 ∈ [0, ω3].

Remark 4. Consider the problem

u(2,2,2) = 2|x1 − 1|α sgn(x1 − 1), (21)

u(ηk(x2), x2, x3) = 0 u(2,0,0)(x1, γk(x1), x3) = |x1 − 1|α sgn(x1 − 1)x3(x3 − ω3);

u(2,2,0)(x1, x2, (k − 1)ω3) = 0 (k = 1, 2) (22)

in the domain E = D× (0, ω3), where D is a strongly convex C2 domain inscribed in the rectangle
[0, 2]× [0, 1] such that

γ2(x1) = 1− (x1 − 1)2 for 1

2
< x1 <

3

2
.

It is clear that if α ∈ (2, 3), then ψ2(x1, x2, x3) = |x1|α sgnx1x3(x3 − ω3) ∈ C1,0,0(Eω2,δ ∪Eω2,δ) for
some δ > 0. Thus conditions (F1)− (F5) hold, while condition (F6) is violated.
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As a result, problem (21), (22) has a unique solution

u(x) =
|x1 − 1|2+α sgn(x1 − 1)− (x1 − 1)(1− x2)

1+α
2

(1 + α)(2 + α)
x3(x3 − ω2) for 1

2
< x1 <

3

2
,

which does not belong to C2,2,2(E) since u(0,2,0) and u(1,2,0) are discontinuous along the line segment
(1, 1, x3), x3 ∈ (0, ω3).

Remark 5. As we see, the functions γk (k = 1, 2) can be piecewise smooth: γk may be nondiffer-
entiable at points η1((k − 1)ω2) and η2((k − 1)ω2) (if they differ) (k = 1, 2). On the other hand,
C2 smoothness of the functions ηk is essential and cannot be relaxed. Indeed, let α ∈ (1, 2) be an
arbitrary number,

ηk(x2) = 1 + (−1)k
√
1−

∣∣∣x2 − 1

2

∣∣∣α (k = 1, 2),

and let u be a solution of the problem

u(2,2,2) = 0, (23)
u(ηk(x2), x2, x3)=0; u(2,0,0)(x1, γk(x1), x3)=x

2
3; u(2,2,0)(x1, x2, (k − 1)ω3)=0 (k = 1, 2). (24)

Then
u(0,0,2)(x1, x2, x3) = x21 − 2x1 + |x2 − 1|α.

Consequently, u(0,1,2)(x1, x2, x3) is continuous on E, however u(0,2,2)(x1, x2, x3) is discontinuous
along the line segment 0 ≤ x1 ≤ 2, x2 = 1 since α ∈ (1, 2). Thus, problem (23), (24) is not solvable
in a classical sense due to the fact that the functions ηk are not twice differentiable at x2 = 1.
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The purpose of the present study is to develop a Machine Learning (ML) approach to the
solution of the partial differential equations (PDEs). Due to this being our first attempt in this
direction, in this note, we consider the simple heat equation.

In the domain Ω = (0, 1) × (0, T ), T = const > 0, let us consider the initial-boundary value
problem for the heat equation:

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t), (x, t) ∈ Ω,

U(−1, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [−1, 1],

(1)

where a is a positive constant and U0 is a given function.
Our aim is to find the approximate solution u(t, x) at t > 0 of problem (1). Introducing the

uniform grid for the time variable tn = τ · n, τ = T/N and applying Euler scheme, we get

un(x) = un−1(x) + aτ
d2un−1(x)

dx2
+ τfn(x), n = 1, . . . , N, (2)

where N is a positive integer and un(x) = u(tn, x).
Although there are many methods for solving, even more, complex PDEs (see, for example, [2,3]

and the references therein), our purpose, as we already mentioned, is to apply one of the well-known
ML methods for solving problem (1). In particular, our goal is to design the Gaussian Process
(GP) [6, 9] for the heat equation to predict the solution [7, 8].

The GP is an extension of Multivariate Gaussian Distribution. In turn, the multivariate Gaus-
sian distribution is a generalization of the one-dimensional normal distribution to higher dimensions.
For example, if there are inputs from two-dimensional space, then for any cross-section over the
fixed one-dimensional input we get Gaussian distribution along each axis (see, Figure 1).

Probability density function (pdf) in two-dimensional space is given as follows:

pdf(x, y) =
1

2πσxσy
e
− (x−µx)2

2σ2
x

− (y−µy)2

2σ2
y .

In general, the pdf of the Multivariate Gaussian distribution in d dimensions is defined by the
following formula:

pdf(x) = 1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ),

where µ = (µ1, µ2, . . . , µd) is mean vector of x = (x1, x2, . . . , xd) and Σ−1 is the inverse of the
d× d positively defined covariance matrix Σ = cov[x], which is constructed by one of the so-called
covariance functions [6, 9].
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Figure 1. 2D multivariate Gaussian distribution and its cross-section projections.

GP presents one of the most important ML approaches based on a particularly effective method
for placing a prior distribution over the space of functions [1, 6, 9]. GP can serve as an effective
algorithm for function approximation. As an example let us consider samples from the GP, mean
function, and some observation points where the values of the approximated function are known.
Figures 2 depict 5 sample functions from the prior distribution over functions specified by a par-
ticular Gaussian with two (left) and four (right) observation points. Sample functions are plotted
as dashed lines, the mean function is shown as a black solid line, observed points represented as
red crosses, and the shaded region denotes uncertainty region. As it can be seen the uncertainty
region is narrowing when the number of observed points is increasing. The equations for obtaining
the mean function, which can be considered as the function approximation can be derived from the
Sherman–Morrison–Woodbury formula [1, 5, 6, 9].

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 2. Fife samples from Gaussian posterior (dashed) and its mean (solid black) with
the dataset of two and four points (red crosses). For colored figures, please refer to the
online version.

Coming back to problem (1), let us set GP prior on un−1 according to [6, 9]

un−1(x) ∼ GP(0, kn−1,n−1(x, x
′, θ)), (3)

where kn−1,n−1 is the kernel (covariance function) of the GP and θ represents the vector of the
hyper-parameters of the covariance function [6–9].

Note that there are many different types of covariance functions. In this study, the neural
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network covariance function is used [9]

k(x, x′, θ) =
2

π
sin−1

(
2(σ2

0 + σ2xx′)√
(1 + 2(σ2

0 + σ2x2))(1 + 2(σ2
0 + σ2x′2))

)
, (4)

where θ is two component hyper-parameter vector θ = (σ0, σ).
The hyper-parameter θ can be trained by applying the initial (x0, U0), boundary (xbn, u

b
n) and

already collected training data (xn−1, un−1) and Negative Log Marginal Likelihood resulting from
[7,8] [

ubn
ubn−1

]
∼ N (0,K),

where
K =

[
kn,n(x

b
n, x

b
n) kn,n−1(x

b
n, xn−1)

kn−1,n−1(xn−1, xn−1)

]
.

To predict approximation at new point x∗n, the following conditional distribution can be used

un(x
∗
n)|

[
ubn
un−1

]
∼ N

(
qTK−1

[
ubn
un−1

]
, kn,n(x

∗
n, x

∗
n)− qTK−1q

)
,

where
qT =

[
kn,n(x

∗
n, x

b
n) kn,n−1(x

∗
n, xn−1)

]
.

It is known that linear operations on GP give again GP and thus, taking into account the Euler
scheme (2) together with GP prior assumption (3) allows to conclude that un and un−1 are jointly
Gaussian with the following GP [4,6–9][

un
un−1

]
∼ GP

(
0,

[
kn,n kn,n−1

kn−1,n−1

])
,

where covariance functions are defined using the (4):

kn,n = k,

kn,n−1 = k − aτ
d2

dx′2
k − τfn(x

′),

kn−1,n−1 = k − aτ
d2

dx′2
k − τfn(x

′)− aτ
d2

dx2
k − τfn(x) + a2τ2

d2

dx2
d2

dx′2
k − aτ2fn(x

′).

For the test experiment we chouse the right-hand side of problem (1) in such a way that the
exact solution is U(x, t) = − exp(−0.01πt) sin(πx) with the initial solution U0(x) = − sin(πx).

Figures 3 show a pretty good agreement between numerical and exact solutions for different
time values.

In the end, let us note that our future work is aimed to apply the mentioned methodology to
the PDEs with nonlinear diffusion coefficients as well as for the spatial multi-dimensional cases.
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Figure 3. Exact and Numerical solutions at t = 0.4 and 1.
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1 Introduction
Consider solutions to the third order differential equation with general power-law nonlinearities

y′′′ + p(x, y, y′, y′′)|y|k0 |y′|k1 · · · |y′′|k2 sgn(yy′y′′) = 0, (1.1)

with positive real nonlinearity exponents k0, k1, k2 and positive continuous in x and Lipschitz
continuous in u0, u1, u2 bounded function p(u0, u1, u2).

The results on qualitative behavior and asymptotic estimates of positive increasing solutions for
higher order nonlinear differential equations were obtained by I. T. Kiguradze and T. A. Chanturia
in [9]. Questions on qualitative and asymptotic behavior of solutions to higher order Emden–Fowler
differential equations (k1 = · · · = kn−1 = 0) were studied by I. V. Astashova in [1, 2, 5, 6].

Equation (1.1) in the case k0 > 0, k0 ̸= 1, k1 = k2 = 0, was studied by I. Astashova in [2,
Chapters 6–8]. In particular, asymptotic classification of solutions to such equations was given
in [4, 6], and proved in [3]. For third order and higher order differential equations, nonlinear with
respect to derivatives of solutions, the asymptotic behavior of certain types of solutions was studied
by V. M. Evtukhov, A. M. Klopot in [7, 8]. Qualitative properties of solutions to (1.1) in the case
p(x, y, y′, y′′) < 0 were studied in [10].

2 Main results
Since solutions to equation (1.1) are not always unique, in order to obtain the full classification the
following notion of µ-solutions is used.

Definition ([1]). A solution y : (a, b) → R, −∞ ≤ a < b ≤ +∞ to an ordinary differential equation
is a µ-solution, if

(1) the equation has no other solutions equal to y on some subinterval (a, b) and not equal to y
at some point in (a, b);

(2) the equation either has no solution equal to y on (a, b) and defined on another interval
containing (a, b) or has at least two such solutions which differ from each other at points
arbitrary close to the boundary of (a, b).

Theorem 2.1. Let the function p(u0, u1, u2) be continuous, Lipschitz continuous in u0, u1, u2 and
satisfying the inequalities 0 < m ≤ p(u0, u1, u2) ≤ M . Then any µ-solution y(x) to equation (1.1)
according to its qualitative behavior belongs to one of the following types:

(1) constant function y(x) ≡ y0;
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(2) linear function y(x) = ax+ b, a ̸= 0;

(3) function with exactly one extremum.

Remark. Let the function p(u0, u1, u2) be continuous, Lipschitz continuous in u0, u1, u2 and
satisfying the inequalities 0 < m ≤ p(x, u, v, w) ≤ M . Then the replacemenets x 7→ −x and
y(x) 7→ −y(x) reduce equation (1.1) to the equation

z′′′ + p̃(x, z, z′, z′′)|z|k0 |z′|k1 |z′′|k2 sgn(zz′z′′) = 0,

with the function p̃(u0, u1, u2) also continuous, Lipschitz continuous in u0, u1, u2 and satisfying the
inequalities 0 < m ≤ p(u0, u1, u2) ≤ M .

Thus, it is sufficient to consider the behavior of the solutions with positive initial data near the
right boundaries of their domains. In the case of a constant potential p(u0, u1, u2) the following
results of the behavior of solutions was obtained.

Theorem 2.2. Let k2 − k0 ̸= 2 and p(u0, u1, u2) ≡ p0 > 0. Then any µ-solution y(x) to (1.1),
satisfying at some point x0 the conditions y(x0) ≥ 0, y′(x0) ≥ 0, y′′(x0) > 0 has the following
behavior near the right boundary of its domain:

(1) if 0 < k2 ≤ 1, then there exists x∗ < +∞ such that y(x), y′(x) → const, y′′(x) → 0 as
x → x∗ − 0;

(2) if 1 < k2 ≤ 2, then y(x) → +∞, y′(x) → const, y′′(x) → 0 as x → +∞;

(3) if 2 < k2 < 2 + k0, then y(x) → +∞, y′(x) → const, y′′(x) → 0 as x → +∞ or y(x),
y′(x) → +∞, y′′(x) → 0 as x → +∞;

(4) if k2 > 2 + k0, then y(x), y′(x) → +∞, y′′(x) → 0 as x → +∞.
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Consider a linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous and bounded coefficient matrix A such that

∥A(t)∥ ≤ M < +∞ for all t ≥ 0.

We denote the Cauchy matrix of (1) by XA and the highest Lyapunov exponent of (1) by λn(A).
Together with system (1) consider a perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with piecewise continuous and bounded perturbation matrix Q such that

∥Q(t)∥ ≤ NQ exp(−σt), t ≥ 0. (3)

Denote the higher exponent of (2) by λn(A+Q).
Let Mσ(A) be the set of all perturbations Q satisfying condition (3) and having the appropriate

dimensions. Any Q ∈ Mσ is said to be a sigma-perturbation and the number

∇σ(A) := sup
{
λn(A+Q) : Q ∈ Mσ(A)

}
is called [4], [6, p. 225], [5, p. 214] the highest sigma-exponent or the Izobov exponent of system
(1). It was proved in [4] that the Izobov exponent can be evaluated by means of the following
algorithm:

∇σ(A) = lim
m→∞

ξm(σ)

m
ξm(σ) = max

i<m

(
ln ∥XA(m, i)∥+ ξi(σ)− σi

)
, ξ1 = 0, i ∈ N.

It was proved in [1, 7] that ∇σ(A) is a convex monotonically decreasing function on [0,+∞[ such
that

∇σ(A) = λn(A) for all σ > σ0(A),

where 2M ≥ σ0(A) ≥ 0 is a critical value of σ for system (1).
Some alternative representation for ∇σ(A) was given in [10]. Let D(m) be the set of all nonempty

d ⊂ {1, . . . ,m− 1} ⊂ N. Further we assume that for each d ∈ D(m) the elements of d are arranged
in the increasing order, so that d1 < d2 < · · · < ds and d = {d1, d2, . . . , ds}, where s = |d| is the
number of elements of the set d. We also put

∥d∥ := d1 + · · ·+ ds for d ∈ D(m)
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and
∥d∥ := 0 for d = ∅.

In addition, for the sake of convenience we assume that d0 = 0 and ds+1 = m for each d ∈ D0(m) :=
D(m)∪{∅}. Note that we do not include these additional elements into the set d. Under the above
assumptions, let us define the quantity Ξ(m, d) as

Ξ(m, d) :=
s∑

i=0

ln ∥XA(di+1, di)∥,

where m ∈ N, d ∈ D(m) and s := |d|. From [2,10] we can assert that

ξm(σ) = max
d∈D0(m)

(
Ξ(m, d)− σ∥d∥

)
.

Thus, we have
∇σ(A) = lim

m→∞
m−1 max

d∈D0(m)

(
Ξ(m, d)− σ∥d∥

)
. (4)

The main advantage of the ∇σ(A) is attainability. By virtue of this property we are sure that
for each ε > 0 there exists a perturbed system (2) with Q ∈ Mσ such that

λn(A+Q) > ∇σ(A)− ε.

When constructing perturbations Q to provide the values of λn(A+Q) close to ∇σ(A), we urgently
need to know some (or all) sequences d(m) ∈ D0(m), m ∈ N, such that

∇σ(A) = lim
m→∞

m−1
(
Ξ(m, d(m))− σ∥d(m)∥

)
. (5)

A primary information on this issue is given by the following statement (see Property A in [4] and
Lemma 9.1 in [5, p. 215]).

Proposition 1. If b ∈ D0(m) satisfies the condition

ξm(σ) = Ξ(m, b)− σ∥b∥,

then
bi+1 − bi ≥

σ

2M
bi for each i ∈ {1, . . . , s},

where b = {b1, . . . , bs}, s = |b|.

Based on the theory of characteristic vectors (see [3,8]) and some results on Malkin estimates [9]
we can assert that some information on the sequences d(m) in (5) can be extracted from the slopes
of supporting lines to the graph of ∇σ(A). Since the results of this type are not available yet,
here we consider some simplified version of the problem hoping to use it later to clarify the general
case. To this end, we limit the number of partition points di in (4) on each segment [0,m] by some
number k ∈ N.

Let Dk(m) ⊂ D(m), k ∈ N, be the set of all d ∈ D(m) such that |d| ≤ k. Let us also put
Dk

0(m) := Dk(m) ∪ {∅}.

Definition 1. The number

∇k
σ(A) = lim

m→∞
m−1 max

d∈Dk
0 (m)

(
Ξ(m, d)− σ∥d∥

)
is said to be the k-point approximation for ∇σ(A).
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The introduced concept inherits some basic properties of ∇σ(A).

Proposition 2. For each k ∈ N the following statements are valid.

(i) ∇σ(A) ≥ ∇k
σ(A) ≥ λn(A).

(ii) ∇k
σ(A) is a convex monotonically decreasing function on [0,+∞[ such that

∇σ(A) = λn(A) for all σ > σ0(A).

(iii) If b ∈ Dk
0(m) satisfies the condition

Ξ(m, b)− σ∥b∥ = max
d∈Dk

0 (m)

(
Ξ(m, d)− σ∥d∥

)
, (6)

then
σ∥b∥ ≤ 2Mm.

Note that (i) is an immediate consequence of Definition 1 and (iii) is a weakened analog of
Proposition 1.

For each σ > 0, let us denote the set of all b ∈ Dk
0(m) satisfying condition (6) by Bk

σ(m).
Obviously, Bk

σ(m) contains more then one element in general. Now take b ∈ Bk
σ(m) with maximal

and minimal value of m−1∥b∥ and denote them by τm and βm, respectively. Finally, put

Bσ(A) = lim
m→∞

βm, Tσ(A) = lim
m→∞

τm.

Recall that a supporting line to the graph of some convex function f : [0,+∞[→ R at a point
(s, f(s)), where s ∈ [0,+∞[, intersects the graph of the f at (s, f(s)) and lies beneath the graph
everywhere in the domain of the function f . If f is differentiable at s ∈ [0,+∞[, then there exists
a unique supporting line at (s, f(s)) and this line coincides with the tangent drawn at the same
point. We denote the set of slopes of supporting lines drawn at s ∈ [0,+∞[ to the graph of f by
Ss(f). It can be easily seen that each Ss(f) is a segment of the real axis.

Theorem. The set Sσ(∇k
σ(A)) coincides with the segment [Bσ(A),Tσ(A)].

A similar statement is supposed to be valid for the original sigma-exponent. However, it has
not yet been possible to find the reasonable representation for bounds of Sσ(∇σ(A)).
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1 Introduction

In the general case, the multipoint boundary value problem for a differential system

Lx = f (1.1)

considered on the segment [0, T ] is a problem with boundary conditions ℓx = β of the form

ℓx ≡
m∑
i=0

Λix(ti) = β,

where {ti}, 0 = t0 < t1 < · · · < tm−1 < tm = T , is a fixed collection of points from [0, T ], Λi,
i = 0, . . . ,m, are given (N×n)-matrices, β ∈ RN . Here we consider a special case of boundary con-
ditions that correspond to the interpolation problem as a problem of trajectories taking prescribed
values at the given points:

x(ti) = αi, i = 0, . . . ,m. (1.2)

The problem under consideration can be interpreted as a part of the routing problem (see, for
instance, [2]) namely as the task of implementing the route. Similar problems arise in Economic
Dynamics [4,6] where αi, i = 1, . . . ,m, are given values of indicators to a modeled economic system
at the time moments ti.

In the case with no constraints with respect to the right-hand side f , for any collection αi,
i = 0, . . . ,m, there exists f : [0, T ] → Rn that provides the solvability of (1.1), (1.2). In contrast
to this, if f is constrained by the inequalities

ai 6 fi(t) 6 bi, i = 1, . . . , n, t ∈ [0, T ], (1.3)

there arises the task to describe a set of αi, i = 0, . . . ,m, for which (1.1), (1.2) is solvable.
Below we propose a way of constructing a hypercube PN in RN , N = mn such that the condition

α = col(α1, . . . , αm) ∈ PN is a sufficient condition to the solvability of (1.1), (1.2) in the sense that
there exists an f with (1.3) such that the corresponding trajectory takes the values prescribed
by (1.2).

First we descript a class of functional differential equations with linear Volterra operators and
appropriate spaces where those are considered. The main relationships that allow to obtain suffi-
cient conditions of the solvability to the problem under consideration are proposed. An illustrative
example of application of the main theorem is presented.
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2 Main constructions

We consider a quite broad class of functional differential systems with aftereffect and follow the
notation and basic statements of the general functional differential theory in the part concerning
linear systems with aftereffect [1, 3].

Let Ln = Ln[0, T ] be the Lebesgue space of all summable functions z : [0, T ] → Rn defined on
a finite segment [0, T ] with the norm

∥z∥Ln =

T∫
0

|z(t)| dt,

where | · | is a norm in Rn. Denote by ACn = ACn[0, T ] the space of absolutely continuous
functions x : [0;T ] → Rn with the norm

∥x∥ACn = |x(0)|+ ∥ẋ∥Ln .

In what follows we will use some results from [1,3].
We consider the case of the system (1.1) with a linear bounded Volterra operator L : ACn → Ln

such that the general solution of the equation (1.1) has the form

x(t) = X(t)x(0) +

t∫
0

C(t, s)f(s) ds, (2.1)

where X(t) is the fundamental matrix to the homogeneous equation Lx = 0, C(t, s) is the Cauchy
matrix. A broad class of operators L with the property (2.1) is described, for instance, in [5].

The properties of the Cauchy matrix used below are studied in detail in [3]. Without loss of
generality we put in the sequel x(0) = α0 = 0 and ai < 0, bi > 0, i = 1, . . . , n.

Denote by En the identity (n × n)-matrix, ein stands for the i-th (from above) row of En. We
define

P0 =
n∏

i=1,...,n

[ai, bi].

Fix a positive integer K and put ∆ = T/K.
Let us describe the main steps and constructions on the way to sufficient solvability conditions

for (1.1), (1.2) with constraints (1.3).
Define (n×N)-matrix M(s) = col(M1(s), . . . ,Mm(s)) by the equalities

Mi(s) = χi(s)C(ti, s), i = 1, . . . ,m, (2.2)

where χi(s) is the characteristic function of the segment [0, ti].
For any i = 1, . . . , N and j = 1, . . . ,K consider the following two linear programming problems

eiNM(∆ · j)v → max, v ∈ P0 and eiNM(∆ · j)v → min, v ∈ P0. (2.3)

Denote by v+ij and v−ij solutions to the above problems, respectively,

v+ij = argmax
(
eiNM(∆ · j)v, v ∈ P0

)
and v−ij = argmin

(
eiNM(∆ · j)v, v ∈ P0

)
. (2.4)
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Next define

di = eiN

T∫
0

M(s)

K∑
j=1

v+ijχ[∆(j−1),∆j]
(s) ds, i = 1, . . . , N, (2.5)

ci = eiN

T∫
0

M(s)

K∑
j=1

v−ijχ[∆(j−1),∆j]
(s) ds, i = 1, . . . , N, (2.6)

Dk = diag(d1, . . . , dk), Ck = diag(c1, . . . , ck), k = 1, . . . , N. (2.7)

Introduce the following matrices:

A =

DN−1 0
CN−1 0
DN−1 0

 , Bi =

(
F i
N−1

dNeNN

)
, i = 1, . . . , 2(N − 1),

Bi =

(
F i
N−1

cNeNN

)
, i = 2(N − 1) + 1, . . . , 4(N − 1).

(2.8)

Here F i
N−1 is the i-th group of N −1 consecutive rows of matrix A. Each Bi gives a collection of N

points in RN that define the corresponding hyperplane and the corresponding halfspace with the
zero point. The intersection of all above hyperplanes is the polyhedron of all attainable points in
the considered interpolation problem. Now our task is to construct a hypercube that is a subset of
the polyhedron.

For each of 4(N − 1) mentioned hyperplanes we define the distance ρk from the hyperplane to
the origin. Namely, let

pk1z1 + pk2z2 + · · ·+ pkNzn + qk = 0

be the equation of the k-th hyperplane. Then we have

ρk =
|qk|√
N∑
i=1

(pki )
2

, k = 1, . . . , 4(N − 1). (2.9)

It is clear that the ball S(0, ρ) with the radius ρ = min(ρk, k = 1, . . . , 4(N − 1)) centered
by the origin is a subset of the polyhedron defined by the all above hyperplanes, and, for any
α = col(α1, . . . , αm) ∈ S(0, ρ), the problem (1.1), (1.2), (1.3) is solvable. Finally we define the cube

PN =

{
z ∈ RN : max |zi| 6

ρ√
N

, i = 1, . . . , N

}
.

Thus we obtain

Theorem. Let the set PN be defined by the relationships (2.2)–(2.9). Then the interpolation
problem (1.1), (1.2), (1.3) is solvable for any α ∈ PN .

3 An example
Following [5], consider the system

ẋ1(t) = x2(t− 1) + f1(t),

ẋ2(t) = −x2(t) + f2(t);
t ∈ [0, 3] (3.1)
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where x2(s) = 0 if s < 0, with the initial conditions

x1(0) = 0, x2(0) = 0, (3.2)

and the boundary conditions

x1(2) = α1, x2(2) = α2, x1(3) = α3, x2(3) = α4. (3.3)

The right-hand sides f1(t) and f2(t) are constrained by the inequalities

−0.1 6 f1(t) 6 0.4, −0.2 6 f2(t) 6 0.5. (3.4)

Here we have

C(t, s) =

1

t∫
s

χ
[1,3]

(τ)χ
[0,τ−1]

(s) exp(1− τ + s) dτ

0 exp(s− t)

 ,

After calculation the integral in C12 for t = 2 and t = 3 we obtain

C(2, s) =

1

{
1− es−1, s ∈ [0, 1]

0 otherwise
0 exp(s− 2)

 , C(3, s) =

1

{
1− es−2, s ∈ [0, 2]

0 otherwise
0 exp(s− 3)

 ,

The elements Mij(s) of M(s) are defined by the equalities

M11(s) = χ
[0,2]

(s), M12(s) = χ
[0,1]

(s)(1− e(s−1)), M21(s) = 0, M22(s) = χ
[0,2]

(s)e(s−2),

M31(s) = 1, M32(s) = χ
[0,2]

(s)(1− e(s−2)), M41(s) = 0, M42(s) = e(s−3).

For the case of K = 20, calculations by the rules (2.4), (2.5), (2.6) bring the values

d1 = 0.5116, d2 = 1.7360, d3 = 0.4393, d4 = 0.9409,

c1 = −0.2046, c2 = −0.5143, c3 = −0.1757, c4 = −0.2594.

Here and below all real values are displayed to four places of decimals.
For all of 12 hyperplanes the corresponding distances ρ1, . . . , ρ12 are as follows:

ρ1 = 0.3091, ρ2 = 0.1809, ρ3 = 0.1715, ρ4 = 0.1278, ρ5 = 0.1559, ρ6 = 0.1629,

ρ7 = 0.2033, ρ8 = 0.1503, ρ9 = 0.1447, ρ10 = 0.1155, ρ11 = 0.1350, ρ12 = 0.1394.

Thus ρ = 0.1155, and the inequality max{α1, . . . , α4} 6 0.0577 provides the solvability of (3.1)–
(3.4).
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1 Introduction
Here we consider the question of the disconjugacy on the interval I := [a, b] ⊂ [0,+∞[ of the fourth
order linear ordinary differential equation

u(4)(t) = p(t)u(t)− µu(t) for t ∈ I, (1.1)

when p : I → R is Lebesgue integrable function, µ ∈ R, and the question of the Green’s functions
sign for equation (1.1) under one of the following two-point boundary conditions

u(a) = 0, u(i)(b) = 0 (i = 0, 1, 2), (1.21)
u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (1.22)
u(i)(a) = 0 (i = 0, 1, 2), u(b) = 0. (1.23)

There are established the optimal sufficient conditions of disconjugacy of equation (1.1) when
the coefficient p is not necessarily constant sign function. On the basis of these results we prove the
necessary and sufficient conditions of non-negativity (non-positivity) of Green’s function for prob-
lems (1.1), (1.2ℓ) (ℓ ∈ {1, 2, 3}), which are formulated in a terminology of eigenvalues of problems
under the consideration.

Here we use the following notations.
R = ]−∞, +∞[ , R−

0 = ]−∞, 0] , R+
0 = [0, +∞[ .

C(I;R) is the Banach space of continuous functions u : I → R with the norm ∥u∥C =
max{|u(t)| : t ∈ I}.

C̃3(I;R) is the set of functions u : I → R which are absolutely continuous together with their
third derivatives.

L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm ∥p∥L =
b∫
a
|p(s)| ds.

For arbitrary x, y ∈ L(I; R), the notation

x(t) 4 y(t)
(
x(t) < y(t)

)
for t ∈ I,

means that x ≤ y (x ≥ y) and x ̸= y.
Also we use the notation [x]± = |x|±x

2 .
By a solution of equation (1.1) we understand a function u ∈ C̃3(I;R) which satisfies equation

(1.1) a.e. on I.
Also we need the following definition.
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Definition 1.1. Equation
u(4)(t) = p(t)u(t) (1.3)

is said to be disconjugate (non-oscillatory) on I, if every nontrivial solution u has less then four
zeros on I, the multiple zeros being counted according to their multiplicity. Otherwise we say that
equation (1.3) is oscillatory on I.

The given study is based on our previous results from the paper [3] and the results of A. Cabada
and R. Enguica from [1]. For the formulation of our main results we need the following definitions
and propositions from our previous paper.

Definition 1.2. We will say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and problem (1.3), (1.22) has a

solution u such that
u(t) > 0 for t ∈ ]a, b[ .

Definition 1.3. We will say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and problem (1.3), (1.23) has a

solution u such that
u(t) > 0 for t ∈ ]a, b[ .

The propositions below are Theorems 2, 4, and 6, respectively, from the paper [3].

Proposition 1.1. Let p ∈ L(I;R+
0 ). Then equation (1.3) is disconjugate on I iff there exists

p∗ ∈ D+(I) such that
p(t) 4 p∗(t) on I.

Proposition 1.2. Let p ∈ L(I;R−
0 ). Then equation (1.3) is disconjugate on I iff there exists

p∗ ∈ D−(I) such that
p(t) < p∗(t) on I.

Proposition 1.3. Let p∗ ∈ D−(I) and p∗ ∈ D+(I). Then for an arbitrary function p ∈ L(I; R)
such that

p∗(t) 4 −[p(t)]− , [p(t)]+ 4 p∗(t) on I, (1.4)

equation (1.3) is disconjugate on I.

Remark 1.1. From Proposition 1.1 (Proposition 1.2) it is clear that the structure of the set D+(I)
(D−(I)) is such that if x, y ∈ D+(I)(x, y ∈ D−(I)), then none of the inequalities x 4 y and y 4 x
hold.

Remark 1.2. If λ1 (λ2) is the first positive eigenvalue of the problem

u(4)(t) = λ4u(t), u(i)(0) = 0, u(i)(1) = 0 (i = 0, 1)

(u(4)(t) = −λ4u(t), u(i)(0) = 0 (i = 0, 1, 2), u(1) = 0),

then
λ4
1

(b− a)4
∈ D+(I)

(
− λ4

2

(b− a)4
∈ D−(I)

)
.

Also it is well-known (see [1] or [2]), that λ1 ≈ 4.73004 and λ2 ≈ 5.553.
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2 Main results
First we consider the results on disconjugacy of equation (1.1) on the interval [a, b].

Theorem 2.1. Let p ∈ L(I; R), conditions

αp := inf
p∗∈D+(I)

{
ess supt∈I

{
p(t)− p∗(t)

}}
≤ 0,

βp := sup
p∗∈D−(I)

{
ess inft∈I

{
p(t)− p∗(t)

}}
≥ 0,

(2.1)

hold, and
αp ̸= βp.

Then equation (1.1) is disconjugate on I if µ ∈ ]αp, βp[ .

Remark 2.1. Theorem 2.1 is optimal in the sense that there exists p ∈ L(I; R) such that if
µ = αp or µ = βp, then equation (1.1) is oscillatory on I. Indeed, let p(t) ≡ λ4

1−λ4
2

2(b−a)4
, where due to

Remark 1.2 we have λ4
1

(b−a)4
∈ D+(I) and − λ4

2
(b−a)4

∈ D−(I). Then from Remark 1.1 it immediately
follows that

αp = p(t)− λ4
1

(b− a)4
and βp = p(t) +

λ4
2

(b− a)4
.

Therefore if µ = αp or µ = βp, then equation (1.1) is oscillatory on I.

Corollary 2.1. Let p ∈ D+(I). Then βp >
λ4
2

(b−a)4
, and equation (1.1) is disconjugate on I if

µ ∈ ]0, βp[ .

Corollary 2.2. Let p ∈ D−(I). Then αp < − λ4
1

(b−a)4
, and equation (1.1) is disconjugate on I if

µ ∈ ]αp, 0[ .

From the last two corollaries we immediately have

Corollary 2.3. Let µ ∈ ]0,
λ4
1

(b−a)4
]
(
µ ∈ [− λ4

2
(b−a)4

, 0[
)
. Then equation (1.1) is disconjugate on I for

an arbitrary p ∈ D+(I) (p ∈ D−(I)).

Remark 2.2. Corollaries 2.1 and 2.2 are optimal.

As it is well-known the disconjugacy is only a sufficient condition in order to ensure the constant
sign of Green’s function of problems (1.3), (1.2ℓ) (ℓ ∈ {1, 2, 3}). For this reason we introduce here
theorems with necessary and sufficient conditions which guarantee that Green’s function of problems
(1.1), (1.22) or (1.1), (1.23) will be the constant sign function. Also we will find such coefficients
p, and such values of the parameter µ, for which Green’s functions of the mentioned problems are
constant sign functions but equation (1.1) is oscillatory on I (see Remark 2.3).

Theorem 2.2. Let p ∈ D+(I) ∩ C(I; R). Then:

(a) Green’s function of problem (1.1), (1.22) is non-negative on I × I iff µ ∈ ]0, µp], where µp :=
min{µ∗

1, µ
∗
3}, µ∗

ℓ (ℓ = 1, 3) is the first positive eigenvalue of problem (1.1), (1.2ℓ);

(b) The estimation µp ≥ βp >
λ4
2

(b−a)4
is valid.

Theorem 2.3. Let p ∈ D−(I) ∩ C(I; R). Then:
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(a) Green’s function of problem (1.1), (1.22) is non-negative on I × I iff µ ∈ ]µp, 0], where µp is
the biggest negative eigenvalue of problem (1.1), (1.22);

(b) The estimation µp ≤ αp < − λ4
1

(b−a)4
is valid.

Theorem 2.4. Let p ∈ D+(I) ∩ C(I;R). Then:

(a) Green’s function of problem (1.1), (1.21) is non-positive on I × I iff µ ∈ [0, µp[ , where µp is
the first positive eigenvalue of problem (1.1), (1.21);

(b) The estimation µp ≥ βp >
λ4
2

(b−a)4
is valid.

Theorem 2.5. Let p ∈ D−(I) ∩ C(I; R). Then:

(a) Green’s function of problem (1.1), (1.21) is non-positive on I × I iff µ ∈ [µp, 0[ , where µp is
the biggest negative eigenvalue of problem (1.1), (1.22);

(b) The estimation µp ≤ αp < − λ4
1

(b−a)4
is valid.

Remark 2.3. In Theorems 2.2 and 2.4 (Theorems 2.3 and 2.5) from the definition of the number
µp it is clear that equation (1.1) is oscillatory on I if µ = µp. Therefore from Corollary 2.1
(Corollary 2.2) it immediately follows that

µp ≥ βp >
λ4
2

(b− a)4

(
µp ≤ αp < − λ4

1

(b− a)4

)
.
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1 Introduction
Boundary-value problems for systems of ordinary differential equations arise in many problems of
analysis and its applications. Unlike Cauchy problems, the solutions to such problems may not
exist or may not be unique. Thus, it is interesting to investigate the nature of the solvability
of inhomogeneous boundary-value problems in the functional Sobolev and Sobolev–Slobodetskiy
spaces and the dependence of their solutions on the parameter. For Fredholm boundary-value
problems, similar issues have been investigated in papers [1, 2, 4, 5, 7]. The case of underdefined or
overdefined boundary-value problems in Sobolev spaces was investigated in paper [3].

2 Statement of the problem
Let a finite interval (a, b) ⊂ R and parameters

{m, l} ⊂ N, s ∈ (1,∞) \ N, 1 ≤ p < ∞

be given. By Wn
p := Wn

p ([a, b];C) we denote a complex Sobolev space and set W 0
p := Lp. By

(Wn
p )

m := Wn
p ([a, b];Cm) and (Wn

p )
m×m := Wn

p ([a, b];Cm×m)

we denote the Sobolev spaces of vector functions and matrix functions, respectively, with elements
from the function space Wn

p . By ∥ · ∥n,p we denote the norms in these spaces. They are defined as
the sums of the corresponding norms of all elements of a vector-valued or matrix-valued function
in Wn

p . The space of functions (scalar functions, vector functions, or matrix functions) in which
the norm is introduced is always clear from the context. For m = 1 all these spaces coincide. It is
known that Wn

p are separable Banach spaces.
We denote by W s

p := W s
p ([a, b];C) where 1 ≤ p < ∞ and s > 1, is not integer, the Sobolev–

Slobodetskiy space of all complex-valued functions belonging to Sobolev space W
[s]
p and satisfying

the condition

∥f∥s,p := ∥f∥[s],p +
( b∫

a

b∫
a

|f [s](x)− f [s](y)|p

|x− y|1+{s}p dx dy

)1/p

< +∞,
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where [s] is the integer part, and {s} is the fractional part of the number s. Here, we recall that
∥ · ∥[s],p is the norm in the Sobolev space W

[s]
p . This equality defines the norm ∥f∥s,p in the

space W s
p .

Consider a linear boundary-value problem on a finite interval (a, b) for the system of m first-
order scalar differential equations

(Ly)(t) := y′(t) +A(t)y(t) = f(t), t ∈ (a, b), (2.1)
By = c, (2.2)

where the matrix function A( · ) belongs to the space (W s
p )

m×m, the vector function f( · ) belongs
to the space (W s

p )
m, the vector c belongs to the space Cl, and B is a linear continuous operator

B : (W s+1
p )m → Cl. (2.3)

The boundary condition (2.2) consists of l scalar boundary conditions for the system of m
differential equations of the first order. We represent vectors and vector functions in the form of
columns. A solution to the boundary-value problem (2.1), (2.2) is understood as a vector function
y ∈ (W s+1

p )m, satisfying equation (2.1) for s > 1 + 1/p everywhere and, for s ≤ 1 + 1/p, almost
everywhere on (a, b) and equality (2.2) specifying l scalar boundary conditions. The solutions to
equation (2.1) fill the space (W s+1

p )m, if its right-hand side f( · ) runs through the space (W s
p )

m.
Hence, the boundary condition (2.2) is the most general condition for this equation and includes all
known types of classical boundary conditions, namely, the Cauchy problem, two- and multipoint
problems, integral and mixed problems, and numerous nonclassical problems. The last class of
problems may contain derivatives of integer or fractional order k of required vector–functions,
where 0 < k < s+ 1.

The main purpose of this work is to establish whether the boundary-value problem (2.1), (2.2)
has the Fredholm property; to find its index and the dimension of the cokernel and the kernel of
the operator of an inhomogeneous boundary-value problem in terms of the properties of a special
rectangular numerical matrix and to investigate its stability. In the case of Sobolev spaces of integer
order, similar results were obtained in [6].

3 Main results
We rewrite the inhomogeneous boundary-value problem (2.1), (2.2) in the form of a linear operator
equation

(L,B)y = (f, c),

where (L,B) is a linear operator in the pair of Banach spaces

(L,B) : (W s+1
p )m → (W s

p )
m × Cl. (3.1)

Let X and Y be Banach spaces. Recall that a linear continuous operator T : X → Y is called a
Fredholm operator, if its kernel kerT and cokernel Y/T (X) are finite-dimensional. If the operator
is a Fredholm one, then its range T (X) is closed in Y , and the index

indT := dimkerT − dim
Y

T (X)

is finite (see, e.g., [6, Lemma 19.1.1]).

Theorem 3.1. The linear operator (3.1) is a bounded Fredholm operator with index m− l.
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Denote by Y ( · ) ∈ (W s
p )

m×m the unique solution to a linear homogeneous matrix equation

Y ′(t) +A(t)Y (t) = Om, t ∈ (a, b) (3.2)

with the initial condition
Y (a) = Im. (3.3)

Here, Om are zero matrices, and Im are identity (m×m) matrices. The unique solution to the
Cauchy problem (3.2), (3.3) belongs to the space (W s+1

p )m×m.
By [BY ] we denote a numerical matrix of dimension (m × l) whose i-th column is a result of

the action of the operator B from (2.3) on i-th column of the matrix function Y ( · ), i ∈ {1, . . . ,m}.

Definition. A rectangular numerical matrix

M(L,B) = [BY ] ∈ Cm×l (3.4)

is called the characteristic matrix for the inhomogeneous boundary-value problem (2.1), (2.2).

Here, m is the number of scalar differential equations of system (2.1), and l is the number of
scalar boundary conditions.

Theorem 3.2. The dimensions of the kernel and cokernel of operator (3.1) are equal to the
dimensions of the kernel and cokernel of the characteristic matrix (3.4), respectively:

dimker(L,B) = dimker(M(L,B)),

dim coker(L,B) = dim coker(M(L,B)).

A criterion for the invertibility of the operator (L,B) follows from Theorem 3.2, i.e., the con-
dition under which problem (2.1), (2.2) possesses a unique solution, and this solution continuously
depends on the right-hand sides of the differential equation and the boundary condition.

Corollary 3.1. Operator (L,B) is invertible if and only if l = m and the square matrix M(L,B)
is nondegenerate.

4 Application
In addition to problem (2.1), (2.2) we consider the sequence of inhomogeneous boundary-value
problems

L(k)y(t, k) := y′(t, k) +A(t, k)y(t, k) = f(t, k), t ∈ (a, b), (4.1)
B(k)y( · , k) = c(k), k ∈ N, (4.2)

where the matrix functions A( · , k), the vector functions f( · , k), the vectors c(k) and linear con-
tinuous operators B(k) satisfy the above conditions for problem (2.1), (2.2).

With the boundary-value problem (4.1), (4.2) we associate a sequence of linear continuous op-
erators

(L(k), B(k)) : (W s+1
p )m → (W s

p )
m × Cl

and a sequence of characteristic matrices

M(L(k), B(k)) = [B(k)Y ( · , k)] ⊂ Cm×l,

depending on the parameter k ∈ N.
We now formulate a sufficient condition for the convergence of the characteristic matrices

M(L(k), B(k)) to the matrix M(L,B).
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Theorem 4.1. If the sequence of operators (L(k), B(k)) converges strongly to the operator (L,B),
for k → ∞, then the sequence of characteristic matrices M(L(k), B(k)) converges to the matrix
M(L,B).

Corollary 4.1. Under the assumptions from Theorem 4.1, the following inequalities hold

dimker(L(k), B(k)) ≤ dimker(L,B),

dim coker(L(k), B(k)) ≤ dim coker(L,B)

for sufficiently large k.

In particular:

1. If l = m and the operator(L,B) is invertible, then the operators (L(k), B(k)) are also inver-
tible for large k;

2. If the boundary-value problem (2.1), (2.2) has a solution for any values of the right-hand
sides, then the boundary-value problems (4.1), (4.2) also have a solution for large k;

3. If the boundary-value problem (2.1), (2.2) has a unique solution, then problems (4.1), (4.2)
also have a unique solution for each sufficiently large k.
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1 Introduction
In this study we consider the question of the disconjugacy on the interval I := [a, b] ⊂ [0,+∞[ of
the fourth order linear ordinary differential equation

u(4)(t) = p(t)u(t), (1.1)

where p : I → R is a Lebesgue integrable function.
The disconjugacy results obtained in this study complete Kondrat’ev’s second comparison the-

orem for n = 4, and significantly improve some other known results (see Remarks 2.1, 2.2, 2.4).
Here we use the following notations.
R = ]−∞,+∞[ , R−

0 =]−∞, 0], R+
0 = [0,+∞[ .

C(I;R) is the Banach space of continuous functions u : I → R with the norm ∥u∥C =
max{|u(t)| : t ∈ I}.

C̃3(I;R) is the set of functions u : I → R which are absolutely continuous together with their
third derivatives.

L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm ∥p∥L =
b∫
a
|p(s)| ds.

For arbitrary x, y ∈ L(I;R), the notation

x(t) 4 y(t)
(
x(t) < y(t)

)
for t ∈ I

means that x ≤ y (x ≥ y) and x ̸= y. Also we use the notation [x]± = (|x| ± x)/2.
By a solution of equation (1.1) we understand a function u ∈ C̃3(I;R) which satisfies equation

(1.1) a. e. on I.
For the formulation of our results we need the following definitions.

Definition 1.1. Equation (1.1) is said to be disconjugate (non oscillatory) on I, if every nontriv-
ial solution u has less then four zeros on I, the multiple zeros being counted according to their
multiplicity. Otherwise we say that equation (1.1) is oscillatory on I.

Definition 1.2. We will say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and equation (1.1), under the

conditions
u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (1.2)

has a solution u such that u(t) > 0 t ∈ ]a, b[ .
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Definition 1.3. We will say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and equation (1.1), under the

conditions
u(a) = 0, u(i)(b) = 0 (i = 0, 1, 2), (1.3)

has a solution u, such that u(t) > 0 t ∈ ]a, b[ .

Remark 1.1. Let p ∈ L(I;R+
0 ) (p ∈ L(I;R−

0 )), and consider the equation

u(4)(t) = λ4p(t)u(t) for t ∈ I. (1.4)

Then the set D+(I) (D−(I)) can be interpreted as a set of functions p : I → R+
0 (R−

0 ) for which
λ = 1 is the first eigenvalue of problem (1.4), (1.2) ((1.4), (1.3)).

2 Main results

2.1 Disconjugacy of equation (1.1) with non-negative coefficient

Theorem 2.1. Let p ∈ L(I;R+
0 ). Then equation (1.1) is disconjugate on I iff there exists p∗ ∈

D+(I) such that
p(t) 4 p∗(t) for t ∈ I. (2.1)

Let λ1 > 0 be the first eigenvalue of the problem

u(4)(t) = λ4u(t), u(i)(0) = 0, u(i)(1) = 0 (i = 0, 1), (2.2)

then due to Remark 1.1 we have λ4
1

(b−a)4
∈ D+(I), and the following corollary is true.

Corollary 2.1. Equation (1.1) is disconjugate on I if

0 ≤ p(t) 4 λ4
1

(b− a)4
for t ∈ I, (2.3)

and is oscillatory on I if

p(t) ≥ λ4
1

(b− a)4
for t ∈ I. (2.4)

Remark 2.1. It is well-known that the first eigenvalue λ1 of problem (2.2) is the first positive root
of the equation cosλ · coshλ = 1, and λ1 ≈ 4.73004 (see [3]). Also in Theorem 3.1 of paper [3] it
was proved that the equation u(4) = λ4u is disconjugate on [0, 1] if 0 ≤ λ < λ1.

Even if both conditions (2.3) and (2.4) are violated, the question on the disconjugacy of equation
(1.1) can be answered by the following theorem.

Theorem 2.2. Let p ∈ L(I;R+
0 ), and there exists M ∈ R+

0 such that

M
b− a

2
+

b∫
a

[p(s)−M ]+ ds ≤ 192

(b− a)3
. (2.5)

Then equation (1.1) is disconjugate on I.
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2.2 Disconjugacy of equation (1.1) with non-positive coefficient
Theorem 2.3. Let p ∈ L(I;R−

0 ). Then equation (1.1) is disconjugate on I iff there exists p∗ ∈
D−(I) such that

p(t) < p∗(t) for t ∈ I. (2.6)

Let λ2 > 0 be the first eigenvalue of the problem

u(4)(t) = −λ4u(t), u (i)(0) = 0 (i = 0, 1, 2), u(1) = 0, (2.7)

then due to Remark 1.1 we have − λ4
2

(b−a)4
∈ D−(I), and the following corollary is true.

Corollary 2.2. Equation (1.1) is disconjugate on I if

− λ4
2

(b− a)4
4 p(t) ≤ 0 for t ∈ I, (2.8)

and is oscillatory on I if

p(t) ≤ − λ4
2

(b− a)4
for t ∈ I. (2.9)

Remark 2.2. In Theorem 4.1 of [3] the following is proved: Let λ2 be the first positive root of the
equation tanh λ√

2
= tan λ√

2
(λ2 ≈ 5.553). Then the equation u(4) = −λ4u is disconjugate on [0, 1]

if 0 ≤ λ < λ2.

Even if both conditions (2.8) and (2.9) are violated, the question on the disconjugacy of equation
(1.1) can be answered by the following

Theorem 2.4. Let p ∈ L(I;R−
0 ) be such that there exists M ∈ R+

0 with

M
495

1024
(b− a) +

b∫
a

[p(s) +M ]− ds ≤ 110

(b− a)3
. (2.10)

Then equation (1.1) is disconjugate on I.

2.3 Disconjugacy of equation (1.1) with not necessarily constant sign coefficient
Theorem 2.5. Let p∗ ∈ D−(I) and p∗ ∈ D+(I). Then for an arbitrary function p ∈ L(I;R) such
that

p∗(t) 4 −[p(t)]−, [p(t)]+ 4 p∗(t) for t ∈ I, (2.11)

equation (1.1) is disconjugate on I.

The theorem is optimal in the sense that inequalities (2.11) can not be replaced by the condition
p∗ ≤ p ≤ p∗.

Remark 2.3. Let p1, p2 : [a, b] → R be continuous functions such that the equations

u(4)(t) = p1(t)u(t), u(4)(t) = p2(t)u(t), (2.12)

are disconjugate on I, then due to Kondrat’ev’s second comparison theorem, if p1 ≤ p ≤ p2, then
equation (1.1) is disconjugate too. Here coefficients p1 and p2 should not necessarily be constant
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sign functions, while in Theorem 2.5 for the permissible coefficients p1 and p2, equations (2.12)
should not necessarily be disconjugate and continuous. For this reason, if

p(t) = λ4
1

[
cos

2πt

n

]
]+ − λ4

2

[
cos

2πt

n

]
−
,

then from Theorem 2.5 it follows the disconjugacy of equation (1.1) on [0, 1] for all n ∈ N (see
Corollary 2.4), while this fact does not follow from Kondrat’ev’s theorem.

Corollary 2.3. Let p∗ ∈ D−(I), p∗ ∈ D+(I), and

mes
{
t ∈ I | p∗(t) · p∗(t) ̸= 0

}
> 0.

Then equation (1.1) with p = p∗ + p∗ is disconjugate on I.

From Theorem 2.5 with

p∗ := − λ4
2

(b− a)4
and p∗ :=

λ4
1

(b− a)4

we obtain

Corollary 2.4. et λ1 > 0 and λ2 > 0 be the first eigenvalues of problems (2.2) and (2.7), respec-
tively, and the function p ∈ L(I;R) admits the inequalities

− λ4
2

(b− a)4
4 p(t) 4 λ4

1

(b− a)4
for t ∈ I.

Then equation (1.1) is disconjugate on I.

Remark 2.4. If we take into account that λ4
1 ≈ 501 and λ4

2 ≈ 951, then it is clear that Corollary 2.4
significantly improves Coppel’s well-known condition

max
t∈[a,b]

|p(t)| ≤ 128

(b− a)4
,

proved in [1], which for p ∈ C(I;R) guarantees the disconjugacy of equation (1.1) on I.
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The boundary-value problems for differential equations with p-Laplacian arise while studying
the radial solutions of nonlinear partial differential equations. A feature of such various boundary-
value problems for differential, including difference equations with p-Laplacian is the lack of unique-
ness of the solution.

In this thesis, we consider the boundary-value problem for the linear system of differential equa-
tions with matrix p-Laplacian, which is reduced to the traditional differential-algebraic system with
an unknown in the form of the vector function. We considered two cases of the obtained differential-
algebraic system, in particular, the cases of solvability and unsolvability of the differential-algebraic
system with respect to the derivative. For both cases, we obtained a sufficient condition for the
solvability of the matrix boundary-value problem for the differential equation with p-Laplacian, in
which connection its general solution determines the general solution for the homogeneous part of
the matrix differential equation with p-Laplacian and the Green operator of the original matrix
boundary-value problem.

The relevance of studying the boundary-value problems for differential equations with p-Laplaci-
an is associated with numerous applications of such problems in the theory of elasticity, the theory
of plasma, and astrophysics. The purpose of this thesis is to generalize various boundary-value
problems for differential equations with p-Laplacian, which preserves the features of the solution
of such problems, namely, the lack of uniqueness of the solution, and, in this case, the dependence
of the desired solution of the arbitrary function.

We have studied the problem on the construction of solutions [1–3,5, 6]

Z(t) ∈ C2
α×β[a, b] := C2[a, b]⊗ Rα×β

of the linear system of differential equations

PZ(t) = A(t)Z(t) + F (t) (1)

with the boundary condition
LZ( · ) = A, A ∈ Rλ×µ (2)

and with a matrix p-Laplacian PZ(t) := ((R(t)Z(t))′S(t))′. Here,

R(t) ∈ C2
γ×α[a, b] := C2[a, b]⊗ Rγ×α, S(t) ∈ C2

β×δ[a, b] := C2[a, b]⊗ Rβ×δ,

F (t) ∈ Cγ×δ[a, b] := C1[a, b]⊗ Rγ×δ,

LZ( · ) — is a linear bounded matrix functional: LZ( · ) : C2[a; b] → Rλ×µ. Generally speaking, we
assume that α ̸= β ̸= γ ̸= δ ̸= λ ̸= µ are any natural numbers. By Ξ(j) ∈ Rα×β, j = 1, 2, . . . , α·β we
denote the natural basis of the space Rα×β. In this case, the problem of determination of solutions
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of equation (1) can be reduced to a problem of determination of a vector z(t) ∈ C2
αβ[a; b], whose

components zj(t) ∈ C2[a; b] define the expansion of the matrix

Z(t) =

αβ∑
j=1

Ξ(j)zj(t), zj(t) ∈ C1[a; b], j = 1, 2, . . . , α · β

in vectors Ξ(j) ∈ Rα×β of the basis of the space Rα×β. We now define the operator

M[A] : Rm×n → Rm·n

as an operator that puts the matrix A ∈ Rm×n in correspondence to a vector-column B := M[A] ∈
Rm·n formed from n columns of the matrix A. We also introduce the inverse operator

M−1[B] : Rm·n → Rm×n

that puts the vector B ∈ Rm·n in correspondence to a matrix A ∈ Rm×n. We present the product
A(t)Z(t) in the form

A(t)Z(t) := A(t)

αβ∑
k=1

Ξ(k)zk(t), M
[
A(t)Z(t)

]
= Ǎ(t) · z(t),

where
Ǎ(t) :=

[
Ǎk(t)

]αβ
k=1

∈ Cγδ×αβ[a, b], Ǎk(t) = M
[
A(t)Ξ(k)

]
, k = 1, 2, . . . , α · β.

We now define the matrices

B(t), C(t), D(t) ∈ Cγδ×αβ[a, b]

in the following way:
∂

∂z′′
MPZ(t) := B(t)z(t),

∂

∂z′
MPZ(t) := C(t)z(t),

∂

∂z
MPZ(t) := D(t)z(t).

The problem of construction of solutions of Eq. (1) can be reduced to a problem of determination
of the vector z(t) ∈ C2

αβ[a; b] that is defined by the system

B(t)z′′ + C(t)z′ +D(t)z = Ǎ(t)z + f(t), f(t) := MF (t).

Changing the variables
y1 := z, y2 := y′1,

we get the problem of determination of the vector

y(t) ∈ C2
2αβ[a; b]

defined by the differential-algebraic system of equations [2, 3, 5]

U(t)y′ = V (t)y + f̌(t), (3)

where

U(t) :=

(
Iαβ Oαβ

C(t) B(t)

)
, V (t) :=

(
Oαβ Iαβ

Ǎ(t)−D(t) Oγδ×αβ

)
, f̌(t) :=

(
0

f(t)

)
.

Thus, under the condition [2, 3, 5]

PU∗(t)V (t) = 0, PU∗(t)f̌(t) = 0, (4)

we have proved the sufficient condition of solvability of the Cauchy problem for the matrix diffe-
rential equation with p-Laplacian (1).
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Lemma. Under conditions (4) the matrix Cauchy problem Z(a) = A for the matrix differential
equation with p-Laplacian (1) is uniquely solvable for any initial value of A ∈ Rµ×ν . Under
conditions (4), the general solution

Z(t, c) = W (t, c) +K
[
F(s, φ(s))

]
(t), c ∈ R2α·β,

W (t, c) := M−1
[
JαβX(t)c

]
, Jαβ :=

[
Iαβ Oαβ

]
∈ Rα·β×2α·β,

K
[
F(s, φ(s))

]
(t) := M−1

{
Jαβ K

[
F(s, φ(s))

]
(t)

}
,

of the Cauchy problem
Z(a) = A

for the matrix differential equation with p-Laplacian (1) defines a generalized Green’s operator
K[F(s, φ(s))](t) of the Cauchy problem Z(a) = 0 for the matrix differential equation with p-Laplacian
(1) and the general solution W (t, c) of the Cauchy problem Z(a) = A or the homogeneous part of
the matrix differential equation with p-Laplacian (1).

Thus, in the critical case under conditions (4) and in the case of fulfillment of the solvability
condition

PQ∗
d
M

{
A− LK

[
F(s, φ(s))

]
( · )

}
= 0 (5)

the solution of the matrix boundary-value problem with p-Laplacian (1), (2) takes the form

Z(t, cr) = W (t, cr) +G
[
F(s, φ(s));A

]
(t), W (t, cr) := M−1

[
Jαβ X(t)PQrcr

]
, (6)

where

G
[
F(s, φ(s));A

]
(t) := M−1

{
Jαβ X(t)Q+M

{
A− LK

[
F(s, φ(s))

]
( · )

}}
+K

[
F(s, φ(s))

]
(t).

Hence, we have proved the sufficient condition of solvability of the matrix boundary-value
problem for the differential equation with p-Laplacian (1), (2).

Theorem. In the critical case (PQ∗ ̸= 0) under conditions (4) and (5), solution (6) of the ma-
trix boundary-value problem with p-Laplacian (1), (2) determines the generalized Green’s operator
G[F(s, φ(s));A](t) of the matrix boundary-value problem with p-Laplacian (1), (2) and the general
solution W (t, cr) for the homogeneous part of the differential equation with p-Laplacian (1), (2).

Assume that condition (4) is not satisfied [2, 3, 5], i.e., PU∗(t)V (t) ̸= 0 or PU∗(t)f̌(t) ̸= 0. Then
the problem of determination of solutions of Eq. (1) after the change of the variables

y1 := z := Ωx1, y2 := y′1 := Ωx′1 := Ωx2, Ω ∈ Rαβ×αβ, x(t) :=

(
x1(t)
x2(t)

)
leads to the problem of determination of the vector x(t) ∈ C2

αβ[a; b] defined by the differential-
algebraic system of equations [2, 3, 5]

Ǔ(t)x′ = V̌ (t)x+ f̌(t); (7)

here,

Ǔ(t) :=

(
Ω Oαβ

C(t)Ω B(t)Ω

)
, V̌ (t) :=

(
Oαβ Ω

(Ǎ(t)−D(t))Ω Oγδ×αβ

)
.

Under the conditions [2, 3, 5]

PǓ∗(t)V̌ (t) = 0, PǓ∗(t)f̌(t) = 0, (8)
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system (7) is solvable with respect to the derivative [2, 3, 5]:

x′ = W̌ (t)x+ F1(t, φ(t)), (9)

here,
W̌ (t) := Ǔ+(t)V̌ (t), F1(t, φ(t)) := Ǔ+(t)f̌(t) + PǓϱ

(t)φ(t).

Thus, we have proved the sufficient condition of solvability of the matrix Cauchy problem for
the differential equation with p-Laplacian (1).

Corollary 1. Under conditions (8), the matrix Cauchy problem Z(a) = A for the matrix differential
equation with p-Laplacian (1) is uniquely solvable for any initial value of A ∈ Rµ×ν . Under
conditions (8), the general solution

Z(t, c) = W̌ (t, c) +K
[
F1(s, φ(s))

]
(t), c ∈ R2α·β,

W̌ (t, c) := M−1
[
ΩJαβX̌(t)c

]
, K

[
F1(s, φ(s))

]
(t) := M−1

{
Jαβ K

[
ΩF1(s, φ(s))

]
(t)

}
.

of the Cauchy problem Z(a) = A for the matrix differential equation with p-Laplacian (1) determines
the generalized Green’s operator K[F1(s, φ(s))](t) of the Cauchy problem Z(a) = 0 for the matrix
differential equation with p-Laplacian (1) and the general solution W̌ (t, c) of the Cauchy problem
Z(a) = A for the homogeneous part of the matrix differential equation with p-Laplacian (1).

Hence, in the critical case under conditions (8) and in case of fulfillment of the condition of
solvability

PQ∗
d
M

{
A− LK

[
F1(s, φ(s))

]
( · )

}
= 0, (10)

the solution of the matrix boundary-value problem with p-Laplacian (1), (2) takes the form

Z(t, cr) = W̌ (t, cr) +G
[
F1(s, φ(s));A

]
(t), W̌ (t, cr) := M−1

[
ΩJαβ X̌(t)PQrcr

]
, (11)

where

G
[
F1(s, φ(s));A

]
(t) := M−1

{
ΩJαβ X̌(t)Q+M

{
A− LK

[
F(s, φ(s))

]
( · )

}}
+K

[
F1(s, φ(s))

]
(t).

Thus, we have proved the sufficient condition of solvability of the matrix boundary-value prob-
lem for differential equation with p-Laplacian (1), (2).

Corollary 2. In the critical case (PQ∗ ̸= 0) under conditions (8) and (10), solution (11) of the
matrix boundary-value problem with p-Laplacian (1), (2) determines the generalized Green’s operator
G[F1(s, φ(s));A](t) of the matrix boundary-value problem with p-Laplacian (1), (2) and the general
solution W̌ (t, cr) for the homogeneous part of the differential equation with p-Laplacian (1), (2).

The research scheme proposed in the thesis can be transferred on the nonlinear matrix bound-
ary value problems for differential equations with p-Laplacian, on the linear matrix boundary-value
problems for difference equations, and on the matrix boundary-value problems for functional differ-
ential equations with p-Laplacian in abstract spaces, in particular, on the matrix boundary-value
problems for differential equations with argument deviation. The proposed scheme of research of
the linear system of differential equations with matrix p-Laplacian in the article was illustrated in
details with examples.
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Let us consider the quasilinear elliptic problem
−div

(
∇u√

1 + |∇u|2

)
= λa(x)f(u) in Ω,

u = 0 on ∂Ω,

(1)

where the diffusion is driven by the mean curvature operator −div
(
∇u/

√
1 + |∇u|2

)
. In equation

(1), λ > 0 is a parameter measuring diffusivity and

(H1) Ω ⊂ RN is a bounded domain, with a C2 boundary ∂Ω in case N ≥ 2;

(H2) a : Ω → R is a continuous function such that max
Ω

a > 0;

(H3) f : R → R is a continuous function satisfying, for some constant L > 0, f(0) = f(L) = 0, and
f(s) > 0 for every s ∈ ]0, L[ .

Assumption (H2) on the weight a introduces spatial heterogeneities within the model and
allows that a changes sign in Ω. Assumption (H3) basically requires that the reaction term af
is of logistic-type. As it is well-known, logistic maps play a pivotal role in the modeling theory
of various disciplines, with special prominence in biology, ecology, genetics. Unlike the classical
theory based on the Fick–Fourier’s law, where the flux depends linearly on ∇u, here the diffusion
is governed by the bounded flux ∇u/

√
1 + |∇u|2, which is approximately linear for small gradients

but approaches saturation for large ones.
Following our recent paper [3], we aim here to synthetically describe and clarify the effects of

a flux-saturated diffusion in logistic growth models featuring spatial heterogeneities. This study
is motivated by the investigations on reaction processes with saturating diffusion started in [4], in
order to correct the non-physical gradient-flux relations at high gradients. This specific mechanism
of diffusion, of which the mean curvature operator provides a paradigmatic example, may determine
spatial patterns exhibiting abrupt transitions at the boundary or between adjacent profiles, up to
the formation of discontinuities. This makes the mathematical analysis of the problem (1) more
delicate and sophisticated than the study of the corresponding semilinear model, the use of some
tools of geometric measure theory being in particular required. Indeed, it is an established fact that
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the space of bounded variation functions is the natural setting for dealing with this problem. The
precise notion of bounded variation solution of (1) used in this paper has been basically introduced
in [1] and is recalled below for completeness.

Notation. For every v ∈ BV (Ω), Dv = Dav dx + Dsv is the Lebesgue–Nikodym decomposition
of the Radon measure Dv in its absolutely continuous part Dav dx and its singular part Dsv
with respect to the N -dimensional Lebesgue measure dx in RN , |Dv| denotes the total variation
of the measure Dv, and Dv

|Dv| stands for the density of Dv with respect to its total variation.
Further, |Ω| is the Lebesgue measure of Ω, while HN−1 represents the (N−1)-dimensional Hausdorff
measure, and |∂Ω| is the HN−1-measure of ∂Ω. Moreover, for all functions u, v : Ω → R, we write:
u ≥ v if ess inf(u − v) ≥ 0; u > v if u ≥ v and ess sup(u − v) > 0; u ≫ v if, for a.e. x ∈ Ω,
u(x)− v(x) ≥ dist(x, ∂Ω).

Definition. By a bounded variation solution of (1) we mean a function u ∈ BV (Ω), with f(u) ∈
LN (Ω), which satisfies∫

Ω

DauDaϕ√
1 + |Dau|2

dx+

∫
Ω

Du

|Du|
Dϕ

|Dϕ|
|Dsϕ|+

∫
∂Ω

sgn(u)ϕ dHN−1 = λ

∫
Ω

af(u)ϕ dx (2)

for every ϕ ∈ BV (Ω) such that |Dsϕ| is absolutely continuous with respect to |Dsu| and ϕ(x) = 0
HN−1-a.e. on the set {x ∈ ∂Ω : u(x) = 0}. A bounded variation solution u is said positive if u > 0.

Remark 1. If a bounded variation solution u of (1) belongs to W 2,p(Ω) ∩ W 1,p
0 (Ω) for some

p > N , then it satisfies the differential equation in (1) for a.e. x ∈ Ω and the boundary condition
for all x ∈ ∂Ω. Therefore, u is a strong solution of (1). The Lp-regularity theory then entails
that u ∈ W 2,q(Ω) for all q > N . Conversely, it is evident that any strong solution is a bounded
variation solution. Note that bounded variation solutions, unlike the strong ones, may not satisfy
the Dirichlet boundary conditions.

Remark 2. It is clear that, for any given λ > 0, u = 0 is a bounded variation solution of (1),
while u = L is not. Indeed, if L were a solution, taking ϕ = 1 as test function in (2) would yield∫
∂Ω

1 dHN−1 = |∂Ω| = 0, which is a contradiction.

We are now going to present the main results obtained in [3]. Here, for the sake of clarity, our
statements are set out in a simplified form, while referring to [3] for some variants or extensions
that rely on slightly more general but less neat conditions.

The first result only exploits the structural assumptions (H1), (H2), and (H3). It provides us
with the existence of a number λ∗ ≥ 0 such that, for all λ > λ∗, the problem (1) has a maximum
solution uλ, with 0 < uλ < L. The asymptotic behavior of uλ, as λ → +∞, is described too, and
the bifurcation of the solutions from the trivial line {(λ, 0) : λ ≥ 0} at the point (0, 0) is ascertained
in the case λ∗ = 0. Figure 1 illustrates two admissible bifurcations diagrams.

Theorem 1. Assume (H1), (H2) and (H3). Then there exists λ∗ ≥ 0 such that for all λ ∈ ]λ∗,+∞[
the problem (1) admits a maximum bounded variation solution uλ, with 0 < uλ < L, which satisfies

lim
λ→+∞

(ess supuλ) = L. (3)

Moreover, if λ∗ = 0, then
lim

λ→0+
∥uλ∥BV = 0. (4)
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0
λ∗

L

λ

∥uλ∥∞

0
λ∗

L

λ

∥uλ∥∞

Figure 1. Admissible bifurcation diagrams for the problem (1) under the structural
assumptions (H1), (H2), and (H3), in case λ∗ > 0 (left) or λ∗ = 0 (right). Dashed curves
indicate bounded variation solutions.

The specific features displayed by the bifurcation diagrams of the problem (1) are determined
by the slope at 0 of the function f , as expressed by the following conditions:

(H4) there exists lim
s→0+

f(s)
s = +∞

(H5) there exists lim
s→0+

f(s)
s = κ ∈ ]0,+∞[

(H6) there exists lim
s→0+

f(s)
s = 0

(sublinear growth at 0);

(linear growth at 0);

(superlinear growth at 0).

When f has a sublinear growth at zero, a bifurcation from the trivial line occurs at the point
(0, 0), and the existence of positive bounded variation solutions of the problem (1) is guaranteed
for all λ > 0. In addition, positive strong solutions exist provided that λ is small enough.

Theorem 2. Assume (H1), (H2), (H3), and (H4). Then for all λ > 0 the problem (1) admits at
least one bounded variation solution uλ ∈ BV (Ω), with 0 < uλ < L, which satisfies (3) and (4).
Moreover, there exists λ∗ > 0 such that, for all λ ∈ ]0, λ∗[ , solutions uλ can be selected so that
uλ ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for any p > N , it is a strong solution and it satisfies

lim
λ→0+

∥uλ∥W 2,p = 0. (5)

When f grows linearly at zero the bifurcation occurs from the trivial line at the point (λ1, 0),
where λ1 is the principal eigenvalue of the linear weighted problem{

−∆φ = λa(x)κφ in Ω,

u = 0 on ∂Ω.

Here, Ω satisfies (H1), κ comes from (H5), and a satisfies (H2). It is a classical fact that λ1 is
positive and simple, with a positive eigenfunction φ1. The Lp-regularity theory and a standard
bootstrap argument entail that φ1 ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for all p > N , while the strong maximum
principle and the Hopf boundary point lemma yield φ1 ≫ 0. In this case the solvability of the
problem (1) is guaranteed for all λ > λ1. In addition, for λ close to λ1 strong solutions do exist.

Theorem 3. Assume (H1), (H2), (H3), and (H5). Then for all λ > λ1 the problem (1) admits at
least one bounded variation solution uλ, with 0 < uλ < L, which satisfies (3). Moreover, suppose
that

(H7) f is of class C2
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and fix any p > N . Then there exists a neighborhood U of (λ1, 0) in R×W 2,p(Ω) ∩W 1,p
0 (Ω) such

that solutions uλ can be selected so that (λ, uλ) ∈ U , uλ is a strong solution and it satisfies

lim
λ→λ1

∥uλ∥W 2,p = 0 and lim
λ→λ1

uλ
∥uλ∥C1

= φ1. (6)

Finally, there exists η > 0 such that the following assertions hold:

(i) if f ′′(0) < 0, then for all λ ∈ ]λ1, λ1 + η[ there is at least one strong solution uλ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) satisfying (6);

(ii) if f ′′(0) > 0, then for all λ ∈ ]λ1 − η, λ1[ there is at least one strong solution uλ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) satisfying (6).

Remark 3. For the standard logistic model f(s) = s(L− s), the condition f ′′(0) = −2 < 0 holds
and therefore the bifurcation is supercritical.

When f exhibits a superlinear growth at zero, the existence of multiple solutions can be detected
if, for instance, conditions (H2) and (H6) are strengthened as follows. Let us set

Ω+ =
{
x ∈ Ω : a(x) > 0

}
, Ω− =

{
x ∈ Ω : a(x) < 0

}
, Ω0 =

{
x ∈ Ω : a(x) = 0

}
,

and replace (H2) with

(H8) a ∈ C2(Ω), Ω+ ̸= ∅, Ω− ̸= ∅, Ω0 = Ω+ ∩ Ω− ⊂ Ω, and ∇a(x) ̸= 0 for all x ∈ Ω0,

as well as (H6) with

(H9) there exists q > 1, with q < N+2
N−2 if N ≥ 3, such that

lim
s→0+

f(s)

sq
= 1.

Then, for λ sufficiently large, the problem (1) has at least two positive bounded variation solutions,
the smaller being strong.

Theorem 4. Assume (H1), (H3), (H8), and (H9). Then there exists λ∗ ≥ 0 such that for all
λ ∈ ]λ∗,+∞[ , the problem (1) admits at least one bounded variation solution uλ and one strong
solution vλ ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω), for any p > N , such that 0 ≪ vλ < uλ < L. In addition, uλ
satisfies (3), while vλ satisfies

lim
λ→+∞

∥vλ∥W 2,p = 0. (7)

Figure 2 illustrates three qualitatively different bifurcation diagrams corresponding, respectively,
to Theorems 2, 3, and 4.

Unexpectedly enough, the existence of multiple solutions can always be detected in the standard
logistic model, whenever the carrying capacity L is sufficiently large, even in the case where the
weight function a is a positive constant (cf. Remark 4 below). We state such a multiplicity result
for the simplest one-dimensional prototype of the problem (1), that is,

−
(

u′√
1 + (u′)2

)′
= λaf(u) in ]0, 1[ ,

u(0) = 0, u(1) = 0.

(8)

Theorem 5. Assume (H3),
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0

L

λ

∥uλ∥∞

0
λ1

L

1 λ

∥uλ∥∞

0
λ∗

L

1 λ

∥uλ∥∞

Figure 2. Admissible qualitative bifurcation diagrams for the problem (1), according
to the growth of f at 0: either sublinear (left), or linear (center), or superlinear (right).
Dashed curves indicate bounded variation solutions, solid curves represent strong solu-
tions.

(H10) a ∈ C0([0, 1]) satisfies a > 0,

and

(H11) there exist r,R ∈ ]0, L[ , with r < R, such that

2F (r)

r2

(
1 +

√
1 + r2

)
<

F (R)

R
,

where F (s) =
s∫
0

f(t) dt is the potential of f . Then there exist λ♯ and λ♯, with 0 ≤ λ♯ < λ♯, such

that for all λ ∈ ]λ♯, λ
♯[ the problem (8) admits at least two bounded variation solutions uλ, vλ such

that 0 < uλ < vλ < L.

It is worth stressing that the assumptions of Theorem 5 do not prevent f from being concave
in [0, L]: this fact witnesses the peculiarity of this multiplicity result, which is specific of the
quasilinear problem (1) and has no similarity with the semilinear case, where the concavity of f
always guarantees the uniqueness of the positive solution, as proven in [2] even for sign-changing
weights a.

Remark 4. For the standard logistic model, where f(s) = s(L− s), condition (H11) is satisfied if,
for instance, L > 32

3 ≈ 10.67.

0
λ1 λ

L

1 λ

∥uλ∥∞

1
0

L

1 x

u

Figure 3. On the left, an admissible bifurcation diagram is depicted with reference
to Example 1: the dashed curve indicates bounded variation solutions, the solid curve
represents strong solutions. On the right, the profiles of the three detected solutions at
λ = λ are shown: in green the regular ones, in red the singular one.
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Example 1. A numerical study of the problem (8), with a = 1, f(s) = s(L − s) and L =
11 > 32

3 , reveals the existence of three positive solutions in a (small) right neighborhood of the
bifurcation point λ1 = π2

L ≈ 0.8972, in particular at λ = 0.8975, and of two positive solutions in
a left neighborhood of λ1. This is in complete agreement with (i) the bifurcation result stated in
Theorem 3 and Remark 3, which predicts the bifurcation branch emanates from λ1 pointing to the
right; (ii) the multiplicity conclusions of Theorem 5, which guarantee the existence of two solutions
in an interval of the λ-axis located on the left of λ1. Hence an S-shaped bifurcation diagram is
expected as shown by the picture on the left in Figure 3.
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1 Introduction
Asymptotic stability of an equilibrium is a fundamental property of evolutionary processes and
plays important role for many applications. It is well-known that a globally asymptotically stable
equilibrium of a linear and finite dimensional system is robust in the sense that for any essentially
bounded external disturbance entering to the system the corresponding solution remains bounded
for all times and that it tends to a ball around the equilibrium when time goes to infinity. The
size of this ball depends on the disturbance norm only. For nonlinear systems this is in general not
true and leads to the notion of Input-to-State Stability (ISS), introduced by E. D. Sontag [12, 13]
for finite dimensional systems. This notion is also suitable to study robustness of equilibria in
case of infinite dimensional systems [2]. During the last decade many authors tried to extend
the ISS theory to this class of systems. Many of these extensions were developed for systems
given in terms of partial differential equations (PDEs), see, for example, the works [4, 5, 7, 11].
It should be noted that almost all ISS-like results for PDEs were developed for the case of single
equilibrium point of the unperturbed system. It is well known that many nonlinear systems possess
a nontrivial global attractor instead. In this work we study the question of robustness of such an
attracting set with respect to external disturbances. Existence and different properties of global
attractors were studied in many books [1,10,14] and papers [3,6]. We are interested in the following
question: given a system possessing a global attractor, what can we say about attracting sets for
solutions if some perturbation h enters to this system? In this work, we consider such a question
for perturbed reaction-diffusion system. Using a general scheme suggested in [4], we prove local
ISS and asymptotic gain (AG) properties w.r.t. global attractors for dissipative RD system.

2 Statement of the problem and the main results
In a bounded domain Ω ⊂ Rn, we consider the following parabolic problem (named Reaction-
Diffusion system) {

ut = a∆u− f(u) + h(x) + d(t, x), x ∈ Ω, t > 0,

u
∣∣
∂Ω

= 0,
(2.1)

where u = u(t, x) = (u1(t, x), . . . , uN (t, x)) is an unknown vector-function, f = (f1, . . . , fN ),
h = (h1, . . . , hN ) are given functions, a is a real N × N matrix with positive symmetric part
1
2 (a+ a∗) ≥ µI, µ > 0, d = (d1, . . . , dN ) is an external disturbances.
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We assume that the following properties hold:

h ∈ (L2(Ω))N , f ∈ C1(RN ;RN ),

∃C1, C2 > 0, C3 > 0, γi > 0, pi ≥ 2, i = 1, . . . , N such that ∀ v ∈ RN

N∑
i=1

|f i(v)|
pi

pi−1 ≤ C1

(
1 +

N∑
i=1

|vi|pi
)
,

N∑
i=1

f i(v)vi ≥
N∑
i=1

γi|vi|pi − C2,

∀w ∈ RN (Df(v)w,w) ≥ −C3

N∑
i=1

|wi|2.

In further arguments we will use standard functional spaces

H = (L2(Ω))N and V = (H1
0 (Ω))

N .

Let us denote
p = (p1, . . . , pN ), Lp(Ω) = Lp1(Ω)× · · · × LpN (Ω).

It is known [1] that under such assumptions for every disturbances d ∈ L∞(R+; (L
2(Ω))N ) the

problem (2.1) is globally uniquely resolvable in a weak sense in the phase space H, i.e., for every
u0 ∈ H there exists a unique function u = u(t, x) ∈ L2

loc(0,+∞;V ) ∩ Lp
loc(0,+∞;Lp(Ω)) such that

for all T > 0, v ∈ V ∩ Lp(Ω),

d

dt

∫
Ω

u(t, x)v(x) dx+

∫
Ω

(
a∇u(t, x)∇ v(x) + f(u(t, x))v(x)− h(x)v(x)− d(t, x)v(x)

)
dx = 0

in the sense of scalar distributions on (0, T ), and u(0, x) = u0(x).
Due to the inclusion u ∈ C([0,+∞);H), the last equality makes sense.
Let us consider the unperturbed system (d ≡ 0){

ut = a∆u− f(u) + h(x), x ∈ Ω, t > 0,

u
∣∣
∂Ω

= 0.
(2.2)

It is known [1] that the corresponding semigroup S : R+ ×H 7→ H

S(t, u0) = u(t), where u( · ) is a global weak solution of (2.2), u(0) = u0

possesses a global attractor Θ in H, i.e., there exists a compact set Θ ⊂ H such that the following
properties hold:

(i) Θ = S(t,Θ), t ≥ 0;

(ii) for any bounded B ⊂ H

dist(S(t, B),Θ) → 0 as t → ∞,

where for given A,B ⊂ H we denote

dist(A,B) = sup
x∈A

inf
y∈B

∥x− y∥H .
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This property guarantees that any solution to (2.2) approaches Θ as t → ∞. We are interested
in the long term behavior of the corresponding solutions in the case the system (2.1) is perturbed
by external perturbation d.

Given an initial state u0 := u(0) ∈ H and a perturbing signal d ∈ L∞(R+;H), the corresponding
unique solution to (2.1) is denoted by u(t, u0, d). Due to the disturbance we have no guarantee, in
general, that this solution will converge to Θ as t → ∞. It turns out that the global attractor is
robust under perturbation, i.e., its attractivity properties are affected only slightly by disturbances
of small magnitude. This robustness property can be expressed in the ISS framework as follows:
there exist β ∈ KL and γ ∈ K such that for any u0 ∈ H and d ∈ L∞(R+;H),

∥u(t, u0, d)∥Θ ≤ β
(
∥u0∥Θ, t

)
+ γ

(
∥d∥∞

)
, t ≥ 0, (2.3)

where the well-known classes K stands for the class of continuous strictly increasing functions on
[0,+∞) vanishing at the origin, KL is the set of continuous functions defined on [0,+∞)2 which
are of class K in the first argument and strictly decreasing to zero in the second one,

∥d∥∞ = ess sup
t≥0

∥d(t)∥H ,

∥u∥Θ = inf
θ∈Θ

∥u− θ∥H .

It should be noted that in the general case Θ ̸= {0}. Moreover, its structure is very complicated [6].
Therefore, estimates like (2.3) cannot be obtained by using direct a priori estimates.

In this paper we prove that local variant of this property holds for the problem (2.1).
Unfortunately, this property is in general not guaranteed even for the case Θ = {0}, see, for

example, [2].
In this paper we prove this property for the problem (2.1) at least locally. More precisely, we

prove the following result

Theorem. Under the mentioned above assumptions the problem (2.1)

(i) is local ISS with respect to Θ, i.e., there exists r > 0, β ∈ KL and γ ∈ K such that for any
∥u0∥H ≤ r and any ∥d∥∞ ≤ r,

∥u(t, u0, d)∥Θ ≤ β
(
∥u0∥Θ, t

)
+ γ

(
∥d∥∞

)
, t ≥ 0; (2.4)

(ii) satisfies the asymptotic gain (AG) property with respect to Θ, that is there exists γ ∈ K such
that for any u0 ∈ H and any d ∈ L∞(R+;H) it holds

lim sup
t→∞

∥u(t, u0, d)∥Θ ≤ γ
(
∥d∥∞

)
. (2.5)

To prove the local ISS property, the Laypunov technique is used. To establish the AG property,
the uniform attractors theory for non-autonomous systems [1] is used.
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1 Introduction
Consider a canonical Hamiltonian odinary differential system with n degrees of freedom

dqi
dt

= ∂pi
H(q, p),

dpi
dt

= − ∂qi
H(q, p), i = 1, . . . , n, (1.1)

where q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ Rn are the generalized coordinates and
momenta, t ∈ R, and the Hamiltonian H : R2n → R is a polynomial of degree h > 2.

In this paper, using the Darboux theory of integrability [4] and the notion of conditional partial
integral [5,7], we will study the existence of additional first integrals of the Hamiltonian system (1.1).

The Darboux theory of integrability (or the theory of partial integrals) was established by
the French mathematician Jean-Gaston Darboux [4] in 1878, which provided a link between the
existence of first integrals and invariant algebraic curves (or partial integrals) for polynomial au-
tonomous differential systems. For the polynomial differential systems, the Darboux theory of
integrability is one of the best theories for studying the existence of first integrals (see, for ex-
ample, [5, 6, 11, 14, 15]). Note that the Darboux theory of integrability is related to the Poincaré
problem [13], which asks to find the upper bound of invariant algebraic curves of planar polynomial
differential systems. The Darboux theory of integrability is also involved in the study of Hilbert’s
16-th problem (see, for example, the paper by Yu. Ilyashenko [9]). For the current state of the
theory of integrability of differential systems see the monographs [2, 6, 8, 10, 11, 14, 15] and the
references therein.

To avoid ambiguity, we give the following notation and definitions.
The Poisson bracket of functions u, v ∈ C1(G) on a domain G ⊂ R2n is the function

[
u(q, p), v(q, p)

]
=

n∑
i=1

(
∂qi

u(q, p) ∂pi
v(q, p)− ∂pi

u(q, p) ∂qi
v(q, p)

)
for all (q, p) ∈ G.

A function F ∈ C1(G) is called a first integral on the domain G of the Hamiltonian system (1.1)
if the functions F and H are in involution, i.e.,[

F (q, p),H(q, p)
]
= 0 for all (q, p) ∈ G ⊂ R2n.

The Hamiltonian differential system (1.1) is completely integrable (in the Liouville sense) if it
has n functionally independent first integrals which are in involution. Notice that the Hamiltonian
H is a first integral of the Hamiltonian differential system (1.1).
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A set of functionally independent on a domain G ⊂ R2n first integrals Fl ∈ C1(G), l = 1, . . . , k,
of the Hamiltonian system (1.1) is called a basis of first integrals (or integral basis) on the domain
G of system (1.1) if any first integral F ∈ C1(G) of system (1.1) can be represented on G in the
form

F (q, p) = Φ
(
F1(q, p), . . . , Fk(q, p)

)
for all (q, p) ∈ G,

where Φ is some continuously differentiable function. The number k is said to be the dimension of
basis of first integrals on the domain G for the Hamiltonian differential system (1.1).

The autonomous Hamiltonian differential system (1.1) on a domain without equilibrium points
has an integral basis (autonomous) of dimension 2n− 1 [1, pp. 167 – 169].

A real polynomial w is a partial integral of the Hamiltonian system (1.1) if the Poisson bracket[
w(q, p),H(q, p)

]
= w(q, p)M(q, p) for all (q, p) ∈ R2n,

where the polynomial M (cofactor of the partial integral w) is such that degM 6 h− 2.
Suppose w be a partial integral of the Hamiltonian differential system (1.1). Then the alge-

braic hypersurface {(q, p) : w(q, p) = 0} is invariant by the flow of the Hamiltonian differential
system (1.1) and if the cofactor M of the partial integral w is zero, then w is a polynomial first
integral.

An exponential function ω(q, p) = exp v(q, p) for all (q, p) ∈ R2n with some real polynomial v is
called a conditional partial integral of the Hamiltonian system (1.1) if the Poisson bracket[

v(q, p),H(q, p)
]
= S(q, p) for all (q, p) ∈ C2n,

where the polynomial S (cofactor of the conditional partial integral ω) is such that degS 6 h− 2.
We stress that a conditional partial integral is a special case of exponential factor (or exponential

partial integral) [3, 5, 11] for the polynomial Hamiltonian ordinary differential system (1.1).

2 Main results
Suppose the Hamiltonian differential system (1.1) has real partial integrals wl with the cofactors
Ml, l = 1, . . . , s, respectively, such that the Poisson brackets[

wl(q, p),H(q, p)
]
= wl(q, p)Ml(q, p) for all (q, p) ∈ R2n, degMl 6 h− 2, l = 1, . . . , s. (2.1)

And moreover, the polynomial Hamiltonian system (1.1) has conditional partial integrals

ων(q, p) = exp vν(q, p) for all (q, p) ∈ R2n, ν = 1, . . . ,m, (2.2)

with polynomials vν , ν = 1, . . . ,m, such that the following identities hold[
vν(q, p),H(q, p)

]
= Sν(q, p) for all (q, p) ∈ R2n, degSν 6 h− 2, ν = 1, . . . ,m. (2.3)

Theorem 2.1. Let the exponential functions (2.2) be conditional partial integrals of the polynomial
Hamiltonian differential system (1.1). Then the scalar function

F (q, p) =
m∑

ν=1

βνvν(q, p) for all (q, p) ∈ R2n, βν ∈ R, ν = 1, . . . ,m,
m∑

ν=1

|βν | ̸= 0, (2.4)

is an additional first integral of the Hamiltonian system (1.1) if and only if
m∑

ν=1

βνSν(q, p) = 0 for all (q, p) ∈ R2n. (2.5)
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Proof. Taking into account the identities (2.3) and bilinearity of Poisson brackets, we calculate the
Poisson bracket of the function (2.4) and the Hamiltonian H:

[
F (q, p),H(q, p)

]
=

[ m∑
ν=1

βνvν(q, p),H(q, p)
]
=

m∑
ν=1

βν
[
vν(q, p),H(q, p)

]
=

m∑
ν=1

βνSν(q, p).

Therefore, by definition of first integral, the function (2.4) is a first integral of the polynomial
Hamiltonian ordinary differential system (1.1) if and only if the identity (2.5) is true.

Theorem 2.2. Suppose the polynomial Hamiltonian differential system (1.1) has the conditional
partial integrals (2.2) such that the identities (2.3) are true under the conditions

Sν(q, p) = µνM(q, p) for all (q, p) ∈ R2n, µν ∈ R, ν = 1, . . . ,m, degM 6 h− 2. (2.6)

Then the scalar function (2.4) is an additional first integral of the Hamiltonian differential sys-
tem (1.1) if real numbers βν are a solution to the linear equation

m∑
ν=1

µνβν = 0 under
m∑

ν=1
|βν | ̸= 0.

Proof. If the representations (2.6) are true and numbers βν are a solution to
m∑

ν=1
µνβν = 0, then

m∑
ν=1

βνSν(q, p) =
m∑

ν=1

βνµνM(q, p) = 0.

This implies that the condition (2.5) is true. Therefore, by Theorem 2.1, the function (2.4) is an
additional first integral of the Hamiltonian system (1.1).

From Theorem 2.2 under m = 2, µ1 = µ2 ̸= 0, we get the following statement.

Corollary 2.1. If the polynomial Hamiltonian differential system (1.1) has the conditional partial
integrals (2.2) under the condition m = 2 such that the identity holds

[v1(q, p),H(q, p)]

[v2(q, p),H(q, p)]
=

v1(q, p)

v2(q, p)
for all (q, p) ∈ G ⊂ R2n,

then an additional first integral of the polynomial Hamiltonian system (1.1) is the function

F : (q, p) → v1(q, p)− v2(q, p) for all (q, p) ∈ R2n.

From Theorem 2.2 under m = 2, µ1 = − µ2 ̸= 0, we obtain the following statement.

Corollary 2.2. If the polynomial Hamiltonian differential system (1.1) has the conditional partial
integrals (2.2) under the condition m = 2 such that the identity holds

[v1(q, p),H(q, p)]

[v2(q, p),H(q, p)]
= −v1(q, p)

v2(q, p)
for all (q, p) ∈ G ⊂ R2n,

then an additional first integral of the polynomial Hamiltonian system (1.1) is the function

F : (q, p) → v1(q, p) + v2(q, p) for all (q, p) ∈ R2n.
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Corollary 2.3. Under the conditions of Theorem 2.2, we get the scalar functions

Fξζ(q, p) = βξvξ(q, p) + βζvζ(q, p) for all (q, p) ∈ R2n, ξ, ζ = 1, . . . ,m, ζ ̸= ξ,

are first integrals of the polynomial Hamiltonian system (1.1), where numbers βξ and βζ are solutions
to the linear homogeneous equations

µξβξ + µζβζ = 0

under
|βξ|+ |βζ | ̸= 0, ξ, ζ = 1, . . . ,m, ζ ̸= ξ.

Theorem 2.3. Suppose the Hamiltonian system (1.1) has the partial integrals wl, l = 1, . . . , s, such
that the identities (2.1) hold with Ml(q, p) = λlM(q, p) for all (q, p) ∈ R2n, λl ∈ R, l = 1, . . . , s,
and the conditional partial integrals (2.2) such that the identities (2.3) under (2.6) are true. Then

Fξζ(q, p) = w
γξ
ξ (q, p) exp

(
βζvζ(q, p)

)
for all (q, p) ∈ G ⊂ R2n, ξ = 1, . . . , s, ζ = 1, . . . ,m, (2.7)

are first integrals of system (1.1), where numbers γξ and βζ are solutions to the equations

λξγξ + µζβζ = 0 under the conditions |γξ|+ |βζ | ̸= 0, ξ = 1, . . . , s, ζ = 1, . . . ,m. (2.8)

Proof. Using the functional identities (2.1) and (2.3), we obtain[
Fξζ(q, p),H(q, p)

]
=

[
w

γξ
ξ (q, p),H(q, p)

]
· exp

(
βζvζ(q, p)

)
+ w

γξ
ξ (q, p) ·

[
exp

(
βζvζ(q, p)

)]
= γξw

γξ−1

ξ (q, p) exp
(
βζvζ(q, p)

)[
wξ(q, p),H(q, p)

]
+ βζw

γξ
ξ (q, p) exp

(
βζvζ(q, p)

)[
vζ(q, p),H(q, p)

]
=

(
λξ!γξ + µζ !βζ

)
M(q, p)w

γξ
ξ (q, p) exp

(
βζvζ(q, p)

)
for all (q, p) ∈ G, ξ = 1, . . . , s, ζ = 1, . . . ,m.

If the real numbers γξ and βζ are solutions to the linear equations (2.8), then the functions (2.7)
are additional first integrals of the polynomial Hamiltonian differential system (1.1).

For example, the polynomial Hamiltonian differential system given by [12]

H(q, p) =
1

2
(p21 + p22) + 2q2p1p2 − q1 for all (q, p) ∈ R4 (2.9)

has the polynomial partial integral w(q, p) = p2 with cofactor M(q, p) = −2p1 and the conditional
partial integral ω(q, p) = exp p21 with cofactor S(q, p) = 2p1. By Theorem 2.3, we can build the
additional first integral of the Hamiltonian system (2.9): F (q, p) = p2 exp p

2
1 for all (q, p) ∈ R4. The

functionally independent first integrals H and F of the Hamiltonian system (2.9) are in involution.
Therefore, the Hamiltonian system (2.9) is completely integrable (in the Liouville sense).
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Description of the Linear Perron Effect Under Parametric Perturbations
of a System with Unbounded Coefficients
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For a given n ∈ N let us denote by M̃n the set of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞). (1)

with continuous matrix-valued functions A : R+ → Rn×n, which we identify with the corresponding
linear systems. The subset of M̃n that consists of systems (1) with bounded coefficients will be
denoted by Mn.

In [8] O. Perron constructed a two-dimensional system A ∈ M2 with negative Lyapunov expo-
nents and an exponentially decaying at infinity continuous matrix-valued function Q such that the
Lyapunov exponents of the perturbed system A+Q are greater than those of the original system
A. Perron’s studies (see also [9]) have become a starting point of deeper researches on dependency
of the Lyapunov exponents on perturbations of different classes.

The phenomenon of abrupt change of the Lyapunov exponents of a system in Mn under a small
perturbation was called in the monograph [6, Ch. 4] the Perron effect. Since the paper [5], this
term is being used only for the case when perturbations do not decrease the Lyapunov exponents
of the original system. Unlike [5, 6, 9], which consider higher-order perturbations, we study the
Perron effect under linear perturbations and hence call it linear [2].

Let us recall that the characteristic exponent [1, p. 25] of a vector-function f : P → Rn, where
P is an unbounded subset of the semi-axis R+, is the quantity (we assume that ln 0 = −∞)

λ[f ] = lim
P∋t→+∞

ln ∥f(t)∥1/t,

and the Lyapunov exponents [7] of a system A ∈ M̃n are the quantities

λi(A) = inf
L∈Gi(S(A))

sup
x∈L

λ[x], i = 1, . . . , n,

S(A) being the space of solutions of system (1) and Gi(S(A)) the set of i-dimensional subspaces
of S(A).

The spectrum of the Lyapunov exponents of system (1) is the n-tuple Λ(A) = (λ1(A), . . . , λn(A)).
As coefficients of systems under consideration are not supposed to be bounded, the Lyapunov
exponents of these systems are points of the extended real line R ≡ R ⊔ {−∞,+∞} with the
standard order and topology.

As a more general case, for an arbitrary metric space M , let us consider a parametric family of
linear differential systems

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (2)

depending on a parameter µ ∈ M such that for each fixed µ ∈ M system (2) has continuous
coefficients. Fixing i = 1, . . . , n and assigning to each µ ∈ M the i-th Lyapunov exponent of



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 169

system (2) we obtain the function λi(A, · ) :M → R which is called the i-th Lyapunov exponent of
family (2). Accordingly, the function Λ(A, · ) = (λ1(A, · ), . . . , λn(A, · )) is called the spectrum of
the Lyapunov exponents of family (2).

Henceforth we will consider parametric families of linear differential systems of the form

ẋ =
(
A(t) +Q(t, µ)

)
x, x ∈ Rn, t ∈ R+ ≡ [0,+∞),

where Q( · , · ) : R+ ×M → Rn×n is called a parametric perturbation of system (1).
As previously, let M be a metric space. For a given θ : R+ → R we denote by Qθ

n(M) the
class of jointly continuous functions Q( · , · ) : R+×M → Rn×n such that each function Q for some
CQ > 0 satisfies the condition

sup
µ∈M

∥Q(t, µ)∥ 6 CQe
−θ(t)t, t ∈ R+.

For each A ∈ M̃n, let

Qθ
n[A](M) =

{
Q ∈ Qθ

n(M) | ∀ i = 1, . . . , n, ∀µ ∈M λi(A+Q,µ) > λi(A)
}
. (3)

Put simply, the set Qθ
n[A](M) is the subset of Qθ

n(M) consisting of those perturbations that don’t
decrease the Lyapunov exponents of the original system A. Note that for each system A ∈ Mn the
class Qθ

n[A](M) is nonempty since it contains the matrix Q ≡ 0.
It is of interest to describe in terms of the descriptive set theory the set of pairs composed of

the spectrum of the Lyapunov exponents of a system A and that of a family of perturbed systems
A+Q, where A ∈ M̃n and Q ∈ Qθ

n[A](M), i.e. the set

ΠQθ
n(M) =

{
(Λ(A),Λ(A+Q, · )) | A ∈ M̃n, Q ∈ Qθ

n[A](M)
}
. (4)

Let us recall some necessary set theory notation. We say [3, p. 267] that the function f :M → R
belongs to the class (∗, Gδ) if for each r ∈ R, the inverse image f−1

(
[r,+∞]

)
of the semi-interval

[r,+∞] is a Gδ-set in M (i.e. it can be represented as countable intersection of open sets). In
particular, the class (∗, Gδ) is a subclass of the second Baire class [3, p. 294].

The sought description of set (4) is contained in the following

Theorem 1. For any metric space M , number n > 2 and continuous function θ : R+ → R the
pair

(
l, f( · )

)
, where l = (l1, . . . , ln) ∈ (R)n and f( · ) = (f1( · ), . . . , fn( · )) : M → (R)n, belongs to

the set ΠQθ
n(M) if and only if the following conditions are satisfied:

1) l1 6 · · · 6 ln;

2) f1(µ) 6 · · · 6 fn(µ) for each µ ∈M ;

3) fi(µ) > li for all µ ∈M and i = 1, . . . , n;

4) for each i = 1, . . . , n the function fi( · ) :M → R belongs to the class (∗, Gδ).

Note that a similar result for systems with bounded coefficients is obtained in [2].
As an important application of the stated theorem, consider the following problem. Let Φ

be the set of all continuous functions φ : R+ → (0,+∞). For an arbitrary metric space M and
a subset Ψ ⊂ Φ let Qn[Ψ](M) denote the class consisting of continuous matrix-valued functions
Q : R+ ×M → Rn×n satisfying the condition

lim
t→+∞

(ψ(t))−1 sup
µ∈M

∥Q(t, µ)∥ = 0 for each ψ ∈ Ψ.
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Next, for each A ∈ M̃n, let Qn[Ψ, A](M) denote the subset of Qn[Ψ](M) that consists of
parametric perturbations that don’t decrease the Lyapunov exponents of the system A, i.e.

Qn[Ψ, A](M) =
{
Q ∈ Qn[Ψ](M) | ∀ i = 1, . . . , n, ∀µ ∈M λi(A+Q,µ) > λi(A)

}
.

The class Qn[Ψ, A](M) is nonempty for the same reasons as class (3) is.
The problem is to describe the set of all pairs (Λ(A),Λ(A + Q, · )), where A ∈ M̃n and Q ∈

Qn[Ψ, A](M), i.e. the set

ΠQn[Ψ](M) =
{
(Λ(A),Λ(A+Q, · )) | A ∈ M̃n, Q ∈ Qn[Ψ, A](M)

}
,

for given n ∈ N, metric space M , and set Ψ ⊂ Φ.
The solution to this problem for a countable set Ψ is stated in the following

Theorem 2. For any metric space M , n > 2 and countable set Ψ ⊂ Φ the pair (l, f( · )), where
l ∈ (R)n and f( · ) : M → (R)n, belongs to the set ΠQn[Ψ](M) if and only if conditions 1)–4) of
Theorem 1 are met.

The last result shows that all theoretically possible pairs of the spectrum of an original and
parametrically perturbed systems (with an additional condition that all the exponents of a per-
turbed system are not less than those of the original one) can be obtained even in the class of
perturbations that decay arbitrarily fast at infinity. This situation is specific for systems with
unbounded coefficients since the Lyapunov exponents of a system with bounded coefficients are
invariant under perturbations that decay faster than any exponent [4, § 8.1].
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We study the general form boundary value problem

dx(t)

dt
= f(t, x(t), x(x(t))), t ∈ [a, b], (1)

for the system of so called iterative differential equations (see, e.g., [1,5] and the references therein)
under the non-linear boundary conditions

Φ(x(t), x(x(t))) = d, (2)

where f ∈ C([a, b]×D ×D;Rn), d ∈ Rn is a given vector, Φ is a continuous n-dimensional vector
functional and there exist some n× n matrices K1, K2 with non-negative entries such that for all
t ∈ [a, b], ui, vi ∈ D, i = 1, 2 the inequality∣∣f(t, u1, u2)− f(t, v1, v2)

∣∣ ≤ K1|u1 − v1|+K2|u2 − v2| (3)

holds.
The domain D ⊑ [a, b]n will be defined in Eqs. (10) and (11).
We deal only with such solutions

x : [a, b] → D ⊑ [a, b]n, (4)

of problem (1), (2), which belong to the set

S :=
{
x ∈ C([a, b];D) : |x(t1)− x(t2)| ≤ L|t1 − t2|, ∀ t1, t2 ∈ [a, b]

}
, (5)

where L is a given diagonal matrix with non-negative entries L = diag(L1, . . . , Ln). On the base
of conditions (3) and (5), we obtain∣∣f(t, u1, u2)− f(t, v1, v2)

∣∣ ≤ K1|u1 − v1|+K2L|u1 − v1| = [K1 +K2L] |u1 − v1|, (6)



172 International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia

t ∈ [a, b]. Thus, we prescribed some restrictions for the values of the derivative of the possible
solutions similarly to that of [5] and [1].

To study the BVP (1), (2) we will use an approach similar to [2]. Note that this technique can
be applied also in the case when, instead of (5), the condition

S :=
{
x ∈ C([a, b]; [a1, b1]

n) : |x(t1)− x(t2)| ≤ L|t1 − t2|, ∀ t1, t2 ∈ [a1, b1]
}

is fulfilled and in addition there are given some initial functions

β ∈ C([a1, a], D), γ ∈ C([b, b1], D).

For vectors x = col(x1, . . . , xn) ∈ Rn the obvious notation |x| = col(|x1|, . . . , |xn|) is used and
the inequalities between vectors are understood componentwise. The same convention is adopted
for operations like “max” and “min”.

In and 0n are the unit and zero matrices of dimension n, respectively. r(K) is the maximal (in
modulus) eigenvalue of the matrix K.

For any non-negative vector ρ ∈ Rn under the componentwise ρ-neighbourhood of a point
z ∈ Rn, we understand the set

Oρ(z) :=
{
ξ ∈ Rn : |ξ − z| ≤ ρ

}
. (7)

Similarly, the ρ-neighbourhood of a domain Ω ⊂ Rn is defined as

Oρ(Ω) :=
∪
z∈Ω

Oρ(z). (8)

A particular kind of vector ρ will be specified below in relation (11).
Let us choose certain compact convex sets Da ⊂ Rn, Db ⊂ Rn and define the set

Da,b := (1− θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1], (9)

moreover, according to (8) its ρ- neighbourhood

D = Oρ(Da,b) (10)

with a non-negative vector ρ = col(ρ1, . . . , ρn) ∈ Rn, such that

ρ ≥ b− a

2
δ[a,b],D×D(f), (11)

where δ[a,b],D×D(f) denotes the half of the oscillation of the function f over [a, b]×D ×D, i.e.,

δ[a,b],D×D(f) :=

max
(t,x,y)∈[a,b]×D×D

f(t, x, y)− min
(t,x,y)∈[a,b]×D×D

f(t, x, y)

2
. (12)

Instead of the original boundary value problem (1), (2), we will consider the following auxiliary
two-point parametrized boundary value problem

dx(t)

dt
= f(t, x(t), x(x(t))), t ∈ [a, b], (13)

x(a) = z, x(b) = η, (14)

where z and η are treated as free parameters.
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Let us connect with problem (13), (14) the sequence of functions

xm+1(t, z, η) = z +

t∫
a

f
(
s, xm(s, z, η), xm(xm(s, z, η), z, η)

)
ds

− t− a

b− a

b∫
a

f
(
s, xm(s, z, η), xm(xm(s, z, η), z, η)

)
ds

+
t− a

b− a
[η − z], t ∈ [a, b], m = 0, 1, 2, . . . , (15)

satisfying (14) for arbitrary z, η ∈ Rn, where

x0(t, z, η) = z +
t− a

b− a
[η − z] =

(
1− t− a

b− a

)
z +

t− a

b− a
η, t ∈ [a, b]. (16)

It is easy to see from (16) that x0(t, z, η) is a linear combination of vectors z and η, when z ∈ Da

and η ∈ Db.
The following statement establishes the uniform convergence of sequence (15) to some param-

eterized limit function.

Theorem 1. Let conditions (6), (11) be fulfilled, moreover, for the matrix

Q =
3(b− a)

10
K, K = K1 +K2L (17)

the inequality
r(Q) < 1 (18)

hold.
Then, for all fixed (z, η) ∈ Da ×Db:

1. The functions of sequence (15) belonging to the domain D of form (10) are continuously
differentiable on the interval [a, b] and satisfy conditions (14).

2. The sequence of functions (15) for t ∈ [a, b] uniformly converges as m → ∞ with respect to
the domain (t, z, η) ∈ [a, b]×Da ×Db to the limit function

x∞(t, z, η) = lim
m→∞

xm(t, z, η), (19)

satisfying conditions (14).

3. The function x∞(t, z, η) for all t ∈ [a, b] is a unique continuously differentiable solution of the
integral equation

x(t) = z +

t∫
a

f(s, x(s), x(x(s))) ds− t− a

b− a

b∫
a

f(s, x(s), x(x(s))) ds+
t− a

b− a
[η − z], (20)

i.e., it is the solution to the Cauchy problem for the modified system of integro-differential
equations:

dx

dt
= f(t, x(t), x(x(t))) +

1

b− a
∆(z, η),

x(a) = z (21)
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where ∆(z, η) : Da ×Db → Rn is a mapping given by the formula

∆(z, η) = [η − z]−
b∫

a

f
(
s, x∞(s, z, η), x∞(x∞(s, z, η), z, η)

)
ds. (22)

4. The error estimation∣∣x∞(t, z, η)− xm(t, z, η)
∣∣ 6 10

9
α1(t)Q

m(1n −Q)−1δ[a,b],D×D(f), t ∈ [a, b], m ≥ 0 (23)

holds, where
α1(t) = 2(t− a)

(
1− t− a

b− a

)
≤ b− a

2
, t ∈ [a, b].

The following statement gives a relation of the parameterized limit function x∞(t, z, η) to the
solution of the original boundary value problem (1), (2).

Theorem 2. Under the assumptions of Theorem 1, the limit function

x∞(t, z, η) = lim
m→∞

xm(t, z, η)

of sequence (15) is a solution of the boundary value problem (1), (2) with property (5) if and only
if the pair of parameters (z, η) satisfies the system of 2n algebraic equations

∆(z, η) := [η − z]−
b∫

a

f
(
s, x∞(s, z, η), x∞(x∞(s, z, η), z, η)

)
ds = 0, (24)

Φ(z, η) := Φ(x∞(t, z, η)), x∞(x∞(t, z, η))− d = 0.

We apply the above techniques to the following model BVP in R2

dx1(t)

dt
=

[
x1(x1(t))

]2 − 1

8
x2(t) +

1

2
= f1

(
x1, x2, x1(x1(t)), x2(x2(t))

)
, t ∈ [a, b] =

[
0,

1

2

]
,

dx2(t)

dt
= x2(x2(t))−

t

2
x1(t) · x2(t) + t = f2

(
x1, x2, x1(x1(t)), x2(x2(t))

)
, (25)

with the iterative integral boundary conditions

Φ1

(
x(t), x(x(t))

)
=

1/2∫
0

[
x1(s) + x2(s)

]
ds =

1

12
,

Φ2

(
x(t), x(x(t))

)
=

1/2∫
0

[
x1(x1(s))

]2
ds =

1

384
.

(26)

Clearly, problem (25), (26) is a particular case of (1), (2) with a = 0, b = 1
2 , d = col(18 ,

1
384). It

is easy to check that x1(t) = t
2 , x2(t) = t2

2 is a continuously differentiable solution to problem
(25), (26).

One can check that all the conditions of Theorem 1 for this example are fulfilled for the following
choosing and computation of corresponding sets, vectors, matrices:

Da = Db =
{
(x1, x2) : −0.05 ≤ x1 ≤ 0.3, −0.05 ≤ x2 ≤ 0.2

}
, Da,b = Da = Db, (27)
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ρ := col(0.15, 0.15), Oρ(Da,b) = D =
{
(x1, x2) : −0.2 ≤ x1 ≤ 0.45, −0.2 ≤ x2 ≤ 0.35

}
,

K1 =

[
0

1

8
0.25 0.25

]
, K2 =

[
1 0
0 1

]
, L =

[
1 0
0 1

]
,

K = K1 +K2L =

[
1

1

8
0.25 1.25

]
, Q =

3(b− a)

10
K =

[
0.15 0.01875
0.0375 0.1875

]
, r(Q) ≈ 0.2 < 1,

δ[a,b],D×D(f) ::=

[
0.176875
0.415

]
, ρ =

[
0.15
0.15

]
≥ b− a

2
δ[a,b],D×D(f) =

[
0.03546875
0.08125

]
.

In the case of Maple computations for iterative systems it is more appropriate to use instead of
(15) a scheme with polynomial interpolation, [3,4], when instead of (15), we introduce the sequence
{xq+1

m+1(t, z, η)}∞m=0 of vector polynomials xq+1
m+1(t, z, η) = col(xq+1

m+1,1(t, z, η), x
q+1
m+1,2(t, z, η)) of degree

(q + 1)

xq+1
m+1,j(t, z, η) := am+1,j,0(z, η) + am+1,j,1(z, η)t+ am+1,j,2(z, η)t

2 + · · ·+ am+1,j,q+1(z, η)t
q+1

= z +

t∫
a

[
Am,j,0(z, η) +Am,j,1(z, η)t+Am,j,2(z, η)t

2 + · · ·+Am,j,q(z, η)t
q
]
dt

− t− a

b− a

b∫
a

[
Am,j,0(z, η) +Am,j,1(z, η)t+Am,j,2(z, η)t

2 + · · ·+Am,j,q(z, η)t
q
]
dt

+
t− a

b− a
[ηj − zj], t ∈ [a, b], m = 0, 1, 2, . . . , j = 1, 2, (28)

where
Am,j,0(z, η) +Am,j,1(z, η)t+Am,j,2(z, η)t

2 + · · ·+Am,j,q(z, η)t
q, j = 1, 2

are the Lagrange interpolation polynomials of degree q on the Chebyshev nodes, translated from
(−1, 1) to the interval (a, b), corresponding to the functions

fj

(
t, xq+1

m,1 (t, z, η), x
q+1
m,2 (t, z, η), x

q+1
m,1

(
xq+1
m,1 (t, z, η)

)
, xq+1

m,2

(
xq+1
m,2 (t, z, η)

))
, j = 1, 2

respectively in (25). Note that the coefficients of the interpolation polynomials depend on the
parameters z and η. On the basis of (28), instead of (24) let us define the mth approximate
polynomial determining system, which consists of four algebraic equations when j = 1, 2,

∆q
m,j(z, η) := [ηj − zj ]

−
b∫

a

[
Am,j,0(z, η) +Am,j,1(z, η)t+Am,j,2(z, η)t

2 + · · ·+Am,j,q(z, η)t
q
]
dt = 0,

Φq
m,j(z, η) := Φj

(
xq+1
m,1 (t, z, η), x

q+1
m,2 (t, z, η), x

q+1
m,1

(
xq+1
m,1 (t, z, η)

)
, xq+1

m,2

(
xq+1
m,2 (t, z, η)

))
− dj = 0.

(29)

By choosing q = 3, using (28) and solving (29) (applying Maple 14) we obtain the approximate
numerical values for the introduced parameters given in table.

The graphs of the zeroth (×), sixth (⋄) approximation and the exact solution (solid line) to
problem (25), (26) are shown in figure.
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z1 z2 η1 η2

m = 0 0.5332693 · 10−3 −0.194303210−2 0.2491448305 0.1294598825

m = 3 1.4024463 · 10−7 0.4841504 · 10−3 0.2500002840 0.1245609255

m = 6 1.3907241 · 10−7 0.4841505 · 10−3 0.2500002846 0.1245609251

Exact 0 0 0.25 0.125
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For a given zero neighborhood G in the Euclidean space Rn, we consider a nonlinear, generally
speaking, differential system of the form

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where the right-hand side satisfies the condition f, f ′
x ∈ C(R+×G) and the zero solution is allowed.

We associate with system (1) the linear homogeneous system of its first approximation

ẋ = A(t)x, A(t) ≡ f ′
x(t, 0), t ∈ R+, x ∈ Rn, (2)

for which we do not require here the uniformity in t ∈ R+ of the natural (pointwise) smallness of
the nonlinear addition

h(t, x) ≡ f(t, x)−A(t)x = o(x), x → 0.

Let xf ( · , x0) be a non-extendable solution of system (1) with the initial condition xf (0, x0) = x0.
By S∗(f) and SA we denote the set of all nonzero solutions to system (1) and, accordingly, the set
of all solutions to system (2).

Definition 1. Let us list three basic [1] functional K(t, u) defined on the pairs t ∈ R+ and u :
[0, t] → Rn (taking the value +∞ whenever the function is not defined on the entire segment [0, t]),
corresponding to indicators

κ = ν, θ, ρ, respectively, for K = N,Θ,P, (3)

and describing the following properties of solutions:

1) oscillation (κ = ν), if K(t, u) = N(t, u) is the number (multiplied by π) zeros of the function
P1u on the interval (0, t], where P1 is an orthogonal projector onto a fixed line, and if at least
one of these zeros is multiple (that is, it is also a zero and derivative (P1u)

·), then we assume
N(t, u) = +∞;

2) rotation (oriented, κ = θ), if K(t, u) = Θ(t, u) ≡ |φ(t, P2u)| is module of oriented angle
φ(t, P2u) (continuous in t, with initial condition φ(0, P2u) = 0) between the vector P2u(t) and
the initial vector P2u(0), where P2 is the orthogonal projector onto a fixed two-dimensional
plane, and if P2u(τ) = 0 for at least one τ ∈ [0, t], then we assume Θ(t, u) = +∞;

3) wandering (κ = ρ), if

K(t, u) = P(t, u) ≡
t∫

0

∣∣(u(τ)/|u(τ)|)·∣∣ dτ, u(τ) ̸= 0, τ ∈ [0, t].
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There are also known the other functionals that are responsible for the non-oriented or frequency
rotation [1], k-th rank rotation [2], and plane rotation [3].

Definition 2 ([4]). For each functional described in Definition 1, we define:

(a) weak and strong lower linear indicators (3) of the solution x ∈ S∗(f) defined on the whole
semiaxis R+ – by the formulas

κ̌◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1K(t, Lx), κ̌•(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1K(t, Lx); (4)

(b) weak and strong lower radial indicators (3) of the Cauchy problem for system (1) with the
initial value x0 ∈ G – by the formulas

κ̌◦
r (f, x0) ≡ lim

t→+∞
inf

L∈AutRn
t−1Ǩr(f, x0, t, L),

κ̌•
r (f, x0) ≡ inf

L∈AutRn
lim

t→+∞
t−1Ǩr(f, x0, t, L),

(5)

where
Ǩr(f, x0, t, L) = lim

µ→+0
K(t, Lxf ( · , µx0)); (6)

(c) weak and strong lower spherical indicators (3) of the Cauchy problem for system (1) with the
initial value x0 ∈ G – by the formulas

κ̌◦
s(f, x0) ≡ lim

t→+∞
inf

L∈AutRn
t−1Ǩs(f, x0, t, L),

κ̌•
s(f, x0) ≡ inf

L∈AutRn
lim

t→+∞
t−1Ǩs(f, x0, t, L),

(7)

where
Ks(f, x0, t, L) ≡ K(t, Lxfs( · , x0)), fs(t, x) ≡ P⊥

x f(t, x),

P⊥
x is a projector onto a hyperplane orthogonal to x, and the modified system

ẋ = fs(t, x), (t, x) ∈ R+ ×G, (8)

is also called spherical (with respect to system (1));

(d) weak and strong upper indicators – linear κ̂◦(x), κ̂•(x), radial κ̂◦
r (f, x0), κ̂•

r (f, x0) and spher-
ical κ̂◦

s(f, x0), κ̂•
s(f, x0) – by the same formulas (3), (5) and (7), respectively, but with the

replacement in formulas (3)–(7) of all lower limits for t → +∞ and for µ → +0 by upper
ones;

(e) exact or absolute varieties of the same indicators that arise when the corresponding values of
the lower and upper indicators or, respectively, weak and strong ones coincide: in the first
case, we will omit the checkmark and the cap in their designation, and in the second one –
an empty and full circle.

Everywhere below, the letters κ or K mean any (corresponding) of the indicators or functionals
(3), and the top icons˜ or ∗ are any of the icons ,̌ˆ or ◦, •, respectively.

The introduction of radial and spherical indicators (as well as ball ones [4]) is due to the fact
that some solutions of the nonlinear system (1) may be defined not on the entire time semiaxis.

On the one hand, for linear systems, the linear and nonlinear (radial and spherical) indicators
are indistinguishable.
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Theorem 1. If system (1) is linear homogeneous and G = Rn, then for any solution x ∈ S∗(f)
the equalities hold

K̃r(f, x(0), t, L) = Ks(f, x(0), t, L) = K(f, Lx), t ∈ R+, AutRn,

κ̃ ∗
r (f, x(0)) = κ̃ ∗

s (f, x(0)) = κ̃ ∗(x).

On the other hand, in the nonlinear (even if autonomous) case, that coincidence is no longer
observed.

Theorem 2. If n = 2 and G = R2, then for each of the following four lines of relations separately

0 = κr(f, x(0)) < κs(f, x(0)) < κ(x) = +∞,

0 = κr(f, x(0)) = κ(x) < κs(f, x(0)) < +∞,

1 = κr(f, x(0)) > κs(f, x(0)) > κ(x) = 0,

1 = κr(f, x(0)) = κ(x) > κs(f, x(0)) > 0,

there exists an autonomous system (1) such that any solution x ∈ S∗(f) is defined on R+, and all
linear, radial and spherical indicators are exact, absolute and satisfy the relations of that particular
line.

The radial wandering indicators completely coincide with the corresponding linear ones of the
first approximation system.

Theorem 3. For any system (1) and any nonzero solution x ∈ SA to the system of its first
approximation (2), the equalities hold

P̌r(f, x(0), t, L) = P̂r(f, x(0), t, L) = P(Lx, t), t ∈ R+, L ∈ AutRn,

ρ̃ ∗
r (f, x(0)) = ρ̃ ∗(x).

In the two-dimensional case, a similar coincidence is observed also for the rotation indicators.

Theorem 4. If n = 2, then for any system (1) and any nonzero solution x ∈ SA to the system of
its first approximation (2), the equalities hold

Θ̌r(f, x(0), t, L) = Θ̂r(f, x(0), t, L) = Θ(Lx, t), t ∈ R+, L ∈ AutRn,

θ̃ ∗
r (f, x(0)) = θ̃ ∗(x).

However, already in the three-dimensional (and even autonomous) case, the rotational radial
indicators, as well as the oscillation ones, generally speaking, do not match the linear ones.

Theorem 5. For n = 3 and G = R3 there exists an autonomous system (1) such that for any
nonzero solution x ∈ SA of the system of its first approximation (2) the solution xf ( · , x(0)) is also
defined on R+, and all the rotational and oscillation indicators are exact, absolute and for some
two-dimensional subspace S ⊂ SA satisfy the relations

0 = θr(f, x(0)) = νr(f, x(0)) 6 θ(x) = ν(x) =

{
1, x ∈ S \ {0};
0, x ̸∈ S.

For the linear and nonlinear radial indicators of oscillation, a similar mismatch is observed
already in the two-dimensional (albeit only in a non-autonomous) case.
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Theorem 6. For n = 2 and G = R2 there exists a system (1) such that for any solution x ∈ SA

of the system of its first approximation (2) the solution xf ( · , x(0)) is also defined on R+, and all
the linear and radial oscillation indicators are exact, absolute and satisfy the relations

0 = νr(f, x(0)) < ν(x) = 1.

For the spherical indicators, however, no analogs of Theorems 3 and 4 above are valid (that
follows from Theorems 2 and 3).

Theorem 7. If n = 2 and G = R2, then for each of the following two lines of relations separately

0 = κ(x) < κs(f, x(0)) < +∞,

1 = κ(x) > κs(f, x(0)) > 0,

there exists an autonomous system (1) such that for any nonzero solution x ∈ SA of the system
of its first approximation (2) the solution xf ( · , x(0)) is also defined on R+, and all the linear and
spherical indicators are exact, absolute and satisfy the relations of that particular line.
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In the paper, for the perturbed controlled nonlinear differential equation with the constant
delay in the phase coordinates and in controls a formula of the analytic representation of a solution
is obtained in the left semi-neighborhood of the endpoint of the main interval. The novelty here
is the effect in the formula related with perturbation of the initial moment. Analogous formulas
without perturbation of the initial moment and without delay in controls are given in [1, 3, 4].

Let I = [0, T ] be a finite interval and let τ2 > τ1 > 0, and θ > 0 be given numbers; suppose
that O ⊂ Rn and U ⊂ Rr are open sets. Let n-dimensional function f(t, x, y, u, v) be continuous
on I × O2 × U2 and continuously differentiable with respect to x, y, u and v. Let Φ be a set of
continuously differentiable initial functions φ : I1 = [−τ2, T ] → O and let Ω be a set of piecewise-
continuous and bounded control functions u(t) ∈ U , t ∈ I2 = [−θ, T ].

In the space Rn to each element µ = (t0, τ, x0, φ, u) ∈ Λ = [0, T )× [τ1, τ2]×O×Φ×Ω we assign
the delay controlled differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t), u(t− θ)), t ∈ [t0, T ] (1)

with the discontinuous initial condition

x(t) = φ(t), t ∈ [−τ2, t0), x(t0) = x0. (2)

Condition (2) is called the discontinuous initial condition because, in general, x(t0) ̸= φ(x0).

Definition. Let µ = (t0, τ, x0, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ I1 is called a solution
of equation (1) with the initial condition (2) or a solution corresponding to µ and defined on the
interval I1 if it satisfies condition (2) and is absolutely continuous on the interval [t0, T ] and satisfies
equation (1) almost everywhere on [t0, T ].

It is clear that the solution x(t) = x(t;µ), t ∈ I1, in general, at the point t0 is discontinuous.
Let us introduce notations

|µ| = |t0|+ |τ |+ |x0|+ ∥φ∥1 + ∥u∥, Λε(µ0) =
{
µ ∈ Λ : |µ− µ0| ≤ ε

}
,
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where
∥φ∥1 = sup

{
|φ(t)|+ |φ̇(t)| : t ∈ I1

}
, ∥u∥ = sup

{
|u(t)| : t ∈ I2

}
,

ε > 0 is a fixed number and µ0 = (t00, τ0, x00, φ0, u0) ∈ Λ is a fixed element; furthermore,

δt0 = t0 − t00, δx0 = x0 − x00, δφ(t) = φ(t)− φ0(t), δu(t) = u(t)− u0(t),

δµ = µ− µ0 = (δt0, δτ, δx0, δφ, δu), |δµ| = |δt0|+ |δτ |+ |δx0|+ ∥δφ∥1 + ∥δu∥.

Remark. Let x(t;µ0) be the solution corresponding to µ0 ∈ Λ and defined on the interval I1, i.e.
x(t;µ0) is the solution of the problem

ẋ(t) = f
(
t, x(t), x(t− τ0), u0(t), u0(t− θ)

)
, t ∈ [t00, T ],

x(t) = φ0(t), t ∈ [−τ2, t00), x(t00) = x00.

Then, there exists a number ε1 > 0 such that to each element µ ∈ Λε1(µ0) there corresponds
the solution x(t;µ) defined on the interval I1, i.e. the perturbed problem (1), (2) has the solution
x(t;µ), t ∈ I1 [2, p. 18].

Theorem 1. Let x0(t) := x(t;µ0) be the solution corresponding to the element µ0 =
(t00, τ0, x00, φ0, u0) ∈ Λ and defined on the interval I1, with t00+ τ0 < T . Let δ > 0 and ε2 ∈ (0, ε1)
be numbers such that t00 + τ0 + ε2 < T − δ. Then, for arbitrary

µ ∈ Λ−
ε2(µ0) =

{
µ = (t0, τ, x0, φ, u) ∈ Λε2(µ0) : 0 ≤ t0 ≤ t00

}
on the interval [T − δ, T ], the following representation holds

x(t;µ) = x0(t) + δx−(t; δµ) + o(t; δµ), (3)

where
δx−(t; δµ) = −

[
Y (t00; t)f

−
0 + Y (t00 + τ0; t)f

−
1

]
δt0 − Y (t00 + τ0; t)f

−
1 δτ + β(t; δµ),

β(t; δµ) = Y (t00; t)δx0

+

t00∫
t00−τ0

Y (s+ τ0; t)fy[s+ τ0]δφ(s) ds+

[ t∫
t00

Y (s; t)fy[s]ẋ0(s− τ0) ds

]
δτ

+

t∫
t00

Y (s; t)fu[s]δu(s) ds+

t∫
t00

Y (s; t)fv[s]δu(s− θ) ds,

f−
0 = f

(
t00, x00, φ0(t00 − τ0), u0(t00−), u0(t00 − θ−)

)
,

f−
1 = f

(
t00 + τ0, x0(t00 + τ0), x00, u0(t00 + τ0−), u0(t00 + τ0 − θ−)

)
− f

(
t00 + τ0, x0(t00 + τ0), φ0(t00), u0(t00 + τ0−), u0(t00 + τ0 − θ−)

)
,

fy[s] = fy
(
s, x0(s), x0(s− τ0), u0(s), u0(t00 + τ0 − θ−)

)
,

lim
|δµ|→0

|o(t; δµ)|
|δµ|

= 0 uniformly for t ∈ [T − δ, T ].

(4)

Next, Y (s; t) is the n× n-matrix function satisfying the equation

Ys(s; t) = −Y (s; t)fx[s]− Y (s+ τ0; t)fy[s+ τ0], s ∈ [t00, t]

and the condition

Y (s; t) =

{
H for s = t,

Θ fors > t;

H is the identity matrix and Θ is the zero matrix.



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 183

Some comments
The function δx−(t; δµ) is called the first variation of a solution x0(t), t ∈ [t10 − δ2, t10 + δ2]. The
expression (4) is called the variation formula of a solution. The addend

−
[
Y (t00; t)f

−
0 + Y (t00 + τ0; t)f

−
1

]
δt0

in (4) is the effect of perturbation of the initial moment t00. Namely, here f−
1 is the effect of the

discontinuous initial condition (2). The addend

−
[
Y (t00 + τ0; t)f

−
1 +

t∫
t00

Y (s; t)fy[s]ẋ0(s− τ0) ds

]
δτ

in (4) is the effect of perturbation of the delay τ0. The expression

Y (t00; t)δx0 +

t00∫
t00−τ0

Y (s+ τ0; t)fy[s+ τ0]δφ(s) ds

in (4) is the effect of perturbations of the initial vector x00 and the initial function φ0(t). The
expression

t∫
t00

Y (s; t)
[
fu[s]δu(s) + fv[s]δu(s− θ)

]
ds

in (4) is the effect of perturbation of the control function u0(t).
Formula (3) allows us to obtain an approximate solution of the perturbed problem (1), (2) in

the analytical form on the interval T − δ, T ]. In fact, for a small |δµ| from (3) it follows
x(t;µ) ≈ x0(t) + δx−(t; δµ), t ∈ [T − δ, T ].

Theorem 2. Let x0(t) := x(t;µ0) be the solution corresponding to the element µ0 =
(t00, τ0, x00, φ0, u0) ∈ Λ and defined on the interval I1, with t00+ τ0 < T . Let δ > 0 and ε2 ∈ (0, ε1)
be numbers such that t00 + τ0 + ε2 < T − δ. Then, for arbitrary

µ ∈ Λ+
ε2(µ0) =

{
µ = (t0, τ, x0, φ, u) ∈ Λε2(µ0) : t00 ≤ t0 < T

}
on the interval [T − δ, T ], the following representation holds

x(t;µ) = x0(t) + δx+(t; δµ) + o(t; δµ),

where
δx+(t; δµ) = −

[
Y (t00; t)f

+
0 + Y (t00 + τ0; t)f

+
1

]
δt0 − Y (t00 + τ0; t)f

+
1 δτ + β(t; δµ).

Theorem 3. Let x0(t) := x(t;µ0) be the solution corresponding to the element µ0 =
(t00, τ0, x00, φ0, u0) ∈ Λ and defined on the interval I1, with t00 + τ0 < T . Let the functions
u0(t) and u0(t− θ) are continuous at the points t00 and t00 + τ0. Besides, let δ > 0 and ε2 ∈ (0, ε1)
be numbers such that t00+τ0+ε2 < T−δ. Then, for arbitrary µ ∈ Λε2(µ0) on the interval [T−δ, T ],
the following representation holds

x(t;µ) = x0(t) + δx(t; δµ) + o(t; δµ),

where
δx(t; δµ) = −

[
Y (t00; t)f0 + Y (t00 + τ0; t)f1

]
δt0 − Y (t00 + τ0; t)f1δτ + β(t; δµ),

f0 = f
(
t00, x00, φ0(t00 − τ0), u0(t00), u0(t00 − θ)

)
,

f1 = f
(
t00 + τ0, x0(t00 + τ0), x00, u0(t00 + τ0), u0(t00 + τ0 − θ)

)
− f

(
t00 + τ0, x0(t00 + τ0), φ0(t00), u0(t00 + τ0), u0(t00 + τ0 − θ)

)
.
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In the mathematical description of various phenomena and processes arising in mathematical
physics, electrical engineering, economics, have to deal with matrix differential equations. There-
fore, such equations are relevant as for mathematicians and specialists in other fields of natural
sciences. This article considers quasi-linear matrix differential equations with coefficients depicted
in the form of absolutely and uniformly convergent Fourier series with slow variable in a sense
coefficients and frequency (class F ). The differences of the diagonal elements of the matrices of the
linear part are pure imaginary, that is, we are dealing with a critical case. But between these diag-
onal elements assume certain relations that indicate the absence of resonance between the natural
frequencies of the system and frequency of external excitation force. The problem is considered
establishing signs of existence in such an equation of solutions class F . By means of a number of
transformations the equation is reduced to the equation in noncritical case, and the solution of the
class F of this equation is sought by the method of successive approximations using the principle
compression reflections. Then based on the properties of the solutions of the transformed equation,
conclusions are drawn about the properties of the initial equation.

1 Basic notation and definitions
Let

G(ε0) =
{
t, ε : t ∈ R, ε ∈ (0, ε0), ε0 ∈ R+

}
.

Definition 1.1. We say that a function p(t, ε) belongs to the class S(m; ε0), m ∈ N ∪ {0}, if:

(1) p : G(ε0) → C;

(2) p(t, ε) ∈ Cm(G(ε0)) at t;

(3) dkp(t, ε)

dtk
= εkpk(t, ε) (0 ≤ k ≤ m),

∥p∥S(m;ε0)
def
=

m∑
k=0

sup
G(ε0)

|pk(t, ε)| < +∞.

Definition 1.2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F (m; ε0; θ) (m ∈ N∪{0}),
if

f(t, ε, θ(t, ε)) =
∞∑

n=−∞
fn(t, ε) exp(in θ(t, ε)),

and

(1) fn(t, ε) ∈ S(m, ε0) (n ∈ Z);
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(2)

∥f∥F (m;ε0;θ)
def
=

∞∑
n=−∞

∥fn∥S(m;ε0) < +∞;

(3)

θ(t, ε) =

t∫
0

φ(τ, ε) dτ, φ ∈ R+, φ ∈ (m, ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

Definition 1.3. We say that a matrix A(t, ε) = (ajk(t, ε))j,k=1,N belongs to the class S2(m; ε0)

(m ∈ N ∪ {0}), if ajk ∈ S(m; ε0) (j, k = 1, N).
We define the norm

∥A(t, ε)∥S2(m;ε0) = max
1≤j≤N

N∑
k=1

∥ajk(t, ε)∥S(m;ε0).

Definition 1.4. We say that a matrix B(t, ε,θ)=(bjk(t, ε, θ))j,k=1,N belongs to the class F2(m; ε0; θ)

(m ∈ N ∪ {0}), if bjk(t, ε, θ) ∈ F (m; ε0; θ) (j, k = 1, N).
We define the norm

∥B(t, ε, θ)∥F2(m;ε0;θ) = max
1≤j≤N

N∑
k=1

∥bjk(t, ε, θ)∥F (m;ε0;θ).

2 Statement of the problem
Consider the matrix differential equation:

dX

dt
= A(t, ε)X −XB(t, ε) + P (t, ε, θ) + µΦ(t, ε, θ,X), (2.1)

where X is an unknown square matrix of order N , belonging to some closed bounded domain
D ⊂ CN×N , where CN×N is the space of complex-valued matrices of dimension N × N , A(t, ε),
B(t, ε) belongs to the class S2(m; ε0), P (t, ε, θ) belongs to the class F2(m; ε0; θ). Φ(t, ε, θ,X) is a
matrix function belonging to the class 2(m; ε0; θ) with respect t, ε, θ and continuos with respect X
in D. µ are real parameter.

We denote λ1
j (t, ε), λ2

j (t, ε) (j = 1, N) – eigenvalues, respectively, of matrices A(t, ε), B(t, ε),
for which the following conditions are satisfied:
10.

inf
G(ε0)

∣∣λ1
j (t, ε)− λ1

k(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0,

inf
G(ε0)

|λ2
j (t, ε)− λ2

k(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N, j ̸= k.

20.

λ1
j (t, ε)− λ2

k(t, ε) = iωjk(t, ε), ωjk(t, ε) ∈ R,

inf
G(ε0)

∣∣ωjk(t, ε)− nφ(t, ε)
∣∣ ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N.

We study the problem on the existence of particular solutions of classes F2(m1; ε1; θ), m1 ≤ m,
ε1 ≤ ε0 of equation (2.1). The condition 20 shows that in this case we are dealing with a critical
case.
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3 Auxiliary results
Lemma 3.1. Let

dx

dt
= λ(t, ε)x+ u(t, ε, θ(t, ε)) (3.1)

be a given scalar linear non-homogeneous first-order differential equation, where λ(t, ε) ∈ S(m; ε),
inf

G(ε0)
|Reλ(t, ε)| = γ > 0, and u(t, ε, θ) ∈ F (m; ε0; θ). Then equation (3.1) has a unique particular

solution x(t, ε, θ) ∈ F (m; ε0; θ). This solution is given by the formula:

x(t, ε, θ(t, ε)) =

t∫
T

u(τ, ε, θ(τ, ε)) exp

( t∫
τ

λ(s, ε) ds

)
dτ,

where

T =

{
−∞ if Reλ(t, ε) ≤ −γ < 0,

+∞ if Reλ(t, ε) ≥ γ > 0.

Moreover, there exists K0 ∈ (0,+∞) such that

∥x(t, ε, θ)∥F (m;ε0;θ) ≤ K0∥u(t, ε, θ)∥F (m;ε0;θ).

Lemma 3.2. Let equation (2.1) satisfy the next conditions:
1) there exist matrices L1(t, ε), L2(t, ε) ∈ S2(m; ε0) such that

(a) | detLk(t, ε)| ≥ a0 > 0 (k = 1, 2);

(b) L−1
1 (t, ε)A(t, ε)L1(t, ε) = D1(t, ε) = (d1jk(t, ε))j,k=1,N ;

(c) L2(t, ε)B(t, ε)L−1
2 (t, ε) = D2(t, ε) = (d2jk(t, ε))j,k=1,N ,

where D1, D2 are lower triangular matrices, belonging to the class S2(m; ε0),

d1jj(t, ε) = λ1
j (t, ε), d2kk(t, ε) = λ2

k(t, ε).

Then by using the transformation

X = L1(t, ε)Y L2(t, ε)

equation (2.1) leads to the form:

dY

dt
= D1(t, ε)Y − Y D2(t, ε)− εH1(t, ε)Y − εY H2(t, ε) + F1(t, ε, θ) + µΦ1(t, ε, θ, Y ), (3.2)

where

H1(t, ε) =
1

ε
L−1
1 (t, ε)

dL1(t, ε)

dt
, H2(t, ε) =

1

ε

dL2(t, ε)

dt
L−1
2 (t, ε),

F1(t, ε, θ) = L−1
1 (t, ε)F (t, ε, θ)L−1

2 (t, ε),

Φ1(t, ε, θ, Y ) = L−1
1 (t, ε)Φ(t, ε, θ, L1(t, ε)Y L2(t, ε))L

−1
2 (t, ε).

Lemma 3.3. Let a linear matrix equation be given

dX

dt
=

(
D1(t, ε) +

q∑
l=1

B1l(t, ε, θ)µ
l
)
X −X

(
D2(t, ε) +

q∑
l=1

B2l(t, ε, θ)µ
l
)
, (3.3)
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D1(t, ε), D2(t, ε) – the same as in Lemma 3.2, B1l(t, ε, θ), B2l(t, ε, θ) (l = 1, q) belong to the class
F2(m; ε0; θ), µ ∈ (0, 1) is a small real parameter. Then for sufficiently small values µ there exists
transformation

X =
(
E +

q∑
l=1

Q1l(t, ε, θ)µ
l
)
Y
(
E +

q∑
l=1

Q2l(t, ε, θ)µ
l
)
,

where Q1l(t, ε, θ), Q2l(t, ε, θ) (l = 1, q) belong to the class F2(m; ε0; θ), which leads equation (3.2)
to the form

dY

dt
=

(
D1(t, ε) +

q∑
l=1

U1l(t, ε)µ
l + ε

q∑
l=1

V1l(t, ε, θ)µ
l + µq+1W1(t, ε, θ, µ)

)
Y−

− Y
(
D2(t, ε) +

q∑
l=1

U2l(t, ε)µ
l + ε

q∑
l=1

V2l(t, ε, θ)µ
l + µq+1W2(t, ε, θ, µ)

)
,

where U1l(t, ε), U2l(t, ε) (l = 1, q) are diagonal matrices which belong to the class S2(m; ε0), V1l,
V2l, W1, W2 (l = 1, q) are square matrices which belong to the class F (m− 1; ε0; θ).

Lemma 3.4. Let a matrix-function Φ1(t, ε, θ, Y ) in equation (3.2) have in D∗ continuous derivatives
with respect to Y in the sense of Frechet up to order 2q+1 inclusive, and if Y ∈ F2(m; ε0; θ), then
these derivatives are also from the class F2(m; ε0; θ). Then there exists µ0 ∈ (0, 1) such that for all
µ1 ∈ (0, µ0) there exists the transformation

Y = Ψ1(t, ε, θ, µ) + Ψ2(t, ε, θ, µ)ZΨ3(t, ε, θ, µ), (3.4)

where Z ∈ D∗∗ ⊂ CN×N , Ψ1(t, ε, θ, µ),Ψ2(t, ε, θ, µ),Ψ3(t, ε, θ, µ) ∈ F2(m; ε0; θ), which leads equa-
tion (3.2) to the form:

dZ

dt
=

(
D1(t, ε) +

q∑
l=1

U1l(t, ε)µ
l
)
Z − Z

(
D2(t, ε) +

q∑
l=1

U2l(t, ε)µ
l
)

+ εK(t, ε, θ, µ) + µ2qC(t, ε, θ, µ) + εV1(t, ε, θ, µ)Z − εZV2(t, ε, θ, µ)

+ µq+1
(
R1(t, ε, θ, µ)Z − ZR2(t, ε, θ, µ)

)
+ µΦ2(t, ε, θ, Z, µ), (3.5)

where K ∈ F2(m− 1; ε0; θ), U1l, U2l ∈ S2(m; ε0), R1, R2, C ∈ F2(m; ε0; θ), V1, V2 ∈ F (m− 1; ε0; θ),
matrix-function Φ2 belong to class F2(m; ε0; θ) with respect t, ε, θ, continuously differentiable in
the sense of Frechet with respect Z and contains terms of at least second order with respect to Z.

4 Basic results
Theorem 4.1. Let equation (3.5) be such that there exists q0 ∈ N (1 ≤ q0 ≤ N) such that

inf
G(ε0)

∣∣∣Re ((U1q0(t, ε))jj − (U2q0(t, ε))kk
)∣∣∣ ≥ b0 > 0 (j, k = 1, N),

and for all l = 1, q0 − 1 (if q0 > 1):

Re
(
(U1l(t, ε))jj − (U2l(t, ε))kk

)
≡ 0 (j, k = 1, N).

Then there exists µ3 ∈ (0, 1), ε1(µ) ∈ (0, ε0) such that for all µ ∈ (0, µ3), ε ∈ (0, ε1(µ)) there exist
a particular solution of equation (3.5) which belongs to the class F2(m− 1; ε1(µ); θ).
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Theorem 4.2. Let equation (2.1) be such that the following conditions are met:

(1) conditions 10, 20;

(2) conditions of Lemma 3.2;

(3) equation (3.2) satisfies the conditions of Lemma 3.4;

(4) equation (3.5) satisfies the conditions of Theorem 4.1.

Then there exist µ4 ∈ (0, 1), ε4(µ) ∈ (0, ε0) such that for all µ ∈ (0, µ4) and for all ε ∈ (0, ε4(µ))
there exist a particular solution of equation (2.1) which belongs to the class F2(m− 1; ε4(µ); θ).
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A class of singularly perturbed differential equations (SPDE) with turning points is an effective
model for the studies of various physical phenomena. There is a wide spectrum of papers devoted
to the investigation of such problems and to the construction of the uniform asymptotic of the
solution. This spectrum of SPDE is represented by R. Langer, W. Wasow, C. Lin, S. Lomov etc.
Generalization on the class of systems of SPDE in the above-mentioned direction of the research is
a relevant problem also nowadays.

In the paper [5], a system of SPDE with a stable turning point has been considered. In this
case we have used the apparatus of Airy-Dorodnitsyn functions [1, 3]. An unstable turning point
assumes a use of the following Airy-Langer functions:

TW = W ′′ ≡ W ′′(t)− tW (t) = 0.

Let us consider a system of SPDE with a stable turning point (SSPDE):

εY ′(x, ε)−A(x, ε)Y (x, ε) = H(x), (0.1)

where
A(x, ε) = A0(x) + εA1(x),

is a known matrix where

A0(x) =

 0 0 0
0 0 1

−b(x) −a(x) 0

 , A1 =

0 1 0
0 0 0
0 0 0

 ,

when ε → 0, x ∈ [−4, 0], Y (x, ε) ≡ Yk(x, ε) = col(y1(x, ε), y2(x, ε), y3(x, ε)) is an unknown vector
function, H(x) = col(0, 0, h(x)) is a given vector function.

The system to be studied here (0.1) will be investigated under the following conditions:
(1) ã(x), b(x), h(x) ∈ C∞[−4; 0];

(2) a(x) ≡ xã(x), ã(x) = 3x, b(x) = 3x+ 20, h(x) = 6x+ 2.
The scalar reduced equation for this matrix will be

xã(x)ω′(x) + b(x)ω(x) = h(x). (0.2)

The analysis of such kind of problems and construction of uniform asymptotic solution on a
given segment with a turning point brings certain difficulties and problems in the construction of
asymptotic forms [3].

The characteristic equation that corresponds to the SP system (0.1) is as follows:

|A(x, 0)− λE| =

∣∣∣∣∣∣
−λ 0 0
0 −λ 1

−b(x) −a(x) −λ

∣∣∣∣∣∣ = −λ3 − xã(x)λ = 0.

The roots of this equation are: λ1 = 0, λ2,3= ±
√
xã(x).
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1 Regularization of singularly perturbed systems
of differential equations

In order to save all essential singular functions that appear in the solution of system (0.1) due to
the special point

t = µ−2 · φ(x),

where µ = ε
1
3 , exponent p and regularizing function φ(x) are to be determined. Instead of Y (x, ε)

function Ỹ (x, t, ε) transformation function will be studied, also the transformation will be performed
in such a way that the following identity is true

Ỹk(x, t, ε)
∣∣
t=ε−pφ(x)

≡ Yk(x, ε),

which is the necessary condition for suggested method. The vector equation (0.1) can be written as

L̃εỸk(x, t, ε) ≡ µφ′ ∂ỹ(x, t, ε)

∂t
+ µ3 ∂ỹ(x, t, ε)

∂x
−A(x, ε)Ỹk(x, t, ε) = H(x). (1.1)

We describe the space of functions in which it will be possible to construct a uniform asymptotic
solution of the transformed system (1.1)

D1k = α1k(x)Ai(t) + β1k(x)Ai
′(t), D2k = α2k(x)Bi(t) + εγβ2k(x)Bi

′(t),

D3k = fk(x)ν(t) + εγgk(x)ν
′(t), D4k = ωk(x),

where αik(x), βik(x), fk(x), gk(x), ωk(x) ∈ C∞[−4, 0].
Here functions Ai(t), Bi(t) are the Airy-Langer functions, ν(t) is an essentially special func-

tion [3].
The element of this space has the form

Ỹk(x, t, ε) =

2∑
i=1

[
αik(x)Ui(t) + βik(x)U

′
i(t)

]
+ fk(x)ν(t) + εγgk(x)ν

′(t) + ωk(x).

Denote the Airy-Langer functions as U1(t) ≡ Ai(t), U2(t) ≡ Bi(t).
Now we have to investigate how the transformed operator L̃ε acts on the elements of the Space

of non-resonant solutions D1k and D2k. Let us write the obtained result in the form of the following
vector equations

U ′
i(t) : αk(x, ε)φ

′(x)−
[
A0(x) + µ3A1

]
βk(x, ε) = −µ3β′

k(x, ε),

Ui(t) : βk(x, ε)φ(x)φ
′(x)−

[
A0(x) + µ3A1

]
αk(x, ε) = −µ3α′

k(x, ε).
(1.2)

2 Construction of formal solutions of a homogeneous
transformation system

The unknown coefficients of the vector equations (1.1) are sought as following vector function series
(i = 1, 2):

αk(x, ε) =
+∞∑
r=0

µrαkr(x), βk(x, ε) =
+∞∑
r=0

µrβkr(x). (2.1)

At the moment, the regularizing function has not yet been defined; therefore, it will be defined
as a solution of the problem

φ(x) =

(
3

2

x∫
0

√
−xã(x) dx

) 2
3

.
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The regularizing function of such kind has been considered in [2,4]. Due to such a choice of the
regularizing variable detΦ(x) ≡ 0, there is a nontrivial solution of the homogeneous system (1.1)
that is

Zk0(x) = colon
(
0,

1

φ′(x)
βi30(x),−φ(x)φ′(x)βi20(x), 0, βi20(x), βi30(x)

)
, (2.2)

where β0ik(x), i = 1, 2, i = 1, 2, 3 are arbitrary up to some point and sufficiently smooth functions
at x ∈ [−4; 0].

Two linearly independent solutions of the system (1.1) are

Dk(x, t, ε) =

∞∑
r=0

εr[αikr(x)Ui(t) + ε
1
3βikr(x, ε)U

′
i(t)], i = 1, 2, (2.3)

where αikr(x) = col(αi1r(x), αi2r(x), αi3r(x)) and βikr(x) = col(βi1r(x), βi2r(x), βi3r(x)) are known
vector-functions.

Thus, gradual solving of systems of equations t = ε−
2
3 · φ(x), i = 1, 2, then gives two formal

solutions of the transformation vector equation

Dk(x, ε
− 2

3φ(x), ε) =

∞∑
r=0

εr
[
αikr(x)Ui(ε

− 2
3φ(x)) + ε

1
3βikr(x, ε)U

′
i(ε

− 2
3φ(x))

]
. (2.4)

The third formal solution of the homogeneous vector equation (0.1) is then constructed as the
series

ω(x, ε) ≡
∞∑
r=0

εrωr(x) ≡ colon
( ∞∑

r=0

εrω1r(x),
∞∑
r=0

εrω2r(x),
∞∑
r=0

εrω3r(x)
)
. (2.5)

3 Construction of formal partial solutions

To construct a partial solution of the SSPDE (0.1), let us analyze how transformation operator
operates L̃ε on an element from the space of non-resonant solutions D3r and D4r. The result is
written in the form

L̃ε(fk(x, ε)ν(t) + µgk(x, ε)ν
′(t) + ωk(x, ε))

= µfk(x, ε)φ
′(x)ν(t) + gk(x, ε)φ

′(x)φ(x)ν(t)−A(x, ε)fk(x, ε)ν(t)− µA(x, ε)gk(x, ε)ν
′(t)

+ µ3f ′
k(x)ν(t) + µ4g′k(x)ν

′(t) + µ2φ′(x)gk(x)π
−1 + µ3ω′(x)−A(x, ε)ωk(x) = H(x).

Therefore, the partial solution of the transformation vector equation (1.1) is then defined as
the series

Ỹpart.(x, t, ε) =
∞∑
r=0

εr
[
fkr(x)ν(t) + ε

1
3 gkr(x)ν

′(t)
]
+

∞∑
r=0

εrω̄kr(x).

Narrowing the solution, when t = ε−
2
3 · φ(x), the series

Ỹpart.(x, t, ε) =
∞∑
r=0

εr
[
fkr(x)ν(ε

2
3 · φ(x)) + ε

1
3 gkr(x)

dν(ε−
2
3 · φ(x))

d(ε−
2
3 · φ(x))

]
+

∞∑
r=0

εrω̄kr(x), (3.1)

is a formal partial solution of the SSPDE (0.1).
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4 Estimation of the remainder terms of the asymptotic solution
In this paper we have considered the case of an unstable turning point. In this case the remainder
terms of the solution have characteristic differences in comparison with the case of a stable turning
point [3]. Let us write the formal solution of the transformed problem (1.1) in the following form:

αikr(x, ε) ≡ αikr(x, ε) + εq+1ξα(q+1)(x, ε), (4.1)
βikr(x, ε) ≡ βkr(x, ε) + εq+1ξβ(q+1)(x, ε), (4.2)

where αkq(x, ε) and βkq(x, ε) are partial q-sums of the series (1.1), ε1+qξα(q+1)(x, ε) and
ε1+qξβ(q+1)(x, ε) are the remainder terms.

Let us write the main result of this paper in the following theorem.

Theorem. Let for the SPDE system (0.1) the conditions (1) and (2) take place. Then for suffci-
ciently small values of the parameter ε > 0:

• three linearly independent solutions of homogeneous transformed vector equation (1.1) can be
built in form of series (2.1) and (2.5);

• narrowing these solutions at t = ε−
2
3 · φ(x) is the formal asymptotic solution of the homoge-

neous SPDE system (0.1);

• partial solution of the nonhomogeneous SPDE system (0.1) constructed with the series (3.1);

• for the remainder terms of the asymptotic solutions (4.1), (4.2) estimations are valid.
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Consider the equation
x′′ = p(t)x+ g(t)x′, (1)

where p, g : R → R are ω-periodic locally Lebesgue integrable functions, ω > 0. By a solution to
equation (1), as usual, we understand a function x : R → R which is locally absolutely continuous
together with its first derivative and satisfies (1) almost everywhere in R.

We first introduce the following definitions.

Definition 1. We say that the pair (p, g) belongs to the set V−(ω) (resp. V+(ω)) if, for any
function u : [0, ω] → R which is absolutely continuous together with its first derivative and satisfies

u′′(t) ≥ p(t)u(t) + g(t)u′(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality
u(t) ≤ 0 for t ∈ [0, ω]

(
resp. u(t) ≥ 0 for t ∈ [0, ω]

)
holds.

Remark 1. In the related literature, the fact that (p, g) ∈ V−(ω) (resp. (p, g) ∈ V+(ω)) is often
called maximum (resp. anti-maximum) principle for the periodic problem

x′′ = p(t)x+ g(t)x′; x(0) = x(ω), x′(0) = x′(ω). (2)

Moreover, the relationship of the classes V−(ω) and V+(ω) with a sign of the Green’s function of
(2) is known.

Definition 2. We say that the pair (p, g) belongs to the set V0(ω) if the homogeneous problem (2)
has a positive solution.

Definition 3. We say that the pair (p, g) belongs to the set D if any non-trivial solution to equation
(1) has at most one zero in R.

The aim of this note is not to provide conditions guaranteeing that the maximum (resp. anti-
maximum) principle holds for (2). Let us mention only that such effective conditions are derived,
e.g., in [1, 3, 5] (see, also [2, 4] for the case of g(t) ≡ 0).

Below we discuss the stability and asymptotic properties of solutions of equation (1), if the pair
(p, g) of the coefficients in (1) belongs to each of the above-defined classes.
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Theorem 2. Let (p, g) ∈ V−(ω). Then, there exist µ1, µ2 > 0 and positive linearly independent
solutions x1, x2 to equation (1) such that

µ2 − µ1 =
1

ω

ω∫
0

g(s) ds

and
x1(t) = e−µ1t φ1(t), x2(t) = eµ2t φ2(t) for t ∈ R,

where φ1, φ2 ∈ AC 1
loc(R) are ω-periodic functions; equation (1) is unstable.

Proposition 3. Let
ω∫
0

g(s) ds ≥ 0 and there exist a positive solution x to equation (1) satisfying

x(t) = e−µt φ(t) for t ∈ R,

where µ > 0 and φ ∈ AC 1
loc(R) is an ω-periodic function. Then (p, g) ∈ V−(ω).

Proposition 4. Let
ω∫
0

g(s) ds ≤ 0 and there exist a positive solution y to equation (1) satisfying

y(t) = eνt ψ(t) for t ∈ R,

where ν > 0 and ψ ∈ AC 1
loc(R) is an ω-periodic function. Then (p, g) ∈ V−(ω).

Following [4, Definition 13.1], we introduce the definition.

Definition 4. Equation (1) is said to be strongly exponential dichotomic, if there exist µ, ν > 0
and linearly independent solutions x, y to equation (1) such that the functions

t 7→ eµt x(t), t 7→ e−νt y(t)

are positive and ω-periodic on R.

Corollary 1. Equation (1) is strongly exponential dichotomic if and only if (p, g) ∈ V−(ω).

Theorem 5. Let (p, g) ∈ V0(ω). Then, the following conclusions hold:

(1) If
ω∫
0

g(s) ds > 0, then equation (1) has linearly independent solutions x1, x2 such that x1 is

a positive ω-periodic solution and x2 is a positive solution satisfying

x(t) = eµt φ(t) for t ∈ R,

where

µ =
1

ω

ω∫
0

g(s) ds

and φ ∈ AC 1
loc(R) is an ω-periodic function; equation (1) is unstable.

(2) If
ω∫
0

g(s) ds = 0, then equation (1) has linearly independent solutions x1, x2 such that x1 is

a positive ω-periodic solution and x2 is a solution, with exactly one zero in R, satisfying

lim
t→−∞

x2(t) = −∞, lim
t→+∞

x2(t) = +∞;

equation (1) is unstable.
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(3) If
ω∫
0

g(s) ds < 0, then equation (1) has linearly independent solutions x1, x2 such that x1 is

a positive ω-periodic solution and x2 is a positive solution satisfying

x(t) = e−µt φ(t) for t ∈ R,

where

µ = − 1

ω

ω∫
0

g(s) ds

and φ ∈ AC 1
loc(R) is an ω-periodic function; equation (1) is stable.

Theorem 6. Let (p, g) ∈ V+(ω) ∩ D = IntV+(ω) ∩ D. Then,
ω∫
0

g(s) ds ̸= 0 and the following

conclusions hold:

(1) If
ω∫
0

g(s) ds > 0, then equation (1) has a positive solution x0 satisfying

lim
t→−∞

x0(t) = 0, lim
t→+∞

x0(t) = +∞

and, moreover, every solution x to equation (1) has at most one zeros in R and satisfies

lim
t→−∞

x(t) = 0, lim
t→+∞

|x(t)| = +∞;

equation (1) is unstable.

(2) If
ω∫
0

g(s) ds < 0, then equation (1) has a positive solution x0 satisfying

lim
t→−∞

x0(t) = +∞, lim
t→+∞

x0(t) = 0

and, moreover, every solution x to equation (1) has at most one zeros in R and satisfies

lim
t→−∞

|x(t)| = +∞, lim
t→+∞

x(t) = 0;

equation (1) is asymptotically stable.

Theorem 7. Let (p, g) ∈ IntV+(ω) \ D. Then, every non-trivial solution to equation (1) is
oscillatory in the neighbourhood +∞ as well as −∞ and the following conclusions hold:

(1) If
ω∫
0

g(s) ds > 0, then every non-trivial solution x to equation (1) satisfies

lim
t→−∞

x(t) = 0, lim sup
t→+∞

x(t) = +∞, lim inf
t→+∞

x(t) = −∞;

equation (1) is unstable.

(2) If
ω∫
0

g(s) ds = 0, then every solution to equation (1) is bounded; equation (1) is stable.

(3) If
ω∫
0

g(s) ds < 0, then every non-trivial solution x to equation (1) satisfies

lim sup
t→−∞

x(t) = +∞, lim inf
t→−∞

x(t) = −∞, lim
t→+∞

x(t) = 0;

equation (1) is asymptotically stable.
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1 Introduction
Let T > 0 be given, J = [0, T ], and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

We discuss the implicit fractional differential equation

cDαu(t) = a(t)cDβu(t) + f
(
t, u(t), cDαu(t)

)
(1.1)

together with the boundary condition

u(0) =
n∑

k=1

cku(ρk), (1.2)

where 0 < β < α < 1, a ∈ C(J), f ∈ C(J × R2), cD denotes the Caputo fractional derivative and
n ∈ N, 0 < ρ1 < ρ2 < · · · < ρn ≤ T , ck > 0,

n∑
k=1

ck = 1. Further conditions for a, f will be specified

later.

Definition 1.1. We say that u : J → R is a solution of equation (1.1) if u, cDαu ∈ C(J) and (1.1)
holds for t ∈ J . A solution u of (1.1) satisfying the boundary condition (1.2) is called a solution of
problem (1.1), (1.2).

We recall the definitions of the Caputo fractional derivative and the Riemann–Liouville frac-
tional integral [1, 2]. The Caputo fractional derivative cDγx of order γ ∈ (0, 1) of a function
x : J → R is given as

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds,

and the Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is
defined as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. It is not difficult to verify that

0 < γ < µ < 1, x, cDµx ∈ C(J) =⇒ cDγx(t) = Iµ−γcDµx(t), t ∈ J. (1.3)
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Remark 1.1. It follows from (1.3) that u is a solution of (1.1) if and only if it is a solution of the
implicit equation

cDαu(t) = a(t)Iα−βcDαu(t) + f
(
t, u(t), cDαu(t)

)
.

We note that for n = 1, c1 = 1 and ρ1 = T , the boundary condition (1.2) reduces to the periodic
condition x(0) = x(T ).

Problem (1.1), (1.2) is at resonance, because each constant function u on J is a solution of
problem cDαu = a(t)cDβu, (1.2).

We suppose that the functions a, f satisfy the conditions:

(H1) a(t) ≤ 0 for t ∈ J .

(H2) There exist D,H ∈ R, D < H, such that

f(t,D, y) > 0 for t ∈ J, y ≤ 0,

f(t,H, y) < 0 for t ∈ J, y ≥ 0.

(H3) There exists L > 0 such that∣∣f(t, x, y1)− f(t, x, y2)
∣∣ ≤ L|y1 − y2| for t ∈ J, x ∈ [C,D], y1, y2 ∈ R,

and
Q =

∥a∥Tα−β

Γ(α− β + 1)
+ L < 1.

The aim of this paper is to study the existence of solutions to problem (1.1), (1.2). The existence
result is proved by the initial value method. To this end we first introduce an operator F : C(J) →
C(J). We prove that for each c ∈ [D,H] the initial value problem cDαx(t) = Fx(t), x(0) = c has a
solution on J and all its solutions x satisfy D < x < H on (0, T ]. Let C be the set of all solutions
to this problem for c ∈ [D,H]. We prove that there exists at least one u ∈ C satisfying (1.2) and u
is a solution of problem (1.1), (1.2).

2 Operator F and its properties
Let f∗ : J × R2 be defined as

f∗(t, x, y) =


f(t,H, y) if x > H,

f(t, x, y) if x ∈ [D,H],

f(t,D, y) if x < D

for t ∈ J and y ∈ R. Then f∗ ∈ C(J × R2),

f∗(t, x, y) > 0 if t ∈ J, x ≤ D, y ≤ 0,

f∗(t, x, y) < 0 if t ∈ J, x ≥ H, y ≥ 0,
(2.1)∣∣f∗(t, x, y1)− f∗(t, x, y2)

∣∣ ≤ L|y1 − y2|, t ∈ J, x, y1, y2 ∈ R, (2.2)

and
|f∗(t, x, 0)| ≤ M, t ∈ J, x ∈ R, (2.3)

where
M = max

{
|f(t, x, 0)| : t ∈ J, x ∈ [D,H]

}
.

The following result is proved by the Banach fixed point theorem.
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Lemma 2.1. Let x ∈ C(J). Then there exists a unique solution w ∈ C(J) of the equation

w(t) = a(t)Iα−βw(t) + f∗(t, x(t), w(t)). (2.4)

Keeping in mind Lemma 2.1, for each x ∈ C(J) there exists a unique solution w ∈ C(J) of
equation (2.4). We put w = Fx and have an operator F : C(J) → C(J) satisfying the equality

Fx(t) = a(t)Iα−βFx(t) + f∗(t, x(t),Fx(t)) for t ∈ J, x ∈ C(J). (2.5)

The properties of F are given in the following two results.

Lemma 2.2. F : C(J) → C(J) is a continuous operator and

∥Fx∥ ≤ M

1−Q
, x ∈ C(J),

where M is from (2.3) and Q from (H3).

Lemma 2.3. If u ∈ C(J) is a solution of the equation

cDαu(t) = Fu(t), (2.6)

then u is a solution of the equation

cDαu(t) = a(t)cDβu(t) + f∗(t, u(t), cDαu(t)
)
. (2.7)

Proof. Let u ∈ C(J) be a solution of (2.6). Then Fu ∈ C(J) and so cDαu ∈ C(J). Hence, by (2.5)
and (1.3) (see Remark 1.1),

cDαu = a(t)Iα−βFu+ f∗(t, u,Fu)

= a(t)Iα−βcDαu+ f∗(t, u, cDαu) = a(t)cDβu+ f∗(t, u, cDαu).

As a result u is a solution of (2.7).

3 Initial value problem
We investigate the initial value problem

cDαu(t) = Fu(t), (3.1)
u(0) = c, (3.2)

where c ∈ R. It is easy to check that u ∈ C(J) is a solution of problem (3.1), (3.2) if and only if u
is a fixed point of the operator Lc : C(J) → C(J), Lcx(t) = c+ IαFx(t).

The following existence result is proved by the Schauder fixed point theorem.

Lemma 3.1. Let c ∈ R. Then problem (3.1), (3.2) has at least one solution.

For c ∈ R, let S(c) be the set of all solutions to problem (3.1), (3.2). By Lemma 3.1, S(c) ̸= ∅.

Lemma 3.2. Let c ∈ [D,H] and x ∈ S(c). Then

D < x(t) < H for t ∈ (0, T ]. (3.3)
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Proof. By Lemma 2.3, cDαx(t) = a(t)cDβx(t)+f∗(t, x(t), cDαx(t)), t ∈ J . Suppose that max{x(t) :
t ∈ J} = x(ξ) ≥ H for some ξ ∈ (0, T ]. Then it follows from the maximum principle for the Caputo
fractional derivative [3, Lemma 2.1] that

cDγx(t)
∣∣
t=ξ

≥ x(ξ)− x(0)

Γ(1− γ)
ξ−γ =

x(ξ)− c

Γ(1− γ)
ξ−γ ≥ 0 for γ ∈ (0, 1).

Hence (see (H1) and (2.1)),

a(ξ)cDβx(t)
∣∣
t=ξ

+ f∗(ξ, x(ξ), cDαx(t)
∣∣
t=ξ

)
< 0,

contrary to cDαx(t)|t=ξ ≥ 0 and

cDαx(t)
∣∣
t=ξ

= a(ξ)cDβx(t)
∣∣
t=ξ

+ f∗(ξ, u(ξ), cDαx(t)
∣∣
t=ξ

)
.

Therefore x < H on (0, T ]. Similarly, for x > D on this interval.

4 Problem (1.1), (1.2)
Let

C =
∪

c∈[D,H]

S(c).

Then C ̸= ∅, C is a compact subset in C(J) and, by Lemma 3.2,

D < x(t) < H for t ∈ (0, T ], x ∈ C. (4.1)

Theorem 4.1. Let (H1)–(H3) hold. Then problem (1.1), (1.2) has at least one solution u and
D < u(t) < H for t ∈ (0, T ].

Proof. Suppose that

x(0) ̸=
n∑

k=1

ckx(ρk) for x ∈ C. (4.2)

Let

C+
c =

{
x ∈ S(c) : x(0) <

n∑
k=1

ckx(ρk)
}
,

χ+ =
{
c ∈ [D,H] : C+

c ̸= ∅
}
, χ− = [D,H] \ χ+.

We observe that if c ∈ χ− and x ∈ S(c), then x(0) >
n∑

k=1

ckx(ρk). Since, by (4.1), S(D) = C+
D

and C+
H = ∅, we have D ∈ χ+ and H ∈ χ−. Hence χ+ and χ− are nonempty sets. We can

prove that χ+ and χ− are closed in [D,H]. Hence the compact interval [D,H] is the union of two
nonempty, closed and disjoint subsets χ+, χ−, which is impossible. Thus assumption (4.2) is false,
and therefore there exists u ∈ C such that u(0) =

n∑
k=1

cku(ρk). Since, by (4.1), D < u < H on

(0, T ], we have
f∗(t, u(t), cDαu(t)

)
= f

(
t, u(t), cDαu(t)

)
for t ∈ J . As a result u is a solution of problem (1.1), (1.2).
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Example 4.1. Let T = 1, n ∈ N, r ∈ C(J), a(t) = t(t− 1) and

f(t, x, y) = r(t)− x2n−1 + sinx− (1/2) arctan y.

Then ∥a∥ = 1/4 and the functions a, f satisfy (H1)–(H3) for H > 2n−1
√
∥r∥+ 1 , D = −H and

L = 1/2 since Γ(v) > 4/5 for v ∈ [1, 2]. By Theorem 4.1, there exists a solution u of the equation

cDαu = t(t− 1)cDβu+ r(t)− u2n−1 + sinu− 1

2
arctan cDαu,

satisfying the boundary condition (1.2) and D < u < H on (0, 1].
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In this paper, we are concerned with the existence and uniqueness of weak and strong solutions
to stochastic functional differential equations in a Hilbert space of the form

du(t) =
[
Au(t) + f(ut, yt)

]
dt+ σ(ut, yt) dW (t),

dy(t) = g(ut, yt) dt, t ≥ 0,

u(t) = ϕ(t), y(t) = ψ(t), t ∈ [−h, 0], h > 0.

(0.1)

Here ut = u(t+θ), yt = y(t+θ), θ ∈ [−h, 0], A is an infinitesimal generator of an analytic semigroup
of bounded linear operators {S(t) : t ≥ 0} in a separable Hilbert space H, W (t) is a Q-Wiener
process on a separable Hilbert space K, u(t) is a state process, the functionals f and g map the
space of functions continuous on [−h, 0] into H, σ maps the same space into a special space of
Hilbert–Schmidt operators. Finally, ϕ, ψ : [−h, 0] → H are the initial condition functions.

Functional differential equations are mathematical models of processes whose evolution depends
on their previous states. The paired stochastic equations of type (0.1) arise in various applications;
for instance, the bidomain equation (defibrillator model), the Hodgkin–Huxley equation for nerve
axons, the nuclear reactor dynamics equation, etc. These equations are characterized by the fact
that one of them is a partial differential equation (infinite-dimensional), and the other is an ordinary
one (finite-dimensional). The nonlinearities in such equations do not satisfy the Lipschitz condition,
which complicates the proof of the existence and uniqueness. However, as a rule, the right-hand
sides of these equations satisfy some monotonicity conditions, which makes it possible to apply
Galerkin approximations. This method is the main technique for obtaining the existence and
uniqueness of weak solutions in this paper.
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1 Preliminaries and main results
Let K and H be two separable Hilbert spaces and let V ⊂ H be a reflexive Banach space with the
dual space H ′. By identifying H with its dual H ′, we have V ⊂ H ∼= H ′ ⊂ V ′, where the inclusions
are assumed to be continuous and dense. (V,H, V ′) is called a Gelfand triple. Let the norms in
V,H and V ′ be denoted by ∥ · ∥V , ∥ · ∥ and ∥ · ∥V ′ , respectively. The inner product in H and
the duality scalar product between V and V ′ will be denoted by ( · , · ), and ⟨ · , · ⟩. The norm and
inner product in K will be denoted by ∥ · ∥K and ( · , · ), respectively.

Let (Ω,F , P ) be a complete probability space equipped with the normal filtration {Ft : t ≥ 0}
generated by the Q-Wiener process W on (Ω,F , P ) with the linear bounded covariance operator
such that trQ < ∞. We assume that there exist a complete orthonormal system {ek} in K and a
sequence of nonnegative real numbers λk such that

Qek = λkek, k = 1, 2, . . . , and
∞∑
k=1

λk <∞.

The Wiener process admits the expansion

W (t) =

∞∑
k=1

√
λk βk(t)ek,

where βk(t) are real valued Brownian motions mutually independent on (Ω,F , P ).
Let U0 = Q

1
2 (U) and L0

2 = L2(U0,H) be the space of all Hilbert-Schmidt operators from U0 to H
with the inner product (Φ,Ψ)L0

2
= tr[ΦQΨ∗] and the norm ∥Φ∥L0

2
, respectively. C := C([−h, 0];H)

is the space of continuous mappings from [−h, 0] to H equipped with the norm ∥u∥C = sup
[−h,0]

∥u(θ)∥,

and L2
V := L2((−h, 0);V ) is the space of V -valued mappings with the norm

∥u∥2L2
V
=

0∫
−h

∥u(t)∥2V dt.

We impose the following conditions on the operator A:
(A1) A is a linear operator with domain D(A) dense in H such that A : V → V ′.

(A2) For any u, v ∈ V there exists α > 0 such that

|⟨Au, v⟩| ≤ α∥u∥V · ∥v∥V .

(A3) A satisfies the coercivity condition: there exist constants β > 0 and γ such that

⟨Av, v⟩ ≤ −β∥v∥2V + γ∥v∥2, ∀ v ∈ V.

Conditions on nonlinearities:
(N1) f and g are mappings from C ∩ L2

V × C to H, and σ is a mapping from C ∩ L2
V × C to L0

2.

(N2) (Growth condition) There exist positive constants α > 0 and γ ≥ 1 such that

∥f(ϕ, ψ)∥+ ∥g(ϕ, ψ)∥ ≤ α

(
1 +

( 0∫
−h

∥ϕ∥V dt
)γ

+ ∥ϕ∥γC + ∥ψ∥γC

)
and

∥σ(ϕ, ψ)∥2L0
2
≤ α

(
1 + ∥ϕ∥2C + ∥ψ∥2C

)
.
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(N3) (Local Lipschitz condition) For any N > 0 there exists a constant KN > 0 such that

∥f(ϕ, ψ)− f(ϕ1, ψ1)∥2 + ∥g(ϕ, ψ)− g(ϕ1, ψ1)∥2 + ∥σ(ϕ, ψ)− σ(ϕ1, ψ1)∥2L0
2

≤ KN

(
∥ϕ− ϕ1∥2C + ∥ψ − ψ1∥2C

)
for any ϕ, ϕ1 ∈ C ∩ L2

V and ψ,ψ1 ∈ C with ∥ϕ∥2C + ∥ψ∥2C < N , ∥ϕ1∥2C + ∥ψ1∥2C < N.

(N4) (Coercivity condition) There exist constants β > 0, λ and C1 such that

⟨Aϕ(0), ϕ(0)⟩+ (f(ϕ, ψ), ϕ(0)) + (g(ϕ, ψ), ψ(0)) + ∥σ(ϕ, ψ)∥2L0
2

≤ −β∥ϕ(0)∥2V + λ
(
∥ϕ∥2C + ∥ψ∥2C

)
+ C1.

(N5) (Monotonicity condition) For any ϕ, ϕ1 ∈ C ∩ L2
V and ψ,ψ1 ∈ C, we have

2
⟨
A(ϕ(0)− ϕ1(0), ϕ(0)− ϕ1(0))

⟩
+ 2

(
f(ϕ, ψ)− f(ϕ1, ψ1), ϕ(0)− ϕ1(0)

)
+ 2

(
g(ϕ, ψ)− g(ϕ1, ψ1), ψ(0)− ψ1(0)

)
+
∥∥σ(ϕ, ψ)− σ(ϕ1, ψ1)

∥∥2
L0
2

≤ δ
(
∥ϕ− ϕ1∥2C + ∥ψ − ψ1∥2C

)
for some constant δ > 0.

Let ϕ(t) ∈ C ∩ L2
V and ψ(t) ∈ C, t ∈ [−h, 0].

Let ΩT = [0, T ]× Ω.
Definition. We call an Ft-adapted random process (u(t), y(t)) ∈ V × H a weak solution of the
initial problem (0.1) on [0, T ] if:

(1) u(t) = ϕ(t), y(t) = ψ(t), t ∈ [−h, 0];

(2) u ∈ L2(ΩT , V ), y ∈ L2(ΩT ,H);

(3) for any v ∈ V and z ∈ H, the equations

(u(t), v) = (u(0), v) +

t∫
0

(
⟨Au(s), v⟩+ (f(us, ys), v)

)
ds+

t∫
0

(σ(us, ys) dW (s), v),

(y(t), z) = (y(0), z) +

t∫
0

(g(us, ys), z) dz

hold a.s. for each t ∈ [0, T ].
Theorem 1.1 (Existence and uniqueness). Suppose that conditions (A1)–(A3) and (N1)–(N5)
hold. Then, for every ϕ ∈ C ∩ L2

V and ψ ∈ C, the initial problem (0.1) has a unique weak solution
(u(t), y(t)) on [0, T ] such that

u ∈ L2(Ω;C([0, T ];H)) ∩ L2(ΩT , V ), y ∈ L2(Ω, C([0, T ];H)).

Moreover, the energy equation holds:

∥u(t)∥2 + ∥y(t)∥2 = ∥u(0)∥2 + ∥y(0)∥2

+ 2

t∫
0

(
⟨Au(s), u(s)⟩+ (f(us, ys), u(s)) + (g(us, ys), y(s))

)
ds

+

t∫
0

∥σ(us, ys)∥2L0
2
ds+ 2

t∫
0

(
σ(us, ys) dW (s), u(s)

)
. (1.1)
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2 Proof of the main result
In this section, we provide the sketch of the proof of Theorem 1.1.

Proof.
Uniqueness. Suppose that (u(t), y(t)) and (u1(t), y1(t)) are two weak solutions of the initial problem
(0.1). Then, in view of (1.1) and condition (N5), we can easily show that

E∥u(t)− u1(t)∥2 +E∥y(t)− y1(t)∥2 = 2E

t∫
0

⟨
A(u(s)− u1(s)), u(s)− u1(s))

⟩
ds

+ 2E

t∫
0

[(
f(us, ys)− f(u1s, y

1
s), u(s)− u1(s)

)
+
(
g(us, ys)− g(u1s, y

1
s), y(s)− y1(s)

)]
ds

+E

t∫
0

∥∥σ(us, ys)− σ(u1s, y
1
s)
∥∥2
L0
2
ds ≤ δE

t∫
0

(
∥us − u1s∥2C + ∥ys − y1s∥2C

)
ds. (2.1)

In what follows, we will need the following obvious statement.

Lemma. The following inequality holds:

E sup
t∈[0,T ]

(
∥ut∥2C + ∥yt∥2C

)
≤ E

(
∥ϕ∥2C + ∥ψ∥2C

)
+E sup

t∈[0,T ]

(
∥u(t)∥2 + ∥y(t)∥2

)
. (2.2)

So, taking into account (2.2), from (2.1) we obtain

sup
s∈[0,T ]

E
(
∥u(s)− u1(s)∥2 + ∥y(s)− y1(s)∥2

)
≤ δ

t∫
0

sup
τ∈[0,s]

E
(
∥uτ − u1τ∥2C + ∥yτ − y1τ∥2C

)
ds

≤ δ

t∫
0

sup
τ∈[0,s]

E
(
∥u(τ)− u1(τ)∥2 + ∥y(τ)− y1(τ)∥2

)
ds,

which, by Gronwall’s inequality, yields

E
(
∥u(s)− u1(s)∥2 + ∥y(s)− y1(s)∥2

)
= 0, ∀ t ∈ [0, T ],

which establishes the uniqueness.
Existence. We will prove the existence by using Galerkin approximations.
Step 1. Finite-dimensional case. Approximate solutions.

Let {vk} be a complete orthonormal basis for H with vk ∈ V , and let Hn = span{v1, . . . , vn}.
Suppose that Pn : H → Hn is an orthogonal projector such that

Pnh =
n∑

k=1

(h, vk)vk for h ∈ H.

We extend Pn to the projection operator P ′
n : V ′ → V ′

n defined as

P ′
nw =

n∑
k=1

⟨w, vk⟩vk for w ∈ V ′.



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 207

Obviously, Vn = Hn = V ′
n.

Let Kn = span{e1, . . . , en}. We denote by Πn a projection operator from K to Kn such that

Πna =
n∑

k=1

(a, ek)ek.

Let us introduce the following notation:

Anu = P ′
nAu, fn(ϕ, ψ) = Pnf(ϕ, ψ), gn(ϕ, ψ) = Png(ϕ, ψ), σn(ϕ, ψ) = Pnσ(ϕ, ψ),

for u ∈ V, ϕ ∈ C ∩ L2
V , and ψ ∈ C.

We consider the approximate equations to equations (0.1):

dun(t) =
[
Anun(t) + fn(unt , y

n
t )
]
dt+ σn(unt , y

n
t ) dW

n(t),

dyn(t) = gn(unt , y
n
t ) dt,

un(t) = Pnϕ(t), yn(t) = Pnψ(t), t ∈ [−h, 0],
(2.3)

for t ∈ [0, T ], where Wn(t) = ΠnW (t).
The above equations can be regarded as Itô equations in Rn. It can be shown that, under

conditions (N1)–(N5), the coefficients fn, σn and gn of these equations are locally bounded and
Lipschitz continuous and monotone. Hence, (2.3) has a unique solution (un(t), yn(t)) in Vn on any
finite time interval [0, T ]. Moreover, it satisfies the property un ∈ L2(Ω, C([0, T ];H)) ∩ L2(ΩT , V )
and yn ∈ L2(Ω, C([0, T ];H)).

Step 2. A priori estimate.
Next, we will establish a priori estimates with some positive constant A:

E sup
t∈[0,T ]

(
∥un(t)∥2 + ∥yn(t)∥2

)
+

T∫
0

E∥un(s)∥2V ds ≤ A. (2.4)

Step 3. Weak limits.
It follows from (2.4) that there exists subsequences, denoted for convenience by un and yn such

that un → u weakly in L2(ΩT , V ) and yn → y weakly in L2(ΩT , V ). Next, we justify the passage
to the limit in the finite-dimensional equation, which proves the theorem.
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Consider the third order differential equation

y′′′ = α0p(t)yL(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, L : ∆Y0 →
]0,+∞[ is a continuous function slowly varying as y → Y0, Y0 is equal to either zero or ±∞, and
∆Y0 is a one-sided neighborhood of Y0.

In the case where L(y) ≡ 1, Eq. (1) is a linear third-order differential equation. The asymptotic
behavior of its solutions as t → +∞ (the case ω = +∞) is investigated in details (see, for example,
the monograph [6, § 6, p�. 175–194]).

Eq. (1) is a special case of the n-th order equation with regularly varying nonlinearity which
was studied in work [2] (see also [3, 4]). However, the results of this work did not cover the case
of an equation that is asymptotically close to linear. Some results on the asymptotic behavior of
solutions of equation (1) were obtained in [5].

A second-order differential equation with a similar right-hand side was studied in paper [1].
The purpose of this work is to establish necessary and sufficient conditions for existence, as

well as asymptotic representations of Pω(Y0, λ0)-solutions of the differential equation (1) in special
cases, when λ0 ∈ {0, 1,±∞}.

Definition 1. The solution y of Eq. (1) is called Pω(Y0, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if it
is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the conditions

y : [t0, ω[→ ∆Y0 , lim
t↑ω

y(t) = Y0,

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 1, 2), lim

t↑ω

[y′′(t)]2

y′′′(t)y′(t)
= λ0.

According to the properties of slowly varying functions (see [7]), for any function L : ∆Y0 →
]0,+∞[ , slowly varying as y → Y0, there exists a continuously differentiable, slowly varying as
y → Y0 function L0 : ∆Y0 → ]0,+∞[ such that

lim
y→Y0
y∈∆Y0

L(y)

L0(y)
= 1 and lim

y→Y0
y∈∆Y0

yL′
0(y)

L0(y)
= 0. (2)

We set

∆Y0 = ∆Y0(b) =

{
[b, Y0[ , if ∆Y0 is a left neighborhood of Y0,
]Y0, b], if ∆Y0 is a right neighborhood of Y0,

where a number b ∈ ∆Y0 is such that

|b| < 1 as Y0 = 0, b > 1 (b < −1) as Y0 = +∞ (Y0 = −∞).



International Workshop QUALITDE – 2021, December 18 – 20, 2021, Tbilisi, Georgia 209

We introduce the following notation

µ0 = sign b, µ1 =

{
µ0, if Y0 = ±∞,

−µ0, if Y0 = 0,

that define respectively the signs of the Pω(Y0, λ0)-solution and its first derivative in some left
neighborhood of ω. We also need the following functions

Φ(y) =

y∫
B

ds

sL
1
3 (s)

, B =


b, if

Y0∫
b

ds

sL
1
3 (s)

= ±∞,

Y0, if
Y0∫
b

ds

sL
1
3 (s)

= const,

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
I1(t) =

t∫
A1

p(τ) dτ, I2(t) =

t∫
A2

p
1
3 (τ) dτ,

where each of the integration limits Ai ∈ {ω; a} (i = 1, 2) is chosen so that the corresponding
integral tends either to zero or ±∞ as t ↑ ω.

The function Φ is strictly monotone and differentiable on ∆Y0 . For it there is a continuously
differentiable and strictly monotone inverse function Φ−1 : ∆Z(c) → ∆Y0 , for which

lim
z→Z

Φ−1(z) = Y0, Z = lim
y→Y0

Φ(y),

where

∆Z =

{
[c, Z[ , if µ0 > 0,

]Z, c], if µ0 < 0,
c = Φ(b).

Theorem 1. Let the function L(Φ−1(z)) be a regularly varying as z → Z of index γ. Then for the
existence of Pω(Y0, 1)-solutions of equation (1) it is necessary and, if function p : [a, ω[→ ]0,+∞[
is continuously differentiable and there is the finite or equal ±∞

lim
t↑ω

(
p

1
3 (t)L

1
3
0 (Φ

−1(α0I2(t)))
)′

p
2
3 (t)L

2
3
0 (Φ

−1(α0I2(t)))
, (3)

where L0 : ∆Y0 → ]0,+∞[ – is continuously differentiable and slowly varying function as y → Y0
with properties (2), then it is sufficient that

lim
t↑ω

πω(t)p
1
3 (t)L

1
3
(
Φ−1(α0I2(t))

)
= ∞, α0 lim

t↑ω
I2(t) = Z (4)

and the following inequalities

α0µ0µ1 > 0, µ∗I2(t) > 0 when t ∈ ]a, ω[ (5)

are satisfied, where µ∗ = µ0µ1 signΦ(y) when y ∈ ∆Y0. Moreover, each of these solutions admits
the following asymptotic representations

Φ(y(t)) = α0I2(t)[1 + o(1)] as t ↑ ω,

y(k)(t)

y(k−1)(t)
= α0p

1
3 (t)L

1
3
(
Φ−1(α0I2(t))

)
[1 + o(1)] (k = 1, 2) as t ↑ ω.

(6)
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If conditions (4), (5) are satisfied and there is the finite or equal ±∞ limit (3), then for α0 = 1
there exists a three-parameter family of Pω(Y0, 1)-solutions with the asymptotic representations (6)
in the case when µ∗ > 0 and a two-parameter family in the case when µ∗ < 0, and for α0 = −1 –
a one-parameter family of such solutions in the case when µ∗ > 0.

The next three theorems are devoted to the cases when λ0 = ±∞, λ0 = 0. They are established
on the condition that slowly varying function L at y → Y0 satisfies the S conditions.

Definition 2. The slowly varying as y → Y function L : ∆Y → ]0,+∞[ , where Y is equal to either
zero or ±∞, and ∆Y is a one-sided neighborhood of Y satisfies the S, if

L
(
µe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y (y ∈ ∆Y ),

where µ = sign y.

Theorem 2. Let L satisfy S. Then for the existence of Pω(Y0,±∞)-solutions of equation (1) it is
necessary and sufficient that

µ0µ1πω(t) > 0 when t ∈ ]a, ω[ , µ0 lim
t↑ω

|πω(t)| = Y0, (7)

lim
t↑ω

p(t)π3
ω(t)L(µ0π

2
ω(t)) = 0,

ω∫
a1

p(τ)π2
ω(τ)L(µ0π

2
ω(τ)) dτ = +∞, (8)

where a1 ∈ [a, ω[ is such that µ0π
2
ω(t) ∈ ∆Y0 when t ∈ [a1, ω[ . Moreover, each of solutions admits

the following asymptotic representations

ln |y(t)| = 2 ln |πω(t)|+
α0

2

t∫
a1

p(τ)π2
ω(τ)L(µ0π

2
ω(τ)) dτ [1 + o(1)] as t ↑ ω, (9)

y(k)(t)

y(k−1)(t)
=

3− k

πω(t)
[1 + o(1)] (k = 1, 2) as t ↑ ω. (10)

If conditions (7), (8) are satisfied, then there is a three-parameter family of Pω(Y0,±∞)-solutions
with the asymptotic representations (9), (10) in the case of ω = +∞, and a one-parametric family
of these solutions with the same representations when ω < +∞.

Theorem 3. Let L satisfy S and conditions (7), (8) hold. In addition, let the function p : [a, ω[→
]0,+∞[ be continuous and differentiable and such that there is a finite or equal ±∞

lim
t↑ω

πωp
′(t)

p(t)
.

Then for each Pω(Y0,±∞)-solutions of the differential equation (1) the place asymptotic represen-
tations

ln |y(t)| = 2 ln |πω(t)|+
α0

2

t∫
a1

p(τ)π2
ω(τ)L(µ0π

2
ω(τ)) dτ [1 + o(1)] as t ↑ ω,

y(k)(t)

y(k−1)(t)
=

1

πω(t)

[
3− k +

α0

2
p(τ)π3

ω(τ)L(µ0π
2
ω(τ))[1 + o(1)]

]
(k = 1, 2) as t ↑ ω

take palce.
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Theorem 4. Let L satisfy S. Then for the existence of Pω(Y0, 0)-solutions of equation (1) for
which there is a finite or equal ±∞

lim
t↑ω

πω(t)y
′′′(t)

y′′(t)
,

it is necessary and sufficient that

µ0µ1πω(t) > 0, where t ∈ ]a, ω[ , µ0 lim
t↑ω

|πω(t)| = Y0, lim
t↑ω

πω(t)p(t)

I1(t)
= −2, (11)

lim
t↑ω

p(t)π3
ω(t)L(µ0|πω(t)|) = 0,

ω∫
a1

p(τ)π2
ω(τ)L(µ0|πω(τ)|) dτ = +∞, (12)

where a1 ∈ [a, ω[ is such that µ0|πω(t)| ∈ ∆Y0 when t ∈ [a1, ω[ . Moreover, each of solutions admits
the following asymptotic representations

ln |y(t)| = ln |πω(t)| − α0

t∫
a1

p(τ)π2
ω(τ)L

(
µ0|πω(τ)|

)
dτ [1 + o(1)] as t ↑ ω, (13)

y′(t)

y(t)
=

1 + o(1)

πω(t)
,

y′′(t)

y′(t)
= −α0p(t)π

2
ω(t)L

(
µ0|πω(t)|

)
[1 + o(1)] as t ↑ ω. (14)

If conditions (11), (12) are satisfied, then there exists a two-parameter family of Pω(Y0, 0)-solutions
with the asymptotic representations (13), (14).
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In the paper, Filippov’s type theorems on the existence of an optimal element [2] are given for
the nonlinear optimal control problems with delays in the phase coordinates and commensurable
delays in controls. Unlike considered in [1,3,5–9], here under element is implied the collection of the
final moment t1, the delay parameters τi, i = 1, . . . , s containing in the phase coordinates, the initial
vector x0, the piecewise-continuous initial function φ(t) and measurable control function u(t).

Let I = [t0, T ] be a fixed interval; let τ2i > τ1i > 0, i = 1, . . . , s and θp > · · · > θ1 > 0 be
given numbers. Suppose that O ⊂ Rn is an open set and Φ ⊂ O and U ⊂ Rr are compact sets; the
function f(t, x0, x1, . . . , xs, u0, u1, . . . , up) is continuous on the set I×O1+s×U1+p and continuously
differentiable with respect to xi ∈ O, i = 0, 1, . . . , s; denote by ∆ the set of piecewise-continuous
functions φ : [t0 − τ, t0] → Φ, where τ = max{τ21, . . . , τ2s}, satisfying the conditions:

(a) for each function φ(t) ∈ ∆ there exists a partition t0 − τ = ξ0 < ξ1 < · · · < ξk+1 = t0 of the
interval [t0 − τ, t0] such that the restriction of the function φ(t) satisfies Lipschitz’s condition
on the open interval (ξi, ξi+1), i = 0, 1, . . . , k, i.e.

|φ(s1)− φ(s2)| ≤ L|s1 − s2|, ∀ s1, s2 ∈ (ξi, ξi+1), i = 0, 1, . . . , k;

(b) the numbers k and L do not depend on φ(t). By Ω we denote the set of measurable functions
u : [t0 − θp, T ] → U . Let

gi : I × [τ11, τ21]× · · · × [τ1s, τ2s]×X0 ×O → R1, i = 0, 1, . . . , l

be continuous functions, where X0 ⊂ O is a compact set. In the space Rn to each element

w = (t1, τ1, . . . , τs, x0, φ(t), u(t)) ∈ W = (t0, T ]× [τ11, τ21]× · · · × [τ1s, τ2s]×X0 ×∆× Ω

we assign the differential equation with delays in the phase coordinates and controls

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θp)

)
, t ∈ [t0, t1] (1)

with the initial condition

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x0. (2)

Definition 1. Let w = (t1, τ1, . . . , τs, x0, φ(t), u(t)) ∈ W . A function x(t) = x(t;w) ∈ O, t ∈
[t0 − τ, t1], is called a solution corresponding to the element w, if it satisfies condition (2) and is
absolutely continuous on the interval [t0, t1] and satisfies Eq. (1) almost everywhere on [t0, t1].
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Definition 2. An element w ∈ W is said to be admissible if there exists the corresponding solution
x(t) = x(t;w), satisfying the condition

g(t1, τ1, . . . , τs, x0, x(t1)) = 0, where g = (g1, . . . , gl). (3)

By W0 we denote the set of admissible elements. Now we consider the functional

J(w) = g0(t1, τ1, . . . , τs, x0, x(t1;w)).

Definition 3. An element w0 = (t10, τ10, . . . , τs0, x00, φ0(t), u0(t)) ∈ W0 is said to be optimal if

J(w0) = inf
w∈W0

J(w). (4)

(1)–(4) is called the control problem with delays in the phase coordinates and controls.

Theorem 1. There exists an optimal element w0 ∈ W0 if the following conditions holds:

1) there exist a number h > 0 such that θi = ih, i = 1, . . . , p – commensurability of delays θi,
i = 1, . . . , p;

2) T = t0 +mh, where m is a natural number with m ≥ p;

3) W0 ̸= ⊘;

4) there exists a number M > 0 such that for an arbitrary w ∈ W0,

|x(t;w)| ≤ M, t ∈ [t0, t1];

5) for each fixed t ∈ [t0, t0 + h] and zi = (x0i, x1i, . . . , xsi) ∈ O1+s, i = 0, 1, . . . ,m− 1 the set

Vf (t; z0, z1, . . . , zm−1)

:=





f(t, z0, u0, u−1, . . . , u−p)
f(t+ h, z1, u1, u0, u−1, . . . , u−p+1)

...
f(t+ ph, zp, up, up−1, . . . , u0)

f(t+ (p+ 1)h, zp+1, up+1, up, . . . , u1)
...

f(t+ (m− 2)h, zm−2, um−2, um−3, . . . , um−p−2)
f(t+ (m− 1)h, zm−1, um−1, um−2, . . . , um−p−1)


:

ui ∈ U, i = −p, . . . ,−1, 0, 1, . . . ,m− 1


is convex.

Remark. Let U be a convex set and

f(t, x0, x1, . . . , xs, u0, u1, . . . , up) =

p∑
i=0

Ai(t, x0, x1, . . . , xs)ui.

Then the condition 5) of Theorem 1 holds.
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Now we consider an optimal problem with the integral functional and with fixed ends

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θp)

)
, t ∈ I, (5)

x(t) = φ(t), t ∈ [t0 − τ, t0), x(t0) = x0, x(t1) = x1, (6)
t1∫

t0

f0
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θp)

)
dt −→ min . (7)

Here f0(t, x0, x1, . . . , xs, u0, u1, . . . , up) : I×O1+s×U1+p → R1 is a continuous function, x0, x1 ∈
O are fixed points. For the problem (5)–(7) by Q0 we denote the set of admissible elements

q = (t1, τ1, . . . , τs, φ(t), u(t)) ∈ Q = (t0, T ]× [τ11, τ21]× · · · × [τ1s, τ2s]×∆× Ω

and by
q0 = (t10, τ10, . . . , τs0, φ0(t), u0(t))

we denote an optimal element( see Definitions 2 and 3).

Theorem 2. There exists an optimal element q0 ∈ Q0 if the conditions 1) and 2) of Theorem 1
hold. Moreover: Q0 ̸= ⊘; there exists a number M > 0 such that for an arbitrary q ∈ Q0 we
have |x(t; q)| ≤ M , t ∈ [t0, t1]; for each fixed t ∈ [t0, t0 + h] and zi = (x0i, . . . , xsi) ∈ O1+s, i =
0, 1, . . . ,m− 1 the set VF (t; z0, z1, . . . , zm−1) is convex, where F = (f0, f).

It is clear that Theorem 2 is valid also for a problem with the free right end. Below we give an
example which shows that for the existence of an optimal element the convexity of the set VF is
essential.

Example. Consider the optimal control problem

ẋ(t) = −x
(
t−

√
2
)
+ u(t) + u2(t− 1), t ∈ [0, 2],

x(t) = 0, t ∈
[
−
√
2, 0

)
, x(0) = 0; u(t) = 1, t ∈ [−1, 0), u(t) ∈ U = [−1, 1], t ∈ [0, 2],

2∫
0

[x(t)− t]2 dt → min .

Here under an element is implied only control function u(t) ∈ Ω. For a given i = 2, 3, . . . we
shall decompose the interval [0, 1] into intervals Ij , j = 2, . . . , i, of length 1/i. Define the control
ui(t), t ∈ [0, 2]:

ui(t) = vi(t), t ∈ [0, 1];

ui(t) = 0, t ∈
(
1,
√
2
]
;

ui(t) = t−
√
2 , t ∈

(√
2, 2

]
,

here vi(t) is a control oscillating between +1 and −1, i.e.

vi(t) = 1, t ∈ I1, vi(t) = −1, t ∈ I2,

etc. Furthermore,
lim
i→∞

x(t;ui) = x0(t) = t uniformly in [0, 2]
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and by Gamkrelidze’s approximation lemma [4] the sequence of Dirac measures δvi(t), i = 2, 3, . . . ,
t ∈ [0, 1] weakly converges to 1

2 δ−1+
1
2 δ+1. It is easy to observe that the trajectory x0(t), t ∈ [0, 2],

minimizing the functional corresponds to the control

u0(t) =


0, t ∈ [0, 1],

1, t ∈
(
1,
√
2
]
,

t+ 1−
√
2 , t ∈

(√
2, 2

]
.

But u0(t) ̸∈ [−1, 1], t ∈ (
√
2, 2], i.e. it is not an admissible control. Consequently, in the considered

example, there is no optimal element since the set

VF (t; z0, z1) :=

{(
F (t, z0, u0, u−1)

F (t+ 1, z1, u1, u0)

)
: ui ∈ [−1, 1], i = −1, 0, 1

}
is not convex. Here zi = (x0i, x1i), i = 0, 1 and

F (t, z0, u0, u−1) =

(
(x00 − t)2

−x10 + u0 + u2−1

)
, F (t+ 1, z1, u1, u0) =

(
(x01 − t− 1)2

−x11 + u1 + u20

)
.
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Solutions of ordinary differential equations with the Hukuhara derivative [1], [2, p. 14] are com-
pact convex sets for every value of the independent variable. The geometric characteristics of these
sets can be considered as functions of the independent variable. The study of these functions is of
particular interest. For example, in the paper [4] the radii of inscribed and circumscribed spheres of
solutions of linear time-invariant differential equations were considered and their Lyapunov expo-
nents were calculated. The paper [3] gives a complete description of linear time-invariant differential
equations with the Hukuhara derivative that preserve polytopes, i.e., of equations such that any
solution of them that is a polytope for the initial value of the independent variable remains a
polytope for all subsequent values.

This report examines other geometric characteristics of solutions. But before formulating the
obtained result, let us give some necessary definitions. By Ω(Rd) we denote the family of all
nonempty bounded subsets of the space Rd. The set of all nonempty convex compact subsets of
the space Rd is denoted by Kc(Rd).

Definition 1. A set X ⊂ Kc(Rd) is called a set of constant width if the length of the orthogonal
projection of X onto an arbitrary line equals the same value w(X) that is called the width of X.

Definition 2. A set Z
def
= {x+ y : x ∈ X, y ∈ Y } is called the Minkowski sum of two subsets X,

Y ⊂ Rd.

Generally speaking, for arbitrary real matrices A and B consisting of d columns and a set
X ⊂ Rd, we have (A+B)X ̸= AX +BX.

Definition 3 ([1]). A set Z ⊂ Rd is called the Hukuhara difference of X, Y ⊂ Rd and denoted by
Z = X − Y , if X = Y + Z.

By B
def
= {x ∈ Rd : ∥x∥ ≤ 1} we denote the closed ball of unit radius centered at the origin.

Definition 4. The Hausdorff distance h( · , · ) on the set Ω(Rd) is the function

h(X,Y )
def
= inf

{
r ≥ 0 : X ⊂ Y + rB, Y ⊂ X + rB

}
, X, Y ∈ Ω(Rd).

According to Hahn Theorem, the pair
(
Kc(Rd), h

)
is a complete metric space. By I ⊂ R we

denote an arbitrary open interval that may be unbounded.

Definition 5 ([1]). A mapping X : I → Kc(Rd) is called differentiable by Hukuhara at a point
t0 ∈ I if there exist limits

lim
∆t→+0

X(t0 +∆t)−X(t0)

∆t
, lim

∆t→+0

X(t0)−X(t0 −∆t)

∆t

and these limits are equal to each other. In this case, the common value of these limits, which is
obviously a convex compact set, is denoted by DHX(t0) and called the Hukuhara derivative of the
mapping X at the point t0.
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Consider the linear differential equation

DHX =
n∑

i=1

Ai(t)X, X(t) ∈ Kc(Rd), t ≥ 0, (1)

with piecewise continuous d× d-matrices of coefficients Ai( · ), 1 ≤ i ≤ n. We say that equation (1)
preserves sets of constant width if for any its solution X( · ), such that X(0) is a set of constant
width, it follows that X(t) is a set of constant width for all t ≥ 0. Naturally, the problem arises of
obtaining a necessary and sufficient condition for equation (1) to preserve sets of constant width.
The complete solution of the problem is given by the following theorem.

Theorem. Equation (1) preserves sets of constant width if and only if there exist piecewise con-
tinuous function α1( · ), α2( · ), . . . , αn( · ) : [0,∞) → R≥0, such that the following equalities hold

Ai(t)
TAi(t) = αi(t)E, 1 ≤ i ≤ n, t ≥ 0.
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In this paper we consider a parametric family of non-autonomous dynamical systems defined on
a compact metric space and continuously depending on a parameter from some topological space.
For any such family, we study the asymptotic ε-capacity of its dynamical systems as a function of
the parameter from the standpoint of the Baire classification.

As a measure of “massiveness” of a compact metric space (X, d), A. N. Kolmogorov in the
paper [1] introduced the notion of ε-capacity which is defined as the maximum number of ε-
distinguishable elements in X. Using this notion, we give the definition of the topological entropy
of a non-autonomous dynamical system [2].

Let F ≡ (f1, f2, . . . ) be a sequence of continuous mappings from X to X. For any positive
integer n, denote by Fn the subsequence (fn, fn+1, . . . ) of the sequence F . Along with the original
metric d we define on X an additional system of metrics

dFn
k (x, y) = max

0≤i≤k−1
d(f◦i

n (x), f◦i
n (y)),(

f◦i
n ≡ fn+(i−1) ◦ · · · ◦ fn, f◦0

n ≡ idX
)
, x, y ∈ X, k, n ∈ N.

For any k ∈ N and ε > 0, we denote by Nd(Fn, ε, k) the maximum number of points in X such
that their pairwise dFn

k -distances are greater than ε. Such a set of points will be called (Fn, ε, k)-
separated. Then the ε-capacity hd(F , ε) and asymptotic ε-capacity h∗d(F , ε) of the non-autonomous
dynamical system (X, F) are defined by the equalities

hd(F , ε) = lim
k→∞

1

k
lnNd(F1, ε, k), (1)

h∗d(F , ε) = sup
n∈N

lim
ε→0

lim sup
k→∞

1

k
lnNd(Fn, ε, k). (2)

It follows directly from formulas (1) and (2) that

hd(F , ε) ≤ h∗d(F , ε)

holds for any sequence F . As the following example shows, quantities (1) and (2) may not coincide.
Let us equip the set Ω2 of two-sided sequences

x = (. . . , x−2, x−1, x0, x1, x2, . . . ), xk ∈ {0, 1},

with the metric

dΩ2(x, y) =

{
0 if x = y;

2−min{|i|:xi ̸=yi} if x ̸= y.
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Note that the resulting metric space (Ω2, dΩ2) is compact and homeomorphic to the Cantor set on
the segment [0, 1] with the metric induced by the standard metric of the real line. Let σ : Ω2 → Ω2

stand for the left shift by one element:

σ((. . . , x−1, x0, x1, . . . )) = (. . . , x0, x1, x2, . . . ),

and χ : Ω2 → Ω2 be the map that takes any element from Ω2 to the sequence of zeros:

χ((. . . , x−1, x0, x1, . . . )) = (. . . , 0, 0, 0, . . . ).

Then for the sequence F ≡ (χ, σ, σ, . . . ) and ε < 1/2 we have

hd(F , ε) = 0 < ln 2 = h∗d(F , ε).

Note that in this example the equality

h∗d(F , ε) = lim sup
k→∞

1

k
lnNd(F2, ε, k)

holds from which we obtain

h∗d(F , ε) = max
n∈N

lim sup
k→∞

1

k
lnNd(Fn, ε, k).

In the general case, as the following example shows, the supremum over n in formula (2) cannot
be replaced by the maximum.

Let Λ2 be the set of infinite matrices of the form

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
... . . .

 ,

where aij ∈ {0, 1}; on this set we introduce the metric

dΛ2(A,B) =

{
0 if A = B;

2−min{max{i,j}: aij ̸=bij} if A ̸= B.

Consider the sequence F ≡ (f1, f2, . . . ) of continuous mappings Λ2 → Λ2 defined by

f1



a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
... . . .


 =


a11+1 a12+1 a13+1 . . .
0 0 0 . . .
0 0 0 . . .
...

...
... . . .

 ,

f2



a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
... . . .


 =


a11+1 a12+1 a13+1 . . .
a21+2 a22+2 a23+2 . . .
0 0 0 . . .
...

...
... . . .

 , . . . .

It follows that for all n ∈ N and ε < 1/2, the inequality

+∞ = h∗d(F) > max
1≤m≤n

lim
k→∞

1

k
lnNd(Fn, ε, k)
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holds.
For a given metric space M and a sequence of continuous mappings

F ≡ (f1, f2, . . . ), fi : M×X → X, (3)

we form the functions

µ 7−→ hd
(
F(µ, · ), ε

)
, (4)

µ 7−→ h∗d
(
F(µ, · ), ε

)
. (5)

It was proved in [3] that for any metric space M, compact metric space X and sequence of mappings
(3) function (4) belongs to the second Baire class and in general does not belong to the first Baire
class. Recall that the zeroth Baire class on a topological space M consists of all continuous
functions, and for any positive integer p functions of the p-th Baire class are the functions that are
pointwise limits of sequences of functions belonging to the (p− 1)-th class.

In the same paper [3] it was proved for a complete metric space M that the set of points of
upper semicontinuity of function (4) is an everywhere dense Gδ-set.

In this paper similar results are obtained for function (5).

Theorem 1. For any sequence of mappings (3), function (5) belongs to the second Baire class.
Furthermore, its set of points of upper (lower) semicontinuity is a Gδ-set (an Fσδ-set).

Theorem 2. If M = X = Ω2, then there exists a sequence of mappings (3) such that for any
ε ∈ (0; 1/4] function (5) does not belong to the first Baire class on the space M.

Theorem 3. If a space M is complete, then the set of points of upper semicontinuity of function
(5) is an everywhere dense Gδ-set.
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Abstract
In this short communication, we will introduce the notion of quaternion hyper argument to

construct the non-commutative quaternion hyper argument space. By virtue of the structure of
the Hilger complex plane and hyper argument space theory, we establish a theoretical framework
of the quaternion hyper-complex space in which the new quaternion hyper-complex exponent,
the hyper-complex logarithm are introduced. Note that the quaternion exponential functions
introduced here is a solution of the linear homogeneous dynamic equation x∆(t) = f(t)x(t)
under the non-commutative quaternion function f .

1 Quaternion hyper argument space and calculus
The notion of quaternion was introduced by Hamilton in 1843, which provides a type of hyper-
complex numbers and extends the filed C of the complex numbers to a novel non-commutative
division ring under the addition and multiplication operation. The study quaternion dynamic
equations becomes a hot topic and some basic results were established on time scales by Wang and
Agarwal et al. (see [1–6]).

In the literature [4], some important notions of the hyper-complex polar form of the quaternion
numbers and a notion of the quaternion hyper argument are presented as follows.

Definition 1.1 ([4]). Let q = q0 + q1i+ q2j + q3k ∈ Q, cosQ, sinQ : R× R× R → C, we define the
quaternion polar form of q by

q := |q|eargQ(q) = |q|eΘ = |q|
[
cosQΘ+ sinQΘj

]
,

where

Θ = (θ(1), θ(2), θ(3))Q, q0, q1, q2, q3 ∈ R, θ(1), θ(2) ∈ (−π, π], θ(3) ∈
[
0,

π

2

]
,

cosQΘ = cos θ(1) cos θ(3) + sin θ(1) cos θ(3)i, sinQΘ = cos θ(2) sin θ(3) + sin θ(2) sin θ(3)i,

and θ(1), θ(2), θ(3) satisfy the following conditions:
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(i) cos θ(1) =
q0√

q20 + q21
and sin θ(1) =

q1√
q20 + q21

if q0 + q1i ̸= 0; θ(1) = 0 if q0 + q1i = 0;

(ii) cos θ(2) =
q2√

q22 + q23
and sin θ(2) =

q3√
q22 + q23

if q2j + q3k ̸= 0; θ(2) = 0 if q2j + q3k = 0;

(iii) cos θ(3) =

√
q20 + q21
|q|

and sin θ(3) =

√
q22 + q23
|q|

if q ̸= 0; θ(1) = θ(2) = θ(3) = 0 if q = 0,

we call Θ the quaternion hyper-principle argument. Generally, we define the quaternion hyper
argument ArgQ(q) of q satisfying

eArgQ(q) := eΥ = cosQΥ+ sinQΥj,

where Υ = (α(1), α(2), α(3))Q ∈ Γq and

Γq =
{
Υ | cosQΘ+ sinQΘj = cosQΥ+ sinQΥj

}
.

Remark 1.1. Let
q = |q|e(θ(1),θ(2),θ(3))Q , p = |p|e(γ(1),γ(2),γ(3))Q ,

then
argQ(qp) ̸=

(
θ(1) + γ(1), θ(2) + γ(2), θ(3) + γ(3)

)Q
in general.

Remark 1.2. Let

argQ(q) = (θ(1), θ(2), θ(3))Q, argQ(q) = (γ(1), γ(2), γ(3))Q,

then
θ(1) + γ(1) = 0, |θ(2) − γ(2)| = π and θ(3) = γ(3).

Remark 1.3. Note that the quaternion hyper-principle argument

argQ(q) = (θ(1), θ(2), θ(3))Q

is unique for each fixed q.

Remark 1.4. Let

argQ(q) = (θ(1), θ(2), θ(3))Q and ArgQ(q) = (α(1), α(2), α(3))Q, n1, n2, n3 ∈ Z,

then
α(1) = θ(1) + 2n1π, α(2) = θ(2) + 2n2π, α(3) = θ(3) + 2n3π,

or
α(1) = θ(1) + 2n1π, α(2) = θ(2) + 2n2π + π, α(3) = −θ(3) + 2n3π,

or
α(1) = θ(1) + 2n1π + π, α(2) = θ(2) + 2n2π + π, α(3) = θ(3) + 2n3π + π,

etc., this indicates that Γq is an infinite set.
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Remark 1.5. Note that{
q | q ∈ Q, argQ(q) = (θ(1), θ(2), θ(3))Q, θ(3) = 0

}
= C

and {
q | q ∈ Q, argQ(q) = (θ(1), θ(2), θ(3))Q, θ(3) = 0, θ(1) = 0 or π

}
= R.

Moreover,

e(θ
(1),θ(2),θ(3))Q = eθ

(1)i if θ(3) = 0;

q ∈ R and e(θ
(1),θ(2),θ(3))Q = 1 if θ(3) = θ(1) = 0;

e(θ
(1),θ(2),θ(3))Q = eθ

(2)ij if θ(3) =
π

2
.

Remark 1.6. Note that for argQ(q) = (θ(1), θ(2), θ(3))Q, it follows that

q = a+ bj = |a|eθ(1)i + |b|eθ(2)ij = |q|
(
eθ

(1)i cos θ(3) + eθ
(2)i sin θ(3)j

)
,

where a, b ∈ C.

2 The quaternion hyper-complex space
Definition 2.1 ([4]). Let h > 0, Q = C1 × C2, q = (q0 + q1i) + (q2 + q3i)j ∈ Q, q0 + q1i ∈ C1 and
q2 + q3i ∈ C2. Then C1 is called the sub-complex plane of the quaternion hyper-complex space,
and C2 is called the imaginary-complex plane of the quaternion hyper-complex space. Moreover,
we define the Hilger quaternion number set as

Qh :=
{
q ∈ Q : q ̸= −1

h

}
.

Let q = a + bj ∈ Qh, a, b ∈ C, θ(1) = Imh(a), θ(2) = Imh(b), θ(3) = Imh(|a| + |b|j), then the
schematic diagram of the quaternion hyper-complex space is showed by Figure 1. For h = 0, then
Q0 = Q.

Now, let

χ
h
(q) =


ln |1 + hq|

h
for h > 0,

q0 for h = 0,

Ah(q) =


1

h
· argQ(1 + hq) for h > 0,

lim
h→

1

h
· argQ(1 + hq) for h = 0,

we introduce the hyper-complex cylinder transformation ξQh : Qh → ZQ
h by

ξQh (q) = χ
h
(q) + Ah(q) =


ln |1 + hq|

h
+

1

h
· argQ(1 + hq) for h > 0,

q0 + lim
h→0

1

h
· argQ(1 + hq) for h = 0,

where
ZQ
h =

{
q ∈ Q : θ(1), θ(2) ∈

(
− π

h
,
π

h

]
, θ(3) ∈

[
0,

π

2

]}
.
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Figure 1. The geometric diagram of the quaternion hyper-complex space.

Remark 2.1. Let h > 0, the Hilger complex numbers Ch = {z ∈ C | z ̸= − 1
h}, then Ch ⊂ Qh. In

fact, let p, q ∈ Qh and argQ(q) = (θ(1), θ(2), θ(3))Q, argQ(p) = (γ(1), γ(2), γ(3))Q, we have

argQ(q)⊕Q argQ(p) = θ(1)i+ γ(1)i,

argQ(q)⊖Q argQ(p) = θ(1)i− γ(1)i,

b · argQ(q) = bθ(1)i,

where b ∈ R and θ(2) = θ(3) = γ(2) = γ(3) = 0, it means that the operations ⊕Q and ⊖Q will turn
into the classical operations + and − when θ(2) = θ(3) = γ(2) = γ(3) = 0, by Remark 1.5, we can
obtain Ch ⊂ Qh.

Next, we will introduce the quaternion hyper-complex logarithm in the quaternion hyper-
complex space.

Definition 2.2 ([4]). Let q ∈ Q, q ̸= 0. We define the quaternion hyper-complex logarithm by

LogQ(q) := ln |q|+ argQ(q).

Remark 2.2. Note that eLog
Q(q) = q for any nonzero quaternion number q ∈ Q. In fact,

eLog
Q(q) = eln |q|+argQ(q) = eln |q|earg

Q(q) = |q|eargQ(q) = q.

Remark 2.3. Let q, p ∈ Q,

argQ(q) = (θ(1), θ(2), θ(3))Q and argQ(p) = (γ(1), γ(2), γ(3))Q,

then
LogQ(qp) = ln |q|+ ln |p|+ (θ(1), θ(2), θ(3))Q ⊕Q (γ(1), γ(2), γ(3))Q.
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3 The quaternion hyper-complex exponential function and
dynamic equation on time scales

Definition 3.1 ([4]). Let t, s ∈ T, f : T → Q, 1 + µ(t)f(t) ̸= 0 for any t ∈ Tκ, then we define
x̂(t, t0) and x̃(t, t0) as follows:

(i) x̂(t, s) := e

t∫
s

ln |1+µ(τ)f(τ)|
µ(τ)

∆τ+
t∫
s

1
µ(τ)

·argQ(1+µ(τ)f(τ))∆τ
if µ(τ) > 0 for any τ ∈ [s, t]T.

(ii) If lim
u→0

1
u ·arg

Q(1+uf(t)) = Θ(t) and Θ(t) is an integrable quaternion hyper argument function,
then we define

x̃(t, s) := e

t∫
s
f0(τ) dτ+

t∫
s
Θ(τ) dτ

if µ(τ) = 0 for any τ ∈ [s, t]T, where f(t) = f0(t) + f1(t)i+ f2(t)j + f3(t)k.

Generally, Based on the hyper-complex cylinder transformation ξQµ(t) : Qh → ZQ
h by

ξQµ(t)(f(t)) = χ
µ(t)

(f(t)) + Aµ(t)(f(t))

=


ln |1 + µ(t)f(t)|

µ(t)
+

1

µ(t)
· argQ(1 + µ(t)f(t)) for µ(t) > 0,

f0(t) + Θ(t) for µ(t) = 0,

we define the quaternion hyper-complex exponential function by

eQf (t, s) := e

t∫
s
ξQ
µ(τ)

(f(τ))∆τ
= e

t∫
s
χ
µ(τ)

(f(τ))∆τ+
t∫
s
Aµ(τ)(f(τ))∆τ

.

The following result is valid.

Theorem 3.1 ([4]). Let s, r, t ∈ T, f : T → Q, 1 + µ(t)f(t) ̸= 0 for any t ∈ Tκ. Then

(i) eQf (s, s) = 1;

(ii) eQf (t, r)e
Q
f (r, s) = eQf (t, s);

(iii) (eQf (t, s))
∆ = f(t)eQf (t, s);

(iv) (eQf (s, t))
∆ = eQf (s, t)(1 + µ(t)f(t))−1[−f(t)] if t is a right scattered point on T.
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