O. Stanzhytskyi

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
E-mail: ostanzh@qmail.com

R. Uteshova

International Information Technology University, Almaty, Kazakhstan
E-mail: ruteshova1@gmail.com

M. Mukash

K. Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan E-mail: mukashma1983@gmail.com

The averaging method is applied to study the existence of solutions of boundary value problems for systems with impulse action at non-fixed moments of time. It is shown that if an averaged boundary value problem has a solution, then the original problem is solvable as well. Here the averaged system is a system of autonomous ordinary differential equations.

1 Introduction

The present paper deals with the following boundary value problem for a system of differential equations with impulse action at non-fixed moments of time:

$$\dot{x} = \varepsilon X(t, x), \quad t \neq t_i(x),
\Delta x \big|_{t=t_i(x)} = \varepsilon I_i(x),
F \Big(x(0), x \Big(\frac{T}{\varepsilon} \Big) \Big) = 0.$$
(1.1)

Here $\varepsilon > 0$ is a small parameter, $t_i(x) < t_{i+1}(x)$, $i = 1, 2, \ldots$, are the moments of impulse, X and I_i are d-dimensional vector functions.

Assuming that there exist the limits

$$X_0(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T X(t, x) dt$$
 (1.2)

and

$$I_0(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{0 \le t: (x) \le T} I_i(x), \tag{1.3}$$

we put problem (1.1) in correspondence with the averaged boundary value problem

$$\dot{y} = \varepsilon \left[X_0(y) + I_0(y) \right], \quad F\left(y(0), y\left(\frac{T}{\varepsilon}\right)\right) = 0,$$
 (1.4)

or, on the slow time scale $\tau = \varepsilon t$,

$$\frac{dy}{d\tau} = X_0(y), \quad F(y(0), y(T)) = 0.$$

The main result of this paper is a proof of the following statement: if the averaged boundary value problem has a solution, then, for small values of parameter ε , the original boundary value problem (1.1) also has a solution, and there is a proximity between their solutions.

Boundary value problems for systems with impulse action have been considered by many authors. To our knowledge, these problems were first studied in [3] when investigating periodical solutions by using the Samoilenko numerical-analytic method. Boundary value problems for systems with non-fixed moments of impulse were studied in [1] for the case of linear boundary conditions, and in [2] for the nonlinear case.

In the theory of ordinary differential equations, the method of averaging was first applied to boundary value problems in [4]. This method made it possible to reduce a boundary value problem for a non-autonomous system to an analogous problem for an autonomous averaged system. In the present paper, we apply this idea to solving the boundary value problem (1.1).

2 Formulation of the problem and the main result

We consider problem (1.1) under the assumption that the following conditions are satisfied:

- (1) The functions X(t,x) and $I_i(x)$ are uniformly continuous in a domain $Q = \{t \ge 0, x \in D \subset \mathbb{R}^d\}$;
- (2) The functions X(t,x) and $I_i(x)$ are bounded by a constant M > 0 and, with respect to x, satisfy the Lipschitz condition with a constant L > 0;
- (3) There exist uniform in $x \in D$ limits (1.2) and (1.3), as well as the limits

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\partial X(t, x)}{\partial x} dt = \frac{\partial X_0(x)}{\partial x}$$

and

$$\lim_{T \to \infty} \frac{1}{T} \sum_{0 < t_i < T} \frac{\partial I_i(x)}{\partial x} = \frac{\partial I_0(x)}{\partial x};$$

(4) There exists a constant C > 0 such that, for $t \ge 0$ and $x \in D$,

$$i(t,x) < Ct$$
,

where i(t,x) is the number of impulses on (0,t), and

$$\inf_{x \in D} \tau_{k+1}(x) > \sup_{x \in D} \tau_k(x);$$

(5) The averaged problem (1.4) has a solution $y = y(\tau) = y(\varepsilon, \tau)$ that belongs to D together with some ρ -neighborhood, in which F(x,y) has uniformly continuous partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$, and det $\frac{\partial F_0(x_0)}{\partial x_0} \neq 0$, here $x_0 = y(0)$, $F_0(x_0) = F(x_0, y(T, x_0))$.

Theorem 1. Let conditions (1)–(5) be satisfied. Then there exists $\varepsilon_0 > 0$ such that for $\varepsilon \in (0, \varepsilon_0)$ one can specify a function $\xi = \xi(\varepsilon)$, $\varepsilon \to 0$, such that the boundary value problem (1.1) has a unique solution $x(t,\varepsilon)$ in $\xi(\varepsilon)$ -neighborhood of $y(\varepsilon t)$, i.e.,

$$|x(t,\varepsilon) - y(\varepsilon t)| < \xi(\varepsilon), \ t \in \left[0, \frac{T}{\varepsilon}\right], \ \varepsilon \in (0,\varepsilon_0).$$

The outline of the proof is as follows.

I. We first consider the system with impulse effect at fixed moments t_i on $[0, \frac{T}{\varepsilon}]$:

$$\dot{x} = \varepsilon X(t, x), \quad t \neq t_i,
\Delta x\big|_{t=t_i} = \varepsilon I_i(x(t_i)).$$
(2.1)

For this system, we derive a variational equation linearized along its solution $x(t, x_0)$ $(x(0, x_0) = 0)$, i.e.,

$$\dot{z} = \varepsilon \frac{\partial X(t, x(t, x_0))}{\partial x}, \quad t \neq t_i,
\Delta z \big|_{t=t_i} = \varepsilon \frac{\partial I_i(x(t_i, x_0))}{\partial x} z(t_i),$$
(2.2)

where $z(t) = \frac{\partial X(t,x_0)}{\partial x_0}$. We then establish the proximity between the solution of (2.2) and the solution $\frac{\partial y(\varepsilon t,x_0)}{\partial x_0}$ of the variational equation for the averaged system (under respective initial conditions).

- II. By using the implicit function theorem, we prove the existence and uniqueness of a solution of the boundary value problem for system (2.1).
- III. Let us fix p points y^1, y^2, \ldots, y^p in some neighborhood of a solution of the averaged problem and consider the following boundary value problem:

$$\dot{x} = \varepsilon X(t, x), \quad t \neq t_i(y^i),$$

 $\Delta x \big|_{t=t_i(y^i)} = \varepsilon I_i(y^i),$
 $F\left(x(0), x\left(\frac{T}{\varepsilon}\right)\right) = 0.$

From what has been proved above, we conclude that this boundary value problem, for ε small enough, has a unique solution $x(t, y^1, \dots, y^p)$. If we choose y^1, \dots, y^p so that

$$y^{i} = x(t_{i}(y^{i}), y^{1}, \dots, y^{p}), \quad i = \overline{1, p},$$
 (2.3)

then the function $x(t, y^1, ..., y^p)$ is the desired solution of problem (1.1). Using a fixed-point theorem, we show that system (2.3) has a solution. This completes the proof.

References

- [1] I. Rachůnková, L. Rachůnek, A. Rontó and M. Rontó, A constructive approach to boundary value problems with state-dependent impulses. *Appl. Math. Comput.* **274** (2016), 726–744.
- [2] A. Rontó, I. Rachůnková, M. Rontó and L. Rachůnek, Investigation of solutions of state-dependent multi-impulsive boundary value problems. *Georgian Math. J.* **24** (2017), no. 2, 287–312.

- [3] A. M. Samoĭlenko and N. A. Perestyuk, *Impulsive Differential Equations*. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 14. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
- [4] A. M. Samoĭlenko and R. I. Petrishin, The averaging method in some boundary value problems. (Russian) Differentsial'nye Uravneniya 25 (1989), no. 6, 956–964; translation in Differential Equations 25 (1989), no. 6, 688–695.