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Application of the Averaging Method to Solving
Boundary Value Problems for Systems with Impulse Action
at Non-Fixed Moments of Time
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The averaging method is applied to study the existence of solutions of boundary value problems
for systems with impulse action at non-fixed moments of time. It is shown that if an averaged
boundary value problem has a solution, then the original problem is solvable as well. Here the
averaged system is a system of autonomous ordinary differential equations.

1 Introduction

The present paper deals with the following boundary value problem for a system of differential
equations with impulse action at non-fixed moments of time:

T =eX(t,x), t#ti(z),

Ax‘t:ti(m) = el;(z), (1.1)
T
F(z(()),x(—)) =0.
€
Here € > 0 is a small parameter, t;(z) < t;+1(z), i = 1,2,..., are the moments of impulse, X and

I; are d-dimensional vector functions.
Assuming that there exist the limits

and

0<t;(x)<T
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we put problem (1.1) in correspondence with the averaged boundary value problem

. T
i =c[Xo) + b)]. F(y0.y(2)) =0, (L.4)
or, on the slow time scale T = ¢t,

W~ Xolw), F(0),u(T)) = 0.
-

The main result of this paper is a proof of the following statement: if the averaged boundary
value problem has a solution, then, for small values of parameter ¢, the original boundary value
problem (1.1) also has a solution, and there is a proximity between their solutions.

Boundary value problems for systems with impulse action have been considered by many au-
thors. To our knowledge, these problems were first studied in [3] when investigating periodical so-
lutions by using the Samoilenko numerical-analytic method. Boundary value problems for systems
with non-fixed moments of impulse were studied in [1] for the case of linear boundary conditions,
and in [2] for the nonlinear case.

In the theory of ordinary differential equations, the method of averaging was first applied to
boundary value problems in [4]. This method made it possible to reduce a boundary value problem
for a non-autonomous system to an analogous problem for an autonomous averaged system. In the
present paper, we apply this idea to solving the boundary value problem (1.1).

2 Formulation of the problem and the main result

We consider problem (1.1) under the assumption that the following conditions are satisfied:
(1) The functions X (¢, ) and I;(x) are uniformly continuous in a domain Q= {t>0, € D CR%};

(2) The functions X (t,z) and [;(x) are bounded by a constant M > 0 and, with respect to z,
satisfy the Lipschitz condition with a constant L > 0;

(3) There exist uniform in z € D limits (1.2) and (1.3), as well as the limits

1 /T('?X(t,x) g — 0Xo(x)

AT o oz
0
and 1 oLi(z)  Ol(x)
. i\L ol\x
lim — = :
T T Z ox oxr '’
0<t; <T

(4) There exists a constant C' > 0 such that, for t > 0 and = € D,
i(t,x) < Ct,
where i(t, z) is the number of impulses on (0,t), and

inf 741 (x) > sup 7% (z);

(5) The averaged problem (1.4) has a solution y = y(7) = y(e, 7) that belongs to D together with

some p-neighborhood, in which F'(z,y) has uniformly continuous partial derivatives ‘?f; and

%—5 , and det MST(EJO) # 0, here zo = y(0), Fo(zo) = F(xo,y(T, z0)).
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Theorem 1. Let conditions (1)—(5) be satisfied. Then there exists £g > 0 such that for e € (0,¢0)
one can specify a function & = £(g), € — 0, such that the boundary value problem (1.1) has a unique
solution x(t,e) in £(g)-neighborhood of y(et), i.e.,

[2(t.¢) — y(et)| < &G). te o, g] e € (0,20).

The outline of the proof is as follows.

I. We first consider the system with impulse effect at fixed moments ¢; on [0, %]

i=eX(t,x), t#t,

Az|,_, =eli(x(t)). (2.1)

For this system, we derive a variational equation linearized along its solution x(t,xg)
(z(0,20) = 0), i.e., )
X (t, x(t
PR UL UL )
Ox
Ol (x(ti, o))

ox

(2.2)

Az|,_, =e¢ 2(t;),

where z(t) %ﬁ;’;ﬁo) . We then establish the proximity between the solution of (2.2) and the
)

solution aygﬂ
o . IO
conditions).

of the variational equation for the averaged system (under respective initial

II. By using the implicit function theorem, we prove the existence and uniqueness of a solution
of the boundary value problem for system (2.1).

III. Let us fix p points y!,y?, ..., y? in some neighborhood of a solution of the averaged problem
and consider the following boundary value problem:

i =eX(t,x), t#ty),
Amlt:ti(yi) =eliy’).

F(x(O),x(g)) = 0.

From what has been proved above, we conclude that this boundary value problem, for ¢ small
enough, has a unique solution z(t,y',...,y?). If we choose y',..., 9P so that

y'=x(ti(yh), vt yP), i=1,p, (2.3)

then the function z(t,y',...,yP) is the desired solution of problem (1.1). Using a fixed-point
theorem, we show that system (2.3) has a solution. This completes the proof.
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