On Asymptotic Representations of One Class of Solutions of Second-Order Differential Equations

L. I. Kusik
Odesa National Marine University, Odessa, Ukraine
E-mail: lk09032017@gmail.com

Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \tag{1}
\end{equation*}
$$

where $f:\left[a, \omega\left[\times \Delta_{Y_{0}} \times \Delta_{Y_{1}} \rightarrow \mathbf{R}\right.\right.$ is a continuous function, $-\infty<a<\omega \leq+\infty, \Delta_{Y_{i}}(i \in\{0,1\})$ is a one-side neighborhood of Y_{i} and $Y_{i}(i \in\{0,1\})$ is either 0 or $\pm \infty$. We assume that the numbers $\mu_{i}(i=0,1)$ given by the formula

$$
\mu_{i}= \begin{cases}1 & \text { if either } Y_{i}=+\infty, \text { or } Y_{i}=0 \text { and } \Delta_{Y_{i}} \text { is a right neighborhood of the point } 0, \\ -1 & \text { if either } Y_{i}=-\infty, \text { or } Y_{i}=0 \text { and } \Delta_{Y_{i}} \text { is a left neighborhood of the point } 0\end{cases}
$$

satisfy the relations

$$
\begin{equation*}
\mu_{0} \mu_{1}>0 \text { for } Y_{0}= \pm \infty \text { and } \mu_{0} \mu_{1}<0 \text { for } Y_{0}=0 \tag{2}
\end{equation*}
$$

Conditions (2) are necessary for the existence of solutions of equation (1) defined in the left neighborhood of ω and satisfying the conditions

$$
\begin{equation*}
y^{(i)}(t) \in \Delta_{Y_{i}} \text { for } t \in\left[t_{0}, \omega\left[, \quad \lim _{t \uparrow \omega} y^{(i)}(t)=Y_{i} \quad(i=0,1) .\right.\right. \tag{3}
\end{equation*}
$$

Among the strictly monotonic, together with the derivatives of the first order, in some left neighborhood of ω of solutions of equation (1) we can single out only solutions admitting either representations of the form

$$
\begin{equation*}
y(t)=c_{0}+o(1), \quad y(t)=\pi_{\omega}(t)\left[c_{1}+o(1)\right] \text { as } t \uparrow \omega, \tag{4}
\end{equation*}
$$

where c_{0}, c_{1} are nonzero real constants, or satisfying conditions (3).
The question of whether equation (1) has solutions with representations (4) can be, in general, solved using either for $\omega=+\infty$ a theorem from monograph [3, Ch. II, § 8, p. 207] or for $\omega \leq+\infty$ ideas laid down in the work [1].

One of the classes of equation (1) solutions with properties (3) that admits asymptotic representations is the class of $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$-solutions.

Definition 1. A solution y of equation (1) on the interval $\left[t_{0}, \omega\left[\subset\left[a, \omega\left[\right.\right.\right.\right.$ is called $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$ solution, where $-\infty \leq \lambda_{0} \leq+\infty$, if, in addition to (3), it satisfies the condition

$$
\lim _{t \uparrow \omega} \frac{\left[y^{\prime}(t)\right]^{2}}{y(t) y^{\prime \prime}(t)}=\lambda_{0} .
$$

Depending on λ_{0} these solutions have different asymptotic properties. For $\lambda_{0} \in \mathbb{R} \backslash\{0,1\}$ in [2] such ratios

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{\prime}(t)}{y(t)}=\frac{\lambda_{0}}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{\prime \prime}(t)}{y^{\prime}(t)}=\frac{1}{\lambda_{0}-1},
$$

where

$$
\pi_{\omega}(t)= \begin{cases}t & \text { if } \omega=+\infty \\ t-\omega & \text { if } \omega<+\infty\end{cases}
$$

are established.
Definition 2. We say that a function f satisfies condition $(F N)_{\lambda_{0}}$ for $\lambda_{0} \in \mathbb{R} \backslash\{0,1\}$ if there exist a number $\alpha_{0} \in\{-1,1\}$, a continuous function $p:[a, \omega[\rightarrow] 0,+\infty[$ and twice continuously differentiable function $\left.\varphi_{0}: \Delta_{Y_{0}} \rightarrow\right] 0,+\infty[$, satisfying the conditions

$$
\begin{equation*}
\varphi_{0}^{\prime}(y) \neq 0, \quad \lim _{\substack{y \rightarrow Y_{o} \\ y \in \Delta_{Y_{0}}}} \varphi_{0}(y)=\varphi_{0} \in\{0,+\infty\}, \quad \lim _{\substack{y \rightarrow Y_{o} \\ y \in \Delta_{Y_{0}}}} \frac{\varphi_{0}(y) \varphi_{0}^{\prime \prime}(y)}{\left(\varphi_{0}^{\prime}(y)\right)^{2}}=1 \tag{5}
\end{equation*}
$$

such that, for arbitrary continuously differentiable functions $z_{i}:\left[a, \omega\left[\rightarrow \Delta_{Y_{i}}(i=0,1)\right.\right.$ satisfying the conditions

$$
\begin{gathered}
\lim _{t \uparrow \omega} z_{i}(t)=Y_{i} \quad(i=0,1), \\
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) z_{0}^{\prime}(t)}{z_{0}(t)}=\frac{\lambda_{0}}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) z_{1}^{\prime}(t)}{z_{1}(t)}=\frac{1}{\lambda_{0}-1},
\end{gathered}
$$

one has representation

$$
\begin{equation*}
f\left(t, z_{0}(t), z_{1}(t)\right)=\alpha_{0} p(t) \varphi_{0}\left(z_{0}(t)\right)[1+o(1)] \text { as } t \uparrow \omega . \tag{6}
\end{equation*}
$$

Note that the choice of α_{0} and the functions p and φ_{0} in Definition 2 depends on the choice of $\lambda_{0} \in \mathbb{R} \backslash\{0,1\}$. It is also obvious that the numbers μ_{0}, μ_{1} determine the signs of any $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$ solution of equation (1) and its derivative in a left neighborhood of ω. Moreover, under condition $(F N)_{\lambda_{0}}$ sign of second derivative of any $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$-solution of equation (1) in a left neighborhood of ω coincides with the value α_{0}. Then taking into account (2), we have

$$
\begin{equation*}
\alpha_{0} \mu_{1}>0 \text { for } Y_{1}= \pm \infty \text { and } \alpha_{0} \mu_{1}<0 \text { for } Y_{1}=0 \tag{7}
\end{equation*}
$$

We choose a number $b \in \Delta_{Y_{0}}$ such that the inequality

$$
|b|<1 \text { for } Y_{0}=0, \quad b>1(b<-1) \text { for } Y_{0}=+\infty \quad\left(Y_{0}=-\infty\right)
$$

is respected and put

$$
\begin{cases}\Delta_{Y_{0}}(b)=\left[b, Y_{0}[\right. & \text { if } \Delta_{Y_{0}} \text { is a left neighborhood of } Y_{0}, \\ \left.\left.\Delta_{Y_{0}}(b)=\right] Y_{0}, b\right] & \text { if } \Delta_{Y_{0}} \text { is a right neighborhood of } Y_{0}\end{cases}
$$

Now we introduce auxiliary functions and notation as follows:

$$
\Phi: \Delta_{Y_{0}}(b) \rightarrow \mathbb{R}, \quad \Phi(y)=\int_{B}^{y} \frac{d s}{\varphi_{0}(s)}, \quad B= \begin{cases}b & \text { if } \int_{\int_{b}}^{Y_{0}} \frac{d s}{\varphi_{0}(s)}= \pm \infty \\ Y_{0} & \text { if } \int_{b}^{Y_{0}} \frac{d s}{\varphi_{0}(s)}=\text { const }\end{cases}
$$

$$
\begin{gathered}
Z=\lim _{y \rightarrow Y_{0}} \Phi(y)=\left\{\begin{array}{ll}
0 & \text { if } B=Y_{0}, \\
+\infty & \text { if } B=b \text { and } \mu_{0} \mu_{1}>0, \quad \mu_{2}= \begin{cases}1 & \text { if } B=b, \\
-1 & \text { if } B=Y_{0},\end{cases} \\
I(t)=\int_{A}^{t} \pi_{\omega}(\tau) p(\tau) d \tau, \quad A= \begin{cases}a & \text { if } \int_{a_{a}}^{\omega} \pi_{\omega}(\tau) p(\tau) d \tau= \pm \infty, \\
\omega & \text { if } \int_{a}^{\omega} \pi_{\omega}(\tau) p(\tau) d \tau=\text { const } .\end{cases}
\end{array} . \begin{array}{l}
\mu_{0} \mu_{1}<0,
\end{array}\right.
\end{gathered}
$$

Theorem 1. Let $\lambda_{0} \in \mathbb{R} \backslash\{0,1\}$ and let the function f satisfy condition $(F N)_{\lambda_{0}}$. Then, for the existence of $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$-solutions of the differential equation (1), it is necessary that the sign conditions (2), (7),

$$
\alpha_{0} \mu_{0} \lambda_{0}>0, \quad \mu_{0} \mu_{1} \lambda_{0}\left(\lambda_{0}-1\right) \pi_{\omega}(t)>0, \quad \alpha_{0} \mu_{2}\left(\lambda_{0}-1\right) I(t)<0 \text { for } t \in[a, \omega[
$$

and

$$
\alpha_{0}\left(\lambda_{0}-1\right) \lim _{t \uparrow \omega} I(t)=Z, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) I^{\prime}(t)}{I(t)}= \pm \infty, \quad \lim _{t \uparrow \omega} \frac{\alpha_{0}\left(\lambda_{0}-1\right) \pi_{\omega}^{2}(t) p(t) \varphi_{0}(Y(t))}{Y(t)}=\frac{\lambda_{0}}{\lambda_{0}-1}
$$

hold, where

$$
Y(t)=\Phi^{-1}\left(\alpha_{0}\left(\lambda_{0}-1\right) I(t)\right) .
$$

Moreover, each solution of this kind admits the asymptotic representations

$$
\frac{y^{\prime}(t)}{\varphi_{0}(y(t))}=\alpha_{0}\left(\lambda_{0}-1\right) \pi_{\omega}(t) p(t)[1+o(1)], \quad \varphi_{0}^{\prime}(y(t))=-\frac{\lambda_{0}(1+o(1))}{\left(\lambda_{0}-1\right) I(t)} \text { as } t \uparrow \omega .
$$

Remark 1. Asymptotic representations of $P_{\omega}\left(Y_{0}, Y_{1}, \lambda_{0}\right)$-solutions of equation (1) can be written explicitly

$$
y(t)=Y(t)\left(1+\frac{o(1)}{H(t)}\right), \quad y^{\prime}(t)=\frac{\lambda_{0}}{\lambda_{0}-1} \frac{Y(t)}{\pi_{\omega}(t)}(1+o(1)),
$$

where

$$
H(t)=\frac{Y(t) \varphi^{\prime}(Y(t))}{\varphi(Y(t))}
$$

References

[1] V. M. Evtukhov, Asymptotic properties of the solutions of a certain class of second-order differential equations. (Russian) Math. Nachr. 115 (1984), 215-236.
[2] V. M. Evtukhov, The asymptotic behavior of the solutions of one nonlinear second-order differential equation of the Emden-Fowler type. (Russian) Dissertation Cand. Fiz.-Mat. Nauk: 01.01.02, Odessa, Ukraine, 1998.
[3] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. (Russian) Nauka, Moscow, 1990.

