On the Existence of Some Solutions of Systems of Ordinary Differential Equations that are Partially Resolved Relatively to the Derivatives with Square Matrix

D. E. Limanska, G. E. Samkova
Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mails: liman.diana@gmail.com; samkovagalina@i.ua

Let us consider the system of ordinary differential equations

$$
\begin{equation*}
A(z) Y^{\prime}=B(z) Y+f\left(z, Y, Y^{\prime}\right) \tag{1}
\end{equation*}
$$

where the matrices $A: D_{1} \rightarrow \mathbb{C}^{p \times p}, B: D_{10} \rightarrow \mathbb{C}^{p \times p}, D_{1}=\left\{z:|z|<R_{1}, R_{1}>0\right\} \subset \mathbb{C}, D_{10}=$ $D_{1} \backslash\{0\}$, matrix $A=A(z)$ is analytical in the domain D_{1}, matrix $B=B(z)$ is analytical in the domain D_{10}, rang $A(z)=p$ in the domain $z \in D_{1}, A^{(-1)}(z) B(z)$ is analytical matrix in the domain D_{10} and has pole of order $d \in \mathbb{N}$ in the point $z=0$, the vector-function $f: D_{1} \times G_{1} \times G_{2} \rightarrow \mathbb{C}^{p}$, where domains $G_{k} \subset \mathbb{C}^{p}, 0 \in G_{k}, k=1,2$, the vector-function $f=f\left(z, Y, Y^{\prime}\right)$ is analytical in the domain $D_{10} \times G_{10} \times G_{20}, G_{k 0}=G_{k} \backslash\{0\}, k=1,2$, the decomposition of the vector function $f=f\left(z, Y, Y^{\prime}\right)$ to a convergent power series around the point $(0,0,0)$ has no free and linear members.

Let us study question on the existence of analytic solutions of the Cauchy problem for system (1) with the initial condition

$$
Y \rightarrow 0, \quad z \rightarrow 0, \quad z \in D_{10}
$$

and the additional condition

$$
Y^{\prime} \rightarrow 0, \quad z \rightarrow 0, \quad z \in D_{10}
$$

According to these assumptions, system (1) takes the form

$$
\begin{equation*}
z^{d} Y^{\prime}=\check{P}^{(2)}(z) Y+z^{d} H^{(2)}\left(z, Y, Y^{\prime}\right) \tag{2}
\end{equation*}
$$

where $\check{P}^{(2)}(z)$ is an analytical matrix in the domain $D_{1}, H^{(2)}=H^{(2)}\left(z, Y, Y^{\prime}\right)$ is an analytical vector-function in the domain $D_{1} \times G_{1} \times G_{2}$.
Definition 1. Let's define that the vector-function $z^{d} H^{(2)}\left(z, Y, Y^{\prime}\right)$ has the property V_{1} near the point ($0,0,0$) if this neighborhood component vector function $z^{d} H^{(2)}\left(z, Y, Y^{\prime}\right)$ may be decomposed into convergent series form

$$
z^{d} H_{j}^{(2)}\left(z, Y, Y^{\prime}\right)=\sum_{s+|l|+|q|=2}^{\infty} C_{s l q}^{(2 . j)} z^{s} Y^{l}\left(z^{d} Y^{\prime}\right)^{q}, \quad j=\overline{1, p},
$$

where $C_{\text {slq }}^{(2 . j)} \in \mathbb{C}, j=\overline{1, p}$.
Lemma. If in system (2) vector-function $z^{d} H^{(2)}\left(z, Y, Y^{\prime}\right)$ has the property V_{1} near the point $(0,0,0)$, then system (2) can be uniquely reduced to the system of the type

$$
\begin{equation*}
z^{d} Y^{\prime}=P^{(2)}(z) Y+F^{(2)}(z, Y) \tag{3}
\end{equation*}
$$

where $P^{(2)}(z)$ is an analytical matrix in the domain $\widetilde{D_{1}} \subseteq D_{1}, 0 \in \widetilde{D_{1}}, F^{(2)}=F^{(2)}(z, Y)$ is an analytical vector-function in the domain $\widetilde{D_{1}} \times \widetilde{G_{1}} \subseteq D_{1} \times G_{1},(0,0) \in \widetilde{D_{1}} \times \widetilde{G_{1}}, F^{(2)}(0,0)=0$. For convenience, we assume that the matrix $P^{(2)}$ is analytical in the domain D_{1}, and the vector-function $F^{(2)}$ is analytical in the domain $D_{1} \times G_{1}$.

For arbitrarily fixed $t_{1} \in\left(0, R_{1}\right], v_{1}, v_{2} \in \mathbb{R}, v_{1}<v_{2}$, introduce a set $\check{I}\left(t_{1}\right)=\left\{(t, v) \in \mathbb{R}^{2}: t \in\right.$ $\left.\left(0, t_{1}\right), v \in\left(v_{1}, v_{2}\right)\right\}$. For $z=z(t, v)=t e^{i v}$, the set $\check{I}\left(t_{1}\right) \subset \mathbb{R}^{2}$ refers to the set $I\left(t_{1}\right) \subset \mathbb{C}: I\left(t_{1}\right)=$ $\left\{z=t e^{i v} \in \mathbb{C}: t \in\left(0, t_{1}\right), v \in\left(v_{1}, v_{2}\right)\right\}$.

Definition 2. Let $p, g: \check{I}\left(t_{1}\right) \rightarrow[0,+\infty)$. Let's define that the function p has the property Q_{1} regarding the function g on the condition $v=v_{0} \in\left(v_{1}, v_{2}\right)$, if the function $p=p\left(t, v_{0}\right)$ is a function of higher order of smallness relative to the function $g=g\left(t, v_{0}\right)$ on the condition $t \rightarrow+0$.

Definition 3. Let $p, g: \check{I}\left(t_{1}\right) \rightarrow[0,+\infty)$. Let's define that the function p has the property Q_{2} regarding the function g on the set $\check{I}\left(t_{1}\right)$, if there exist $C_{1} \geq 0, C_{2} \geq 0$ such that on the set $\check{I}\left(t_{1}\right)$ the inequality

$$
C_{1} g(t, v) \leq p(t, v) \leq C_{2} g(t, v)
$$

is satisfied.
Introduce the auxiliary vector function $\varphi(z)=\operatorname{col}\left(\varphi_{1}(z), \ldots, \varphi_{p}(z)\right), \varphi: I\left(t_{1}\right) \rightarrow \mathbb{C}^{p}$, and $\psi(t, v)=\operatorname{col}\left(\psi_{1}(t, v), \ldots, \psi_{p}(t, v)\right), \psi_{j}: \check{I}\left(t_{1}\right) \rightarrow[0 ;+\infty), j=\overline{1, p}$, on the condition $z=z(t, v)=$ $t e^{i v}, \psi_{j}(t, v)=\left|\varphi_{j}(z(t, v))\right|, j=\overline{1, p}$, functions $\psi_{j}, j=\overline{1, p}$ are really values functions of real variables t, v.

For a fixed $v=v_{0}$ we introduce

$$
\begin{gathered}
Y\left(z\left(t, v_{0}\right)\right)=\widetilde{Y}(t), \quad \widetilde{Y}(t)=\widetilde{Y}_{1}(t)+i \widetilde{Y}_{2}(t), \\
P^{(2)}\left(z\left(t, v_{0}\right)\right)=\left\|\widetilde{p}_{j k}^{(2)}(t)\right\|_{j, k=1}^{p}=\widetilde{P}_{1}^{(2)}(t)+i \widetilde{P}_{2}^{(2)}(t), \quad \widetilde{P}_{s}^{(2)}(t)=\left\|\widetilde{p}_{j k s}^{(2)}(t)\right\|_{j, k=1}^{p}, s=1,2, \\
F^{(2)}\left(z\left(t, v_{0}\right), Y\left(z\left(t, v_{0}\right)\right)\right)=\widetilde{F}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right), \\
\widetilde{F}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right)=\operatorname{col}\left(\widetilde{F}_{1}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right), \ldots, \widetilde{F}_{p}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right)\right), \\
\widetilde{F}_{j}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right)=\widetilde{F}_{1 j}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right)+i \widetilde{F}_{2 j}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right), \quad j=\overline{1, p},
\end{gathered}
$$

functions $\widetilde{p}_{j k s}^{(2)}(t), j, k=\overline{1, p}, s=1,2$, and vector-functions $\widetilde{Y}_{1}(t), \widetilde{Y}_{2}(t), \widetilde{F}_{1 j}^{(2)}, \widetilde{F}_{2 j}^{(2)}, j=\overline{1, p}$ are really values functions of real variable t.

For a fixed $t=t_{0}$ we introduce

$$
\begin{gathered}
Y\left(z\left(t_{0}, v\right)\right)=\widehat{Y}(v)=\widehat{Y}_{1}(v)+i \widehat{Y}_{2}(v), \\
P^{(2)}\left(z\left(t_{0}, v\right)\right)=\left\|\widehat{p}_{j k}^{(2)}(v)\right\|_{j, k=1}^{p}=\widehat{P}_{1}^{(2)}(v)+i \widehat{P}_{2}^{(2)}(v), \quad \widehat{P}_{s}^{(2)}(v)=\left\|\widehat{p}_{j k s}^{(2)}(v)\right\|_{j, k=1}^{p}, \quad s=1,2, \\
F^{(2)}\left(z\left(t_{0}, v\right), Y\left(z\left(t_{0}, v\right)\right)\right)=\widehat{F}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right), \\
\widehat{F}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right)=\operatorname{col}\left(\widehat{F}_{1}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right), \ldots, \widehat{F}_{p}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right)\right), \\
\widehat{F}_{j}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right)=\widehat{F}_{1 j}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right)+i \widehat{F}_{2 j}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right), \quad j=\overline{1, p},
\end{gathered}
$$

functions $\widehat{p}_{j k s}^{(2)}(v), j, k=\overline{1, p}, s=1,2$, and vector-functions $\widehat{Y}_{1}, \widehat{Y}_{2}, \widehat{F}_{1 j}^{(2)}, \widehat{F}_{2 j}^{(2)}, j=\overline{1, p}$ are really values functions of real variable v.

Definition 4. Let's define that the matrix $P^{(2)}(z)$ has the property S_{2} regarding the vector-function $\varphi=\varphi(z)$ if the conditions are met:

1) for each $v_{0} \in\left(v_{1}, v_{2}\right)$ functions $t^{d}\left(\psi_{j}(z(t, v))\right)_{t}^{\prime}$ have the property Q_{1} regarding the functions $\left|\widetilde{p}_{j j}^{(2)}(t)\right| \psi_{j}(z(t, v)), j=\overline{1, p}$, on the condition $v=v_{0} ;$
2) functions $t^{d-1}\left(\psi_{j}(t, v)\right)_{v}^{\prime}$ have the property Q_{2} regarding the functions $\left|\hat{p}_{j j}^{(2)}(v)\right| \psi_{j}(t, v), j=$ $\overline{1, p}$, on the set $\check{I}\left(t_{2}\right)$ for some $t_{2} \in\left(0, t_{1}\right)$;
3) for each $v_{0} \in\left(v_{1}, v_{2}\right)$ functions $\left|\widetilde{p}_{j k}^{(2)}(t)\right| \psi_{k}(t, v)$ have the property Q_{1} regarding the functions $t^{d}\left(\psi_{j}(t, v)\right)_{t}^{\prime}, j, k=\overline{1, p}, j \neq k$, on the condition $v=v_{0} ;$
4) functions $\left|\widehat{p}_{j k}^{(2)}(v)\right| \psi_{k}(t, v)$ have the property Q_{2} regarding the functions $t^{d-1}\left(\psi_{j}(t, v)\right)_{v}^{\prime}, j, k=$ $\overline{1, p}, j \neq k$, on the set $\check{I}\left(t_{2}\right)$ for some $t_{2} \in\left(0, t_{1}\right)$.

Let's introduce the sets

$$
\widetilde{\Omega}\left(\delta, \varphi\left(z\left(t, v_{0}\right)\right)\right)=\left\{\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right): t \in\left(0, t_{1}\right), \widetilde{Y}_{1 j}^{2}+\widetilde{Y}_{2 j}^{2}<\delta_{j}^{2}\left(\psi_{j}\left(t, v_{0}\right)\right)^{2}, j=\overline{1, p}\right\}
$$

v_{0} is fixed on the interval $\left(v_{1}, v_{2}\right)$,

$$
\widehat{\Omega}\left(\tau, \varphi\left(z\left(t_{0}, v\right)\right)\right)=\left\{\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right): v \in\left(v_{1}, v_{2}\right), \widehat{Y}_{1 j}^{2}+\widehat{Y}_{2 j}^{2}<\tau_{j}^{2}\left(\psi_{j}\left(t_{0}, v\right)\right)^{2}, j=\overline{1, p}\right\}
$$

t_{0} is fixed on the interval $\left(0, t_{1}\right)$, where $\delta=\left(\delta_{1}, \ldots, \delta_{p}\right), \tau=\left(\tau_{1}, \ldots, \tau_{p}\right), \delta_{j}, \tau_{j} \in \mathbb{R} \backslash\{0\}, j=(1, p)$.
Definition 5. Let's define that the vector-function $F^{(2)}=F^{(2)}(z, Y)$ has the property M_{2} regarding the vector-function $\varphi=\varphi(z)$ if the conditions are met:

1) for each $v_{0} \in\left(v_{1}, v_{2}\right)$ on the condition $\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right) \in \widetilde{\Omega}\left(\delta, \varphi\left(z\left(t, v_{0}\right)\right)\right)$ functions $\widetilde{F}_{k j}^{(2)}=$ $\widetilde{F}_{k j}^{(2)}\left(t, \widetilde{Y}_{1}, \widetilde{Y}_{2}\right)$ have the property Q_{1} regarding the functions $\left|\widetilde{p}_{j j}^{(2)}(t)\right| \psi_{j}(t, v), j=\overline{1, p}, k=1,2$, on the condition $v=v_{0}$;
2) for each $\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right) \in \widehat{\Omega}\left(\tau, \varphi\left(z\left(t_{0}, v\right)\right)\right)$ functions $\widehat{F}_{k j}^{(2)}=\widehat{F}_{k j}^{(2)}\left(v, \widehat{Y}_{1}, \widehat{Y}_{2}\right)$ have the property Q_{2} regarding the function $\left.\left|\widehat{p}_{j j}^{(2)}(v)\right| \psi_{j}(t, v)\right), j=\overline{1, p}, k=1,2$, on the set $\check{I}\left(t_{2}\right)$ for some $t_{2} \in\left(0, t_{1}\right)$.

Let's introduce domains $\Lambda_{+. k}^{(2)}\left(t_{2}\right), k \in\{+,-\}$, which are defined as

$$
\begin{array}{r}
\Lambda_{+.+}^{(2)}\left(t_{2}\right)=\left\{(t, v): \cos \left((d-1) v-\widetilde{\alpha}_{j j}^{(2)}(t)\right)>0, \sin \left((d-1) v-\widehat{\alpha}_{j j}^{(2)}(v)\right)>0,\right. \\
\left.j=\overline{1, p}, t \in\left(0, t_{2}\right), v \in\left(v_{1}, v_{2}\right)\right\}, \\
\Lambda_{+.-}^{(2)}\left(t_{2}\right)=\left\{(t, v): \cos \left((d-1) v-\widetilde{\alpha}_{j j}^{(2)}(t)\right)>0, \sin \left((d-1) v-\widehat{\alpha}_{j j}^{(2)}(v)\right)<0,\right. \\
\left.j=\overline{1, p}, t \in\left(0, t_{2}\right), v \in\left(v_{1}, v_{2}\right)\right\},
\end{array}
$$

where functions $\widetilde{\alpha}_{j j}^{(2)}(t), \widehat{\alpha}_{j j}^{(2)}(v), j=\overline{1, p}$, are defined through the corresponding diagonal elements of the matrices $\widetilde{P}_{q}^{(2)}, \widehat{P}_{q}^{(2)}, q=1,2$.

Definition 6. Let's define that system (3) belongs to the class $C_{+. k}^{(2)}, k \in\{+,-\}$ if matrices $P^{(2)}(z)=P^{(2)}\left(t e^{i v}\right)$ are such that $(t, v) \in \Lambda_{+. k}^{(2)}\left(t_{2}\right), k \in\{+,-\}$.

Let's introduce domains $G_{+. k}^{(2)}\left(t_{2}\right)=\left\{z=z(t, v): 0<|z|<t_{2},(t, v) \in \Lambda_{+. k}^{(2)}\left(t_{2}\right)\right\}, k \in\{+,-\}$.
Theorem. Let $A(z)$ be an analytical matrix in the domain D_{1} and $\operatorname{rang} A(z)=p$ on the condition $z \in D_{1}$. Let system (1) may lead to the appearance (2). The vector-function $z^{d} H^{(2)}\left(z, Y, Y^{\prime}\right)$ has the property V_{1} near the point $(0,0,0)$. Moreover, the following conditions are met for system (3):

1) the matrix $P^{(2)}(z)$ is analytical in the domain D_{1} and has the property S_{2} regarding the vector-function $\varphi=\varphi(z)$;
2) the vector-function $F^{(2)}=F^{(2)}(z, Y)$ is analytical in the domain $D_{1} \times G_{1}, F^{(2)}(0,0)=0$ and has the property M_{2} regarding the vector-function $\varphi=\varphi(z)$;
3) system (3) belongs to one of the classes $C_{+. k}^{(2)}, k \in\{+,-\}$.

Then for each $k \in\{+,-\}$ and for some $t^{*} \in\left(0, t_{2}\right)$ there are solutions of system (1) $Y=Y(z)$, which satisfy the initial conditions $Y\left(z_{0}\right)=Y_{0}$ for $z_{0} \in G_{+. k}^{(2)}\left(t^{*}\right), Y_{0} \in\left\{Y:\left|Y_{j}\left(z_{0}\right)\right|<\delta_{j}\left|\varphi_{j}\left(z_{0}\right)\right|, \delta_{j}>\right.$ $0, j=\overline{1, p}\}$, that are analytical in the domain $G_{+. k}^{(2)}\left(t^{*}\right)$ and for these solutions in this particular domain the estimates are fair:

$$
\left|Y_{j}(z)\right|^{2}<\delta_{j}^{2}\left|\varphi_{j}(z)\right|^{2}, \quad j=\overline{1, p}
$$

References

[1] D. Limanska, On the behavior of the solutions of some systems of differential equations partially solved with respect to the derivatives in the presence of a pole. J. Math. Sci. 229 (2018), no. 4, 455-469.
[2] D. Limanska, The asymptotic behavior of solutions of the system of the differential equations partially solved relatively to the derivatives with non-square. TWMS J. App. and Eng. Math. 10 (2020), no. 3, 710-717.
[3] D. Limanska and G. Samkova, About behavior of solutions of some systems of differential equations, which is partially resolved relatively to the derivatives. Bull. Mechnikov's Odessa National University 19 (2014), 16-28.
[4] D. E. Limanska and G. E. Samkova, On the existence of analytic solutions of certain types of systems, partially resolved relatively to the derivatives in the case of a pole. Mem. Differ. Equ. Math. Phys. 74 (2018), 113-124.
[5] D. Limanska and G. Samkova, The asymptotic behaviour of solutions of certain types of the differential equations partially solved relatively to the derivatives with a singularity in the zero-point. J. Math. Sci. Adv. Appl. 53 (2018), 21-40.
[6] G. E. Samkova and N. V. Sharaǐ, On the investigation of a semi-explicit system of differential equations in the case of a variable matrix pencil. (Russian) Nelı̄nī̆n̄ Koliv. 5 (2002), no. 2, 224-236; translation in Nonlinear Oscil. (N. Y.) 5 (2002), no. 2, 215-226.

