Topological Entropy of a Diagonalizable Linear System of Differential Equations

A. N. Vetokhin^{1,2}

¹Lomonosov Moscow State University, Moscow, Russia ²Bauman Moscow State Technical University, Moscow, Russia E-mail: anveto27@yandex.ru

Consider the linear differential system

$$\dot{x} = A(t)x, \ x \in \mathbb{R}^n, \ t \in \mathbb{R}_+ \equiv [0, \infty), \tag{1}$$

with a piecewise continuous operator function $A : \mathbb{R}_+ \to \operatorname{End} \mathbb{R}^n$. Let us endow the space \mathbb{R}^n with the norm $||x|| = \max_{1 \le k \le n} |x_k|$ and with the set of metrics

$$d_t^A(x_0, y_0) = \max_{\tau \in [0, t]} \|x(\tau, x_0) - x(\tau, y_0)\|, \ x_0, y_0 \in \mathbb{R}^n, \ t \in \mathbb{R}_+,$$

where $x(\cdot, a)$ is the solution to system (1) satisfying the condition x(0, a) = a. By $S_{\|\cdot\|}(A, \mathcal{K}, \varepsilon, t)$ we denote the ε -entropy of a compact metric space $\mathcal{K} \subset \mathbb{R}^n$ with the metric d_t^A [2] (that is, the minimum number of open balls of radius $\varepsilon > 0$ covering \mathcal{K}). Then the topological entropy [1] of system (1) is defined by the formula

$$h_{\rm top}(A) = \sup_{\mathcal{K} \subset \mathbb{R}^n} \lim_{\varepsilon \to 0} \overline{\lim_{t \to \infty} \frac{1}{t}} \ln S_{\|\cdot\|}(A, \mathcal{K}, \varepsilon, t)$$

(its right-hand side does not depend on the choice of a norm $\|\cdot\|$, therefore the definition is correct).

In what follows we will use one more formula to calculate the topological entropy. For any $\varepsilon > 0$ and $n \in \mathbb{N}$ we denote by $N_{\|\cdot\|}(A, \mathcal{K}, \varepsilon, t)$ the ε -capacity of a compact metric space $\mathcal{K} \subset \mathbb{R}^n$ with the metric d_t^A [2] (i.e., the maximum number of points such that all their pairwise d_t^A -distances are greater than ε), then the topological entropy can be calculated by the formula

$$h_{\mathrm{top}}(A) = \sup_{\mathcal{K} \subset \mathbb{R}^n} \lim_{\varepsilon \to 0} \lim_{t \to \infty} \frac{1}{t} \ln N_{\|\cdot\|}(A, \mathcal{K}, \varepsilon, t).$$

In [3], it is asserted that for the Lyapunov exponents $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ of any system (1) with a bounded operator function A, the equality

$$h_{\rm top}(A) = \sum_{\lambda_i(A)>0} \lambda_i(A) \tag{2}$$

holds. In fact, it may not hold, as shown by

Theorem 1. For system (1) with the operator function

$$A(t) = \operatorname{diag}(a(t), b(t)), \quad where \quad (a(t), b(t)) = \begin{cases} (1, 0), & t \in [0, 1]; \\ (1, 0), & t \in [(2n - 1)!, (2n)!]; \\ (0, 1), & t \in [(2n)!, (2n + 1)!], \end{cases}$$
(3)

relation (2) becomes the inequality 1 < 2.

Proof. Let us calculate the Lyapunov exponents of system (3). On the one hand, from the inequalities $a(t) \leq 1, b(t) \leq 1, t \geq 0$, we see that the Lyapunov exponents do not exceed 1.

On the other hand, from the inequalities

$$\begin{split} & \lim_{t \to +\infty} \frac{1}{t} \int_{0}^{t} a(\tau) \, d\tau \geqslant \lim_{n \to +\infty} \frac{(2n)! - (2n-1)!}{(2n)!} = 1, \\ & \lim_{t \to +\infty} \frac{1}{t} \int_{0}^{t} b(\tau) \, d\tau \geqslant \lim_{n \to +\infty} \frac{(2n+1)! - (2n)!}{(2n+1)!} = 1, \end{split}$$

it follows that the Lyapunov exponents of system (3) satisfy the equalities

$$\lambda_1(A) = \lambda_2(A) = 1$$
 and $\lambda_1(A) + \lambda_2(A) = 2$.

Let us calculate the topological entropy of system (3). For given $m, n \in \mathbb{N}$, consider the set of points of the form $\begin{pmatrix} x_1^{(k)} \\ 0 \end{pmatrix}$, where

$$x_1^{(k)} = \frac{k}{e^{(2n)! - (2n-1)!}m}, \ k = 0, \dots, [e^{(2n)! - (2n-1)!}m]$$

([·] is an integer part of the number). Since the distance $d^{A}_{(2n)!}\left(\begin{pmatrix} x_{1}^{(k)}\\ 0 \end{pmatrix}, \begin{pmatrix} x_{1}^{(l)}\\ 0 \end{pmatrix}\right), k \neq l$, satisfies the inequality

$$d^{A}_{(2n)!}\left(\begin{pmatrix} x_{1}^{(k)} \\ 0 \end{pmatrix}, \begin{pmatrix} x_{1}^{(l)} \\ 0 \end{pmatrix}\right) = \frac{|k-l|}{e^{(2n)! - (2n-1)!}m} e^{(2n)! - (2n-1)! + (2n-2)! - (2n-3)! + \dots} > \frac{1}{m}$$

then

$$N(A, [0, 1] \times \{0\}, \frac{1}{m}, (2n)!) \ge e^{(2n)! - (2n-1)!}m,$$

and hence

$$h_{\text{top}}(A) \ge \lim_{n \to \infty} \left(\frac{(2n)! - (2n-1)!}{(2n)!} + \frac{\ln m}{(2n)!} \right) = 1.$$

Let us prove the opposite inequality $h_{top}(A) \leq 1$. For an arbitrary compact set $K \subset \mathbb{R}^2$ we denote by γ_K a positive number such that $K \subset [-\gamma_K, \gamma_K] \times [-\gamma_K, \gamma_K]$.

For any t > 0 and $m \in \mathbb{N}$, the set of points $V_{t,m}$ of the form $\begin{pmatrix} x_1^{(k)} \\ x_2^{(l)} \end{pmatrix}$, where

$$x_{1}^{(k)} = \frac{k\gamma_{K}}{m} e^{-\int_{0}^{t} a(\tau) d\tau}, \quad k = -\left[e^{\int_{0}^{t} a(\tau) d\tau}m\right], \dots, \left[e^{\int_{0}^{t} a(\tau) d\tau}m\right], \\ x_{2}^{(l)} = \frac{l\gamma_{K}}{m} e^{-\int_{0}^{t} b(\tau) d\tau}, \quad l = -\left[e^{\int_{0}^{t} b(\tau) d\tau}m\right], \dots, \left[e^{\int_{0}^{t} b(\tau) d\tau}m\right],$$

is a $\frac{\gamma_K}{m}$ -covering of the square $[-\gamma_K, \gamma_K] \times [-\gamma_K, \gamma_K]$. Indeed, let an arbitrary point $(x_1, x_2) \in [-\gamma_K, \gamma_K] \times [-\gamma_K, \gamma_K]$ be given. Then by the definition of the set $V_{t,m}$ there exists a point $(x_1^{(k_0)}, x_2^{(l_0)})$ such that

$$|x_1^{(k_0)} - x_1| \leqslant \frac{\gamma_K}{m} e^{-\int_0^t a(\tau) d\tau}, \quad |x_2^{(l_0)} - x_2| \leqslant \frac{\gamma_K}{m} e^{-\int_0^t b(\tau) d\tau}.$$

It follows that

$$x_1^{(k_0)} - x_1 | e_0^{\int a(\tau) d\tau} \leqslant \frac{\gamma_K}{m}, \quad |x_2^{(l_0)} - x_2| e_0^{\int b(\tau) d\tau} \leqslant \frac{\gamma_K}{m}$$

Thus $S_{\parallel,\parallel}(A,\mathcal{K},\varepsilon,t)$ does not exceed the cardinality of the set $V_{t,m}$, which equals

$$\left(2\left[e_{0}^{\int a(\tau) d\tau}m\right]+1\right)\left(2\left[e_{0}^{\int b(\tau) d\tau}m\right]+1\right) \leqslant 9m^{2}e_{0}^{\int (a(\tau)+b(\tau)) d\tau}=9m^{2}e^{t},$$

whence we get $h_{top}(A) \leq 1$.

For an arbitrary piecewise continuous function $a(\cdot): \mathbb{R}_+ \to \mathbb{R}$, let

$$a^{+}(t) = \max_{s \in [0;t]} \int_{0}^{s} a(\tau) \, d\tau$$

Theorem 2. If system (1) can be reduced to a diagonal form

$$\dot{y} = \operatorname{diag}(b_1(t), \dots, b_n(t))y,$$

by means of a transformation x = Q(t)y such that

$$\lim_{t \to +\infty} \frac{1}{t} \ln \|Q(t)\| = \lim_{t \to +\infty} \frac{1}{t} \ln \|Q^{-1}(t)\| = 0,$$

then

$$h_{\rm top}(A) = \lim_{t \to +\infty} \frac{1}{t} \sum_{k=1}^n b^+(t).$$

Given a metric space \mathcal{M} and a continuous map

$$A: \mathcal{M} \times \mathbb{R}_+ \to \operatorname{End} \mathbb{R}^n \tag{4}$$

we form the function

$$\mu \longmapsto h_{\text{top}}(A(\mu, \,\cdot\,)). \tag{5}$$

Results of [4, 5] imply

Theorem 3. For any mapping (4), function (5) belongs to the third Baire class. If $\mathcal{M} = [0,1]$, then for some mapping (4) function (5) does not belong to the first Baire class.

References

- R. Bowen, Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125–136.
- [2] A. N. Kolmogorov and V. M. Tihomirov, ε-entropy and ε-capacity of sets in function spaces. (Russian) Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3–86.
- [3] L. H. Tien and L. D. Nhien, On the topological entropy of nonautonomous differential equations. Journal of Applied Mathematics and Physics 7 (2019), 418–429.
- [4] A. N. Vetokhin, On a problem on minorants of Lyapunov exponents. (Russian) Differ. Uravn. 49 (2013), no. 7, 950–952; translation in Differ. Equ. 49 (2013), no. 7, 922–924.
- [5] A. N. Vetokhin, The exact Baire class of topological entropy of nonautonomous dynamical systems. (Russian) Mat. Zametki 106 (2019), no. 3, 333–340; translation in Math. Notes 106 (2019), no. 3-4, 327–333.