On One Class of Solutions of Linear Matrix Equations

S. A. Shchogolev, V. V. Karapetrov
Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mail: sergas1959@gmail.com

Let

$$
G\left(\varepsilon_{0}\right)=\left\{t, \varepsilon: t \in \mathbf{R}, \varepsilon \in\left(\mathbf{0}, \varepsilon_{\mathbf{0}}\right), \varepsilon_{\mathbf{0}} \in \mathbf{R}^{+}\right\} .
$$

Definition 1. We say that a function $f(t, \varepsilon)$ belongs to the class $S\left(m ; \varepsilon_{0}\right), m \in \mathbf{N} \cup\{\mathbf{0}\}$, if:

1) $f: G\left(\varepsilon_{0}\right) \rightarrow \mathbf{C}$,
2) $f(t, \varepsilon) \in C^{m}\left(G\left(\varepsilon_{0}\right)\right)$ at t,
3) $d^{k} f(t, \varepsilon) / d t^{k}=\varepsilon^{k} f_{k}(t, \varepsilon)(0 \leq k \leq m)$,

$$
\|f\|_{S\left(m ; \varepsilon_{0}\right)} \stackrel{\text { def }}{=} \sum_{k=0}^{m} \sup _{G\left(\varepsilon_{0}\right)}\left|f_{k}(t, \varepsilon)\right|<+\infty .
$$

Definition 2. We say that a function $f(t, \varepsilon, \theta(t, \varepsilon))$ belongs to the class $F\left(m ; \varepsilon_{0} ; \theta\right)(m \in \mathbf{N} \cup\{0\})$, if

$$
f(t, \varepsilon, \theta(t, \varepsilon))=\sum_{n=-\infty}^{\infty} f_{n}(t, \varepsilon) \exp (i n \theta(t, \varepsilon))
$$

and

1) $f_{n}(t, \varepsilon) \in S\left(m, \varepsilon_{0}\right)(n \in \mathbf{Z})$,
2)

$$
\|f\|_{F\left(m ; \varepsilon_{0} ; \theta\right)} \stackrel{\text { def }}{=} \sum_{n=-\infty}^{\infty}\left\|f_{n}\right\|_{S\left(m ; \varepsilon_{0}\right)}<+\infty,
$$

3) $\theta(t, \varepsilon)=\int_{0}^{t} \varphi(\tau, \varepsilon) d \tau, \varphi \in \mathbf{R}^{+}, \varphi \in S\left(m, \varepsilon_{0}\right), \inf _{G\left(\varepsilon_{0}\right)} \varphi(t, \varepsilon)=\varphi_{0}>0$.

Definition 3. We say that a matrix $\hat{A(t, \varepsilon)}=\left(a_{j k}(t, \varepsilon)\right)_{j, k=\overline{1, N}}$ belongs to the class $S_{2}\left(m ; \varepsilon_{0}\right)$ $(m \in \mathbf{N} \cup\{0\})$, if $a_{j k} \in S\left(m ; \varepsilon_{0}\right)(j, k=\overline{1, N})$.

We define the norm

$$
\|A(t, \varepsilon)\|_{S_{2}\left(m ; \varepsilon_{0}\right)}=\max _{1 \leq j \leq N} \sum_{k=1}^{N}\left\|a_{j k}(t, \varepsilon)\right\|_{S\left(m ; \varepsilon_{0}\right)}
$$

Definition 4. We say that a matrix $B(t, \varepsilon, \theta)=\left(b_{j k}(t, \varepsilon, \theta)\right)_{j, k=\overline{1, N}}$ belongs to the class $F_{2}\left(m ; \varepsilon_{0} ; \theta\right)$ $(m \in \mathbf{N} \cup\{0\})$, if $b_{j k}(t, \varepsilon, \theta) \in F\left(m ; \varepsilon_{0} ; \theta\right)(j, k=\overline{1, N})$.

We define the norm

$$
\begin{equation*}
\|B(t, \varepsilon, \theta)\|_{F_{2}\left(m ; \varepsilon_{0} ; \theta\right)}=\max _{1 \leq j \leq N} \sum_{k=1}^{N}\left\|b_{j k}(t, \varepsilon, \theta)\right\|_{F\left(m ; \varepsilon_{0} ; \theta\right)} \tag{1}
\end{equation*}
$$

Consider the linear non-homogeneous matrix equation

$$
\begin{equation*}
\frac{d X}{d t}=A(t, \varepsilon) X-X B(t, \varepsilon)+F(t, \varepsilon, \theta) \tag{2}
\end{equation*}
$$

$A(t, \varepsilon), B(t, \varepsilon) \in S_{2}\left(m ; \varepsilon_{0}\right), F(t, \varepsilon, \theta) \in F\left(m ; \varepsilon_{0} ; \theta\right)$.
We study the existence of particular solutions of equation (2) in the class $F\left(m_{1} ; \varepsilon_{1} ; \theta\right)\left(m_{1} \leq m\right.$, $\left.\varepsilon_{1} \leq \varepsilon_{0}\right)$.

Lemma. Let

$$
\begin{equation*}
\frac{d x}{d t}=\lambda(t, \varepsilon) x+u(t, \varepsilon, \theta(t, \varepsilon)) \tag{3}
\end{equation*}
$$

be a given scalar linear non-homogeneous first-order differential equation, where $\lambda(t, \varepsilon) \in S(m ; \varepsilon)$, $\inf _{G\left(\varepsilon_{0}\right)}|\operatorname{Re} \lambda(t, \varepsilon)|=\gamma>0$, and $u(t, \varepsilon, \theta) \in F\left(m ; \varepsilon_{0} ; \theta\right)$. Then equation (3) has a unique particular solution $x(t, \varepsilon, \theta) \in F\left(m ; \varepsilon_{0} ; \theta\right)$. This solution is given by the formula

$$
x(t, \varepsilon, \theta(t, \varepsilon))=\int_{T}^{t} u(\tau, \varepsilon, \theta(\tau, \varepsilon)) \exp \left(\int_{\tau}^{t} \lambda(s, \varepsilon) d s\right) d \tau
$$

where

$$
T= \begin{cases}-\infty & \text { if } \operatorname{Re} \lambda(t, \varepsilon) \leq-\gamma<0 \\ +\infty & \text { if } \operatorname{Re} \lambda(t, \varepsilon) \geq \gamma>0\end{cases}
$$

Moreover, there exists $K_{0} \in(0,+\infty)$ such that

$$
\|x(t, \varepsilon, \theta)\|_{F\left(m ; \varepsilon_{0} ; \theta\right)} \leq K_{0}\|u(t, \varepsilon, \theta)\|_{F\left(m ; \varepsilon_{0} ; \theta\right)} .
$$

Theorem 1. Let equation (2) satisfy the next conditions:

1) there exist matrices $L_{1}(t, \varepsilon), L_{2}(t, \varepsilon) \in S_{2}\left(m ; \varepsilon_{0}\right)$ such that
(a) $\operatorname{det} L_{1}(t, \varepsilon) \geq a_{0}>0, \operatorname{det} L_{2}(t, \varepsilon) \geq a_{0}>0$;
(b) $L_{1}^{-1}(t, \varepsilon) A(t, \varepsilon) L_{1}(t, \varepsilon)=D_{1}(t, \varepsilon)=\left(d_{j k}^{1}(t, \varepsilon)\right)_{j, k=\overline{1, N}}$,
(c) $L_{2}(t, \varepsilon) B(t, \varepsilon) L_{2}^{-1}(t, \varepsilon)=D_{2}(t, \varepsilon)=\left(d_{j k}^{2}(t, \varepsilon)\right)_{j, k=\overline{1, N}}$,
where D_{1}, D_{2} are lower triangular matrices belonging to the class $S_{2}\left(m ; \varepsilon_{0}\right)$;
2) $\inf _{G\left(\varepsilon_{0}\right)}\left|\operatorname{Re}\left(d_{j j}^{1}(t, \varepsilon)-d_{k k}^{2}(t, \varepsilon)\right)\right| \geq b_{0}>0(j, k=\overline{1, N})$.

Then there exists $\varepsilon_{1} \in\left(0, \varepsilon_{0}\right)$ such that for all $\varepsilon \in\left(0, \varepsilon_{1}\right)$ there exists unique particular solution $X(t, \varepsilon, \theta) \in F_{2}\left(m-1 ; \varepsilon_{1} ; \theta\right)$ of the matrix equation (2).

Proof. We make in equation (2) the substitution

$$
\begin{equation*}
X=L_{1}(t, \varepsilon) Y(t, \varepsilon) L_{2}(t, \varepsilon), \tag{4}
\end{equation*}
$$

where Y - the new unknown matrix. We obtain

$$
\begin{align*}
\frac{d Y}{d t}=\left(D_{1}(t, \varepsilon)-L_{1}^{-1}(t, \varepsilon)\right. & \left.\frac{d L_{1}(t, \varepsilon)}{d t}\right) Y \\
& -Y\left(D_{2}(t, \varepsilon)+\frac{d L_{2}(t, \varepsilon)}{d t} L_{2}^{-1}(t, \varepsilon)\right)+L_{1}^{-1}(t, \varepsilon) F(t, \varepsilon, \theta) L_{2}^{-1}(t, \varepsilon) \tag{5}
\end{align*}
$$

We denote

$$
\begin{aligned}
L_{1}^{-1}(t, \varepsilon) \frac{d L_{1}(t, \varepsilon)}{d t}= & \varepsilon H_{1} \frac{d L_{1}(t, \varepsilon)}{d t}, \quad \frac{d L_{2}(t, \varepsilon)}{d t} L_{2}^{-1}(t, \varepsilon)=\varepsilon H_{2} \frac{d L_{2}(t, \varepsilon)}{d t} L_{2}^{-1}(t, \varepsilon), \\
& L_{1}^{-1}(t, \varepsilon) F(t, \varepsilon, \theta) L_{2}^{-1}(t, \varepsilon)=F_{1}(t, \varepsilon, \theta) .
\end{aligned}
$$

Then equation (5) may be written as

$$
\frac{d Y}{d t}=D_{1}(t, \varepsilon) Y-Y D_{2}(t, \varepsilon)-\varepsilon H_{1}(t, \varepsilon) Y-\varepsilon Y H_{2}(t, \varepsilon)+F_{1}(t, \varepsilon, \theta)
$$

By virtue Lemma and condition 2) of the theorem, the equation

$$
\frac{d Y_{0}}{d t}=D_{1}(t, \varepsilon) Y_{0}-Y_{0} D_{2}(t, \varepsilon)+F_{1}(t, \varepsilon, \theta)
$$

has a unique solution $Y_{0}(t, \varepsilon, \theta)$ of the class $F\left(m ; \varepsilon_{0} ; \theta\right)$, and there exists $K_{1} \in(0,+\infty)$ such that

$$
\left\|Y_{0}(t, \varepsilon, \theta)\right\|_{F\left(m ; \varepsilon_{0} ; \theta\right)} \leq K_{1}\left\|F_{1}(t, \varepsilon, \theta)\right\|_{F\left(m ; \varepsilon_{0} ; \theta\right)}
$$

We construct the process of successive approximations, defining the initial approximation $Y_{0}(t, \varepsilon, \theta)$ and subsequent approximations defining as the solutions of the class $F\left(m-1 ; \varepsilon_{0} ; \theta\right)$ of the equations

$$
\begin{equation*}
\frac{d Y_{k}}{d t}=D_{1}(t, \varepsilon) Y_{k}-Y_{k} D_{2}(t, \varepsilon)-\varepsilon H_{1}(t, \varepsilon) Y_{k-1}-\varepsilon Y_{k-1} H_{2}(t, \varepsilon)+F_{1}(t, \varepsilon, \theta) . \tag{6}
\end{equation*}
$$

Using the ordinary technique of the contraction mapping principle it is easy to show that there exists $\varepsilon_{1} \in\left(0, \varepsilon_{0}\right)$ such that for all $\varepsilon \in\left(0, \varepsilon_{1}\right)$ process (6) convergence by the norm (1) to the solution of the class $F\left(m-1 ; \varepsilon_{1} ; \theta\right)$ of equation (2).

