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1 Introduction
Let T > 0 be given, J = [0, T ], X = C(J)×R and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

Let ϕ be an increasing and odd homeomorphism with ϕ(R) = R. The special case of ϕ is
p-Laplacian ϕp(x) = |x|p−2x, p > 1.

We discuss the fractional boundary value problem

cDαϕ
(
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t)

)
= f(t, x(t)), (1.1)

x(0) = x(T ), cDβx(t)
∣∣
t=0

= 0, (1.2)

where α ∈ (0, 1], 0 < γ2 < γ1 < β ≤ 1, a, b ∈ C(J), f ∈ C(J × R) and cD denotes the Caputo
fractional derivative.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x, cDβx ∈ C(J) and (1.1)
holds for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of
problem (1.1), (1.2).

We recall the definitions of the Riemann-Liouville fractional integral and the Caputo fractional
derivative [2, 3].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is defined
as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
The Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)

ds,

where n = [γ] + 1, [γ] means the integral part of the fractional number γ. If γ ∈ N, then cDγx(t) =
x(γ)(t). In particular,

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds = d

dt
I1−γ(x(t)− x(0)), γ ∈ (0, 1).
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It is well known that Iγ : C(J) → C(J) for γ ∈ (0, 1); IγIµx(t) = Iγ+µx(t) for x ∈ C(J) and
γ, µ ∈ (0,∞); cDγIγx(t) = x(t) for x ∈ C(J) and γ > 0; if x, cDγx ∈ C(J) and γ ∈ (0, 1), then
IγcDγx(t) = x(t)− x(0); if 0 < β < α < 1 and x, cDαx ∈ C(J), then cDβx = Iα−βcDαx.

Problem (1.1), (1.2) is at resonance, because every constant function x on J is a solution of
problem cDαϕ(cDβx− a(t)cDγ1x− b(t)cDγ2x) = 0, (1.2).

The aim of this paper is to study the existence of solutions to problem (1.1), (1.2). To this end
we first introduce an operator Q : C(J) → C(J). Then, by Q an operator L : X → X is defined
and it is proved that if (x, c) ∈ X is a fixed point of L, then x is a solution of problem (1.1), (1.2).
The existence of a fixed point of L is proved by the Schaefer fixed point theorem [1,4].

We work with the following conditions for a, b and f in (1.1):

(H1) a(t) ≥ 0, b(t) ≥ 0 for t ∈ J .

(H2) There exist D,H ∈ R, D < 0 < H, such that

f(t, x) < 0 for t ∈ J, x ≤ D,

f(t, x) > 0 for t ∈ J, x ≥ H.

(H3) There exists a nondecreasing function w : [0,∞) → (0,∞) such that

lim
v→∞

1

v
ϕ−1

( Tαw(v)

Γ(α+ 1)

)
= 0

and
|f(t, x)| ≤ w(|x|) for (t, x) ∈ J × R,

where ϕ−1 is the inverse function of ϕ.

2 Operator Q and its properties
The following result is the generalization of the Gronwall–Bellman lemma for singular kernels.

Lemma 2.1. Let 0 < ζ < ρ ≤ 1, z ∈ C(J) be nonnegative and c1, c2 ∈ [0,∞). Suppose that
v ∈ C(J) is nonnegative and

v(t) ≤ z(t) + c1I
ζv(t) + c2I

ρv(t), t ∈ J.

Then
v(t) ≤ z(t) + d

(
c1 +

c2Γ(ζ)T
ρ−ζ

Γ(ρ)

)
Iζz(t), t ∈ J,

where d = d(ζ, ρ) is a positive constant.

Let F : C(J) → C(J) be the Nemytskii operator associated to f ,

Fx(t) = f(t, x(t)).

For x ∈ C(J), we discuss the auxiliary equation

u(t) = a(t)Iβ−γ1u(t) + b(t)Iβ−γ2u(t) + ϕ−1IαFx(t) (2.1)

with the unknown function u.
The following result is established by using Lemma 2.1 and the Schaefer fixed point theorem

in C(J).
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Lemma 2.2. Let x ∈ C(J). Then equation (2.1) has a unique solution u in the set C(J).
Keeping in mind Lemma 2.2, for every x ∈ C(J) there exists a unique solution u ∈ C(J) of

equation (2.1). We put Qx = u and have an operator Q : C(J) → C(J) satisfying

Qx(t) = a(t)Iβ−γ1Qx(t) + b(t)Iβ−γ2Qx(t) + ϕ−1IαFx(t), x ∈ C(J). (2.2)

The properties of Q are given in the following two lemmas.
Lemma 2.3. Let (H1) and (H2) hold. Then

x ∈ C(J), x(t) ≤ D on J =⇒ Qx(t) < 0 on (0, T ],

x ∈ C(J), x(t) ≥ H on J =⇒ Qx(t) > 0 on (0, T ],

Lemma 2.4. Let (H3) hold. Then Q : C(J) → C(J) is continuous and

∥Qx∥ ≤ Eϕ−1
(Tαw(∥x∥)

Γ(α+ 1)

)
, x ∈ C(J), (2.3)

where
E = 1 +

T β−γ1

Γ(β − γ1 + 1)

(
∥b∥+ ∥a∥Γ(β − γ1)T

γ1−γ2

Γ(β − γ2)

)
.

3 Operator L and its properties
Let an operator L : X → X be defined by

L(x, c) =
(
c+ IβQx(t), c− IβQx(t)

∣∣
t=T

)
.

The following two lemmas give the properties of L.
Lemma 3.1. If (x, c) is a fixed point of L, then x is a solution to problem (1.1), (1.2).
Proof. Let (x, c) = L(x, c) for some (x, c) ∈ X. Then

x(t) = c+ IβQx(t), t ∈ J,

IβQx(t)
∣∣
t=T

= 0,

and therefore x(0) = c, x(T ) = c and cDβx(t) = Qx(t) for t ∈ J . Hence cDβx ∈ C(J) and since
Qx(t)|t=0 = 0, we have cDβx(t)|t=0 = 0. Thus x satisfies the boundary condition (1.2) and

cDγ1x(t) = Iβ−γ1cDβx(t), cDγ2x(t) = Iβ−γ2cDβx(t), t ∈ J.

Combining these equalities with (2.2) and cDβx(t) = Qx(t) we obtain
cDβx(t) = Qx(t) = a(t)Iβ−γ1Qx(t) + b(t)Iβ−γ2Qx(t) + ϕ−1IαFx(t)

= a(t)Iβ−γ1cDβx(t) + b(t)Iβ−γ2cDβx(t) + ϕ−1IαFx(t)

= a(t)cDγ1x(t) + b(t)cDγ2x(t) + ϕ−1IαFx(t), t ∈ J.

In particular,
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t) = ϕ−1IαFx(t), t ∈ J.

Applying ϕ and then cDα on both its sides, it follows
cDαϕ

(
cDβx(t)− a(t)cDγ1x(t)− b(t)cDγ2x(t)

)
= Fx(t), t ∈ J.

Hence x is a solution of equation (1.1). As a result, x is a solution to problem (1.1), (1.2).

Lemma 3.2. Let (H3) hold. Then L is a completely continuous operator.



188 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

4 Problem (1.1), (1.2)
Theorem 4.1. Let (H1)–(H3) hold. Then problem (1.1), (1.2) has at least one solution.

Proof. By Lemma 3.1, we need to prove that L has a fixed point. Since L is completely continuous
by Lemma 3.2, the Schaefer fixed point theorem guarantees the existence of a fixed point of L if
the set U = {(x, c) ∈ X : (x, c) = λL(x, c) for some λ ∈ (0, 1)} is bounded. We show that U is
bounded.

Example 4.2. Let ϕ = ϕp, p > 1, µ ∈ (0, p− 1), r,m, k ∈ C(J) and f(t, x) = k(t) + |x|µ arctanx.
Then conditions (H1) and (H2) are satisfied for a = |r|, b = |m|, H = max{π/4, µ

√
∥k∥} and

D = −H. Since ϕ−1 = ϕq, q = p/(p − 1), condition (H3) is fulfilled for w(v) = ∥k∥ + πvµ/2.
Theorem 4.1 guarantees that the problem

cDαϕp

(
cDβx− |r(t)|cDγ1x− |m(t)|cDγ2x

)
= k(t) + |x|µ arctanx,

x(0) = x(T ), cDβx(t)
∣∣
t=0

= 0,

has a solution.
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