Boundary Value Problems for Multi-Term Fractional Differential Equations with ϕ -Laplacian at Resonance

Svatoslav Staněk

Department of Mathematical Analysis, Faculty of Science, Palacký University, Olomouc, Czech Republic E-mail: svatoslav.stanek@upol.cz

1 Introduction

Let T > 0 be given, J = [0, T], $X = C(J) \times \mathbb{R}$ and $||x|| = \max\{|x(t)|: t \in J\}$ be the norm in C(J).

Let ϕ be an increasing and odd homeomorphism with $\phi(\mathbb{R}) = \mathbb{R}$. The special case of ϕ is *p*-Laplacian $\phi_p(x) = |x|^{p-2}x, p > 1$.

We discuss the fractional boundary value problem

$${}^{c}D^{\alpha}\phi({}^{c}D^{\beta}x(t) - a(t){}^{c}D^{\gamma_{1}}x(t) - b(t){}^{c}D^{\gamma_{2}}x(t)) = f(t,x(t)), \tag{1.1}$$

$$x(0) = x(T), \quad {}^{c}D^{\beta}x(t)\big|_{t=0} = 0,$$
 (1.2)

where $\alpha \in (0,1]$, $0 < \gamma_2 < \gamma_1 < \beta \leq 1$, $a, b \in C(J)$, $f \in C(J \times \mathbb{R})$ and ^cD denotes the Caputo fractional derivative.

Definition 1.1. We say that $x: J \to \mathbb{R}$ is a solution of equation (1.1) if $x, {}^{c}D^{\beta}x \in C(J)$ and (1.1) holds for $t \in J$. A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of problem (1.1), (1.2).

We recall the definitions of the Riemann-Liouville fractional integral and the Caputo fractional derivative [2,3].

The Riemann–Liouville fractional integral $I^{\gamma}x$ of order $\gamma > 0$ of a function $x: J \to \mathbb{R}$ is defined as

$$I^{\gamma}x(t) = \int_{0}^{t} \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} x(s) \,\mathrm{d}s,$$

where Γ is the Euler gamma function. I^0 is the identical operator.

The Caputo fractional derivative ${}^{c}D^{\gamma}x$ of order $\gamma > 0, \gamma \notin \mathbb{N}$, of a function $x: J \to \mathbb{R}$ is given as

$${}^{c}D^{\gamma}x(t) = \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \int_{0}^{t} \frac{(t-s)^{n-\gamma-1}}{\Gamma(n-\gamma)} \left(x(s) - \sum_{k=0}^{n-1} \frac{x^{(k)}(0)}{k!} s^{k}\right) \mathrm{d}s,$$

where $n = [\gamma] + 1$, $[\gamma]$ means the integral part of the fractional number γ . If $\gamma \in \mathbb{N}$, then ${}^{c}D^{\gamma}x(t) = x^{(\gamma)}(t)$. In particular,

$${}^{c}\!D^{\gamma}x(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{0}^{t} \frac{(t-s)^{-\gamma}}{\Gamma(1-\gamma)} \left(x(s) - x(0)\right) \mathrm{d}s = \frac{\mathrm{d}}{\mathrm{d}t} I^{1-\gamma}(x(t) - x(0)), \ \gamma \in (0,1).$$

It is well known that $I^{\gamma}: C(J) \to C(J)$ for $\gamma \in (0,1)$; $I^{\gamma}I^{\mu}x(t) = I^{\gamma+\mu}x(t)$ for $x \in C(J)$ and $\gamma, \mu \in (0,\infty)$; ${}^{c}D^{\gamma}I^{\gamma}x(t) = x(t)$ for $x \in C(J)$ and $\gamma > 0$; if $x, {}^{c}D^{\gamma}x \in C(J)$ and $\gamma \in (0,1)$, then $I^{\gamma c}D^{\gamma}x(t) = x(t) - x(0)$; if $0 < \beta < \alpha < 1$ and $x, {}^{c}D^{\alpha}x \in C(J)$, then ${}^{c}D^{\beta}x = I^{\alpha-\beta c}D^{\alpha}x$.

Problem (1.1), (1.2) is at resonance, because every constant function x on J is a solution of problem $^{c}D^{\alpha}\phi(^{c}D^{\beta}x - a(t)^{c}D^{\gamma_{1}}x - b(t)^{c}D^{\gamma_{2}}x) = 0$, (1.2).

The aim of this paper is to study the existence of solutions to problem (1.1), (1.2). To this end we first introduce an operator $\mathcal{Q} : C(J) \to C(J)$. Then, by \mathcal{Q} an operator $\mathcal{L} : X \to X$ is defined and it is proved that if $(x, c) \in X$ is a fixed point of \mathcal{L} , then x is a solution of problem (1.1), (1.2). The existence of a fixed point of \mathcal{L} is proved by the Schaefer fixed point theorem [1, 4].

We work with the following conditions for a, b and f in (1.1):

 $(H_1) \ a(t) \ge 0, \ b(t) \ge 0 \text{ for } t \in J.$

 (H_2) There exist $D, H \in \mathbb{R}, D < 0 < H$, such that

$$f(t,x) < 0 \text{ for } t \in J, \ x \le D,$$

$$f(t,x) > 0 \text{ for } t \in J, \ x \ge H.$$

 (H_3) There exists a nondecreasing function $w: [0,\infty) \to (0,\infty)$ such that

$$\lim_{v \to \infty} \frac{1}{v} \phi^{-1} \left(\frac{T^{\alpha} w(v)}{\Gamma(\alpha+1)} \right) = 0$$

and

$$|f(t,x)| \le w(|x|)$$
 for $(t,x) \in J \times \mathbb{R}$,

where ϕ^{-1} is the inverse function of ϕ .

2 Operator Q and its properties

The following result is the generalization of the Gronwall–Bellman lemma for singular kernels.

Lemma 2.1. Let $0 < \zeta < \rho \leq 1$, $z \in C(J)$ be nonnegative and $c_1, c_2 \in [0, \infty)$. Suppose that $v \in C(J)$ is nonnegative and

$$v(t) \le z(t) + c_1 I^{\zeta} v(t) + c_2 I^{\rho} v(t), \ t \in J.$$

Then

$$v(t) \le z(t) + d\left(c_1 + \frac{c_2\Gamma(\zeta)T^{\rho-\zeta}}{\Gamma(\rho)}\right)I^{\zeta}z(t), \ t \in J,$$

where $d = d(\zeta, \rho)$ is a positive constant.

Let $\mathcal{F}: C(J) \to C(J)$ be the Nemytskii operator associated to f,

$$\mathcal{F}x(t) = f(t, x(t)).$$

For $x \in C(J)$, we discuss the auxiliary equation

$$u(t) = a(t)I^{\beta - \gamma_1}u(t) + b(t)I^{\beta - \gamma_2}u(t) + \phi^{-1}I^{\alpha}\mathcal{F}x(t)$$
(2.1)

with the unknown function u.

The following result is established by using Lemma 2.1 and the Schaefer fixed point theorem in C(J).

Lemma 2.2. Let $x \in C(J)$. Then equation (2.1) has a unique solution u in the set C(J).

Keeping in mind Lemma 2.2, for every $x \in C(J)$ there exists a unique solution $u \in C(J)$ of equation (2.1). We put Qx = u and have an operator $Q: C(J) \to C(J)$ satisfying

$$\mathcal{Q}x(t) = a(t)I^{\beta - \gamma_1}\mathcal{Q}x(t) + b(t)I^{\beta - \gamma_2}\mathcal{Q}x(t) + \phi^{-1}I^{\alpha}\mathcal{F}x(t), \quad x \in C(J).$$
(2.2)

The properties of \mathcal{Q} are given in the following two lemmas.

Lemma 2.3. Let (H_1) and (H_2) hold. Then

$$\begin{aligned} x \in C(J), \ x(t) &\leq D \ on \ J \implies \mathcal{Q}x(t) < 0 \ on \ (0,T], \\ x \in C(J), \ x(t) &\geq H \ on \ J \implies \mathcal{Q}x(t) > 0 \ on \ (0,T], \end{aligned}$$

Lemma 2.4. Let (H_3) hold. Then $\mathcal{Q}: C(J) \to C(J)$ is continuous and

$$\|\mathcal{Q}x\| \le E\phi^{-1}\Big(\frac{T^{\alpha}w(\|x\|)}{\Gamma(\alpha+1)}\Big), \quad x \in C(J),$$
(2.3)

where

$$E = 1 + \frac{T^{\beta - \gamma_1}}{\Gamma(\beta - \gamma_1 + 1)} \left(\|b\| + \frac{\|a\|\Gamma(\beta - \gamma_1)T^{\gamma_1 - \gamma_2}}{\Gamma(\beta - \gamma_2)} \right).$$

3 Operator \mathcal{L} and its properties

Let an operator $\mathcal{L}: X \to X$ be defined by

$$\mathcal{L}(x,c) = \left(c + I^{\beta} \mathcal{Q}x(t), c - I^{\beta} \mathcal{Q}x(t)\big|_{t=T}\right)$$

The following two lemmas give the properties of \mathcal{L} .

Lemma 3.1. If (x, c) is a fixed point of \mathcal{L} , then x is a solution to problem (1.1), (1.2). **Proof.** Let $(x, c) = \mathcal{L}(x, c)$ for some $(x, c) \in X$. Then

$$\begin{aligned} x(t) &= c + I^{\beta} \mathcal{Q} x(t), \ t \in J, \\ I^{\beta} \mathcal{Q} x(t) \big|_{t=T} &= 0, \end{aligned}$$

and therefore x(0) = c, x(T) = c and ${}^{c}D^{\beta}x(t) = Qx(t)$ for $t \in J$. Hence ${}^{c}D^{\beta}x \in C(J)$ and since $Qx(t)|_{t=0} = 0$, we have ${}^{c}D^{\beta}x(t)|_{t=0} = 0$. Thus x satisfies the boundary condition (1.2) and

$${}^{c}D^{\gamma_{1}}x(t) = I^{\beta-\gamma_{1}}{}^{c}D^{\beta}x(t), \quad {}^{c}D^{\gamma_{2}}x(t) = I^{\beta-\gamma_{2}}{}^{c}D^{\beta}x(t), \quad t \in J.$$

Combining these equalities with (2.2) and ${}^{c}D^{\beta}x(t) = \mathcal{Q}x(t)$ we obtain

$${}^{c}\!D^{\beta}x(t) = \mathcal{Q}x(t) = a(t)I^{\beta-\gamma_{1}}\mathcal{Q}x(t) + b(t)I^{\beta-\gamma_{2}}\mathcal{Q}x(t) + \phi^{-1}I^{\alpha}\mathcal{F}x(t)$$

$$= a(t)I^{\beta-\gamma_{1}c}D^{\beta}x(t) + b(t)I^{\beta-\gamma_{2}c}D^{\beta}x(t) + \phi^{-1}I^{\alpha}\mathcal{F}x(t)$$

$$= a(t)^{c}D^{\gamma_{1}}x(t) + b(t)^{c}D^{\gamma_{2}}x(t) + \phi^{-1}I^{\alpha}\mathcal{F}x(t), \quad t \in J.$$

In particular,

$${}^{c}D^{\beta}x(t) - a(t){}^{c}D^{\gamma_{1}}x(t) - b(t){}^{c}D^{\gamma_{2}}x(t) = \phi^{-1}I^{\alpha}\mathcal{F}x(t), \ t \in J.$$

Applying ϕ and then ${}^{c}D^{\alpha}$ on both its sides, it follows

$${}^{c}D^{\alpha}\phi\Big({}^{c}D^{\beta}x(t) - a(t){}^{c}D^{\gamma_{1}}x(t) - b(t){}^{c}D^{\gamma_{2}}x(t)\Big) = \mathcal{F}x(t), \ t \in J.$$

Hence x is a solution of equation (1.1). As a result, x is a solution to problem (1.1), (1.2). \Box

Lemma 3.2. Let (H_3) hold. Then \mathcal{L} is a completely continuous operator.

4 **Problem** (1.1), (1.2)

Theorem 4.1. Let (H_1) - (H_3) hold. Then problem (1.1), (1.2) has at least one solution.

Proof. By Lemma 3.1, we need to prove that \mathcal{L} has a fixed point. Since \mathcal{L} is completely continuous by Lemma 3.2, the Schaefer fixed point theorem guarantees the existence of a fixed point of \mathcal{L} if the set $\mathcal{U} = \{(x,c) \in X : (x,c) = \lambda \mathcal{L}(x,c) \text{ for some } \lambda \in (0,1)\}$ is bounded. \Box

Example 4.2. Let $\phi = \phi_p$, p > 1, $\mu \in (0, p - 1)$, $r, m, k \in C(J)$ and $f(t, x) = k(t) + |x|^{\mu} \arctan x$. Then conditions (H_1) and (H_2) are satisfied for a = |r|, b = |m|, $H = \max\{\pi/4, \sqrt[t]{\|k\|}\}$ and D = -H. Since $\phi^{-1} = \phi_q$, q = p/(p-1), condition (H_3) is fulfilled for $w(v) = \|k\| + \pi v^{\mu}/2$. Theorem 4.1 guarantees that the problem

$${}^{c}D^{\alpha}\phi_{p}\left({}^{c}D^{\beta}x - |r(t)|^{c}D^{\gamma_{1}}x - |m(t)|^{c}D^{\gamma_{2}}x\right) = k(t) + |x|^{\mu}\arctan x,$$
$$x(0) = x(T), \quad {}^{c}D^{\beta}x(t)\big|_{t=0} = 0,$$

has a solution.

References

- [1] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
- [2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
- [3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- [4] D. R. Smart, *Fixed Point Theorems*. Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London–New York, 1974.