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The averaging method is applied to study the existence of solutions of boundary value problems
for systems with impulse action at non-fixed moments of time. It is shown that if an averaged
boundary value problem has a solution, then the original problem is solvable as well. Here the
averaged system is a system of autonomous ordinary differential equations.

1 Introduction
The present paper deals with the following boundary value problem for a system of differential
equations with impulse action at non-fixed moments of time:

ẋ = εX(t, x), t ̸= ti(x),

∆x
∣∣
t=ti(x)

= εIi(x), (1.1)

F
(
x(0), x

(T
ε

))
= 0.

Here ε > 0 is a small parameter, ti(x) < ti+1(x), i = 1, 2, . . . , are the moments of impulse, X and
Ii are d-dimensional vector functions.

Assuming that there exist the limits

X0(x) = lim
T→∞

1

T

T∫
0

X(t, x) dt (1.2)

and
I0(x) = lim

T→∞

1

T

∑
0<ti(x)<T

Ii(x), (1.3)
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we put problem (1.1) in correspondence with the averaged boundary value problem

ẏ = ε
[
X0(y) + I0(y)

]
, F

(
y(0), y

(T
ε

))
= 0, (1.4)

or, on the slow time scale τ = εt,

dy

dτ
= X0(y), F (y(0), y(T )) = 0.

The main result of this paper is a proof of the following statement: if the averaged boundary
value problem has a solution, then, for small values of parameter ε, the original boundary value
problem (1.1) also has a solution, and there is a proximity between their solutions.

Boundary value problems for systems with impulse action have been considered by many au-
thors. To our knowledge, these problems were first studied in [3] when investigating periodical so-
lutions by using the Samoilenko numerical-analytic method. Boundary value problems for systems
with non-fixed moments of impulse were studied in [1] for the case of linear boundary conditions,
and in [2] for the nonlinear case.

In the theory of ordinary differential equations, the method of averaging was first applied to
boundary value problems in [4]. This method made it possible to reduce a boundary value problem
for a non-autonomous system to an analogous problem for an autonomous averaged system. In the
present paper, we apply this idea to solving the boundary value problem (1.1).

2 Formulation of the problem and the main result
We consider problem (1.1) under the assumption that the following conditions are satisfied:

(1) The functions X(t, x) and Ii(x) are uniformly continuous in a domain Q={t≥0, x∈D⊂Rd};

(2) The functions X(t, x) and Ii(x) are bounded by a constant M > 0 and, with respect to x,
satisfy the Lipschitz condition with a constant L > 0;

(3) There exist uniform in x ∈ D limits (1.2) and (1.3), as well as the limits

lim
T→∞

1

T

T∫
0

∂X(t, x)

∂x
dt =

∂X0(x)

∂x

and
lim
T→∞

1

T

∑
0<ti<T

∂Ii(x)

∂x
=

∂I0(x)

∂x
;

(4) There exists a constant C > 0 such that, for t ≥ 0 and x ∈ D,

i(t, x) ≤ Ct,

where i(t, x) is the number of impulses on (0, t), and

inf
x∈D

τk+1(x) > sup
x∈D

τk(x);

(5) The averaged problem (1.4) has a solution y = y(τ) = y(ε, τ) that belongs to D together with
some ρ-neighborhood, in which F (x, y) has uniformly continuous partial derivatives ∂F

∂x and
∂F
∂y , and det ∂F0(x0)

∂x0
̸= 0, here x0 = y(0), F0(x0) = F (x0, y(T, x0)).
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Theorem 1. Let conditions (1)–(5) be satisfied. Then there exists ε0 > 0 such that for ε ∈ (0, ε0)
one can specify a function ξ = ξ(ε), ε → 0, such that the boundary value problem (1.1) has a unique
solution x(t, ε) in ξ(ε)-neighborhood of y(εt), i.e.,∣∣x(t, ε)− y(εt)

∣∣ < ξ(ε), t ∈
[
0,

T

ε

]
, ε ∈ (0, ε0).

The outline of the proof is as follows.

I. We first consider the system with impulse effect at fixed moments ti on [0, Tε ]:

ẋ = εX(t, x), t ̸= ti,

∆x
∣∣
t=ti

= εIi(x(ti)).
(2.1)

For this system, we derive a variational equation linearized along its solution x(t, x0)
(x(0, x0) = 0), i.e.,

ż = ε
∂X(t, x(t, x0))

∂x
, t ̸= ti,

∆z
∣∣
t=ti

= ε
∂Ii(x(ti, x0))

∂x
z(ti),

(2.2)

where z(t) = ∂X(t,x0)
∂x0

. We then establish the proximity between the solution of (2.2) and the
solution ∂y(εt,x0)

∂x0
of the variational equation for the averaged system (under respective initial

conditions).

II. By using the implicit function theorem, we prove the existence and uniqueness of a solution
of the boundary value problem for system (2.1).

III. Let us fix p points y1, y2, . . . , yp in some neighborhood of a solution of the averaged problem
and consider the following boundary value problem:

ẋ = εX(t, x), t ̸= ti(y
i),

∆x
∣∣
t=ti(yi)

= εIi(y
i),

F
(
x(0), x

(T
ε

))
= 0.

From what has been proved above, we conclude that this boundary value problem, for ε small
enough, has a unique solution x(t, y1, . . . , yp). If we choose y1, . . . , yp so that

yi = x(ti(y
i), y1, . . . , yp), i = 1, p, (2.3)

then the function x(t, y1, . . . , yp) is the desired solution of problem (1.1). Using a fixed-point
theorem, we show that system (2.3) has a solution. This completes the proof.
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