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The problem of optimal control at a finite time interval for a system of differential equations
with impulse action at fixed moments times and also the corresponding averaged system of ordi-
nary differential equations are considered. The existence of optimal control of exact problem and
averaged problem is proved, and also it is established that optimal control of averaged task carries
out the approximate optimal synthesis of exact problem.

1 Introduction
In this paper, for the system of differential equations with impulse action at fixed moments of time,
the problem of optimal control is considered:

ẋ = ε
[
A(t, x) +B(t, x)u

]
, t ̸= ti, i = 1, 2, . . . , i

(T
ε

)
, t ∈

[
0,
T

ε

)
,

△x
∣∣
t=ti

= εIi(x(ti), vi), i = 1, 2, . . . , i
(T
ε

)
, (1.1)

x(0, u(0), vi) = x0, ti < ti+1,

where ε > 0 is a small parameter, t ≥ 0, T > 0 is some constant value, x ∈ D is a phase n-
dimensional vector, D is a region in Rn, u ∈ U is a vector of control, U is convex and closed set
in Rm, 0 ∈ U , i(t) is the number of pulses on [0, t): t1, t2, . . . , tn, . . . , ti(T

ε
), and tn → ∞, n → ∞;

vi ∈ V , i = 1, 2, . . . , i(Tε ), are impulse control vectors, V is a closed set in Rr. With respect to the
moments of impulsive action, we assume that there exists a constant C̃ > 0 such that for t ≥ 0,

i(t) ≤ C̃t.

A is an n-dimensional vector-function, B is an n × m-dimensional matrix, Ii(x, v) is an n-
dimensional vector function.

Control u = u(t) = (u1(t), u2(t), . . . , um(t)) and v = vi = (vi1, vi2, . . . , vir) will be considered
admissible for problem (1.1), if
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(a1) u(t) ∈ Lp(0,
T
ε ) for some p > 1;

(a2) u(t) ∈ U at t ∈ [0, Tε ], almost everywhere;

a3) there exists ε0 > 0 such that for 0 < ε < ε0 the solution x(t, u, v) of the Cauchy problem
(1.1) has defined by t ∈ [0, Tε ], where ε0 is independent of u(t) and vi;

(a4) vi ∈ V ;

(a5) for each sequence of control vectors vi ∈ V there exists the vector v0 ∈ V such that vi → v0,
i → ∞, uniformly for all controls, that is, for arbitrary δ > 0 there is a constant N0,
independent of vi, v0 and such that for all i ≥ N0 the inequality |vi − v0| < δ is satisfied.

It should be noted that condition a5) is obviously satisfied if there exists a sequence {ai}
independent of vi: ai → 0, i→ ∞, such that |vi − v0| < ai.

We denote the set of valid controls by Ω.
By | · | we denote the norm of vector in Euclidean space, and through ∥ · ∥ we denote the norm

of the matrix consistent with the norm of the vector. In this paper, the averaging method is applied
to optimal control problems. The main role here is to justify the closeness of the solutions of the
exact and average problems. This type of results for impulse systems was first obtained in [5] and
further developed in the works of many scientists and applied to optimal control problems (see, for
example, [4], where is comprehensive bibliography).

In works [3, 7, 8], another approach was developed to apply the averaging method to optimal
control problems, where the control function was considered a fixed parameter when averaging.
This approach had applied to the problems of optimal control of functional-differential equations
in [2].

2 Formulation of the problem and the main result
The problem of optimal control to be solved in the work is to find such allowable controls u(t) and
vi that minimize the functional

Jε(u, v) = ε

T
ε∫

0

[C(t, x) + F (t, u)] dt+ ε
∑

0≤ti<
T
ε

Ψi(x(ti), vi),

here C, F , ψi are continuous in the set of variables of function, with C ≥ 0, F and ψi satisfy the
conditions:

F (t, u) is defined for t ≥ 0, u ∈ U , convex on u, and for some a > 0:

F (t, u) ≥ a|u|p, ψi(t, v) ≥ a|v|p,

where p > 1 from condition a1) and for some K > 0 there exists ε0 > 0 such that ε < ε0 the
inequality

ε

T
ε∫

0

F (t, 0) dt ≤ K

holds.
With respect to system (1.1), we assume that the following conditions are fulfilled:
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1.1) there are such A0(x), B0(x) and C0(x), for which uniformly over x ∈ D the boundaries exist
(averaging conditions):

lim
T→∞

∣∣∣∣ 1T
T∫
0

A(t, x) dt−A0(x)

∣∣∣∣ = 0,

lim
T→∞

∣∣∣∣ 1T
T∫
0

C(t, x) dt− C0(x)

∣∣∣∣ = 0,

lim
T→∞

1

T

T∫
0

∥B(t, x)−B0(x)∥q dt = 0,

where q is determined from the condition 1
p + 1

q = 1;

1.2) the vector function A(t, x) and the matrix function B(t, x) are defined, measurable by t for
each x, the function C(t, x) is defined and is continuous at t ≥ 0, x ∈ D;

1.3) the functions A(t, x), B(t, x) and C(t, x) are Lipschitz’s functions on x with constant L in
domain D;

1.4) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are continuous on the set of variables;

1.5) the functions ψi(x, v), i = 1, 2, . . . , i(t), are bounded by the constant M at t ≥ 0, x ∈ D,
v ∈ V ;

1.6) the functions Ii(x, v), ψi(x, v), i = 1, 2, . . . , i(t), are Lipschitz’s functions on x with constant
L in the domain D and uniformly continuous on v in the domain of definition;

1.7) for the functions A(t, x), B(t, x), C(t, x) and Ii(x, v), i = 1, 2, . . . , i(Tε ), the conditions of
linear growth are fulfilled, i.e., there is a constant K > 0 such that for t ≥ 0 and x ∈ D the
followings inequalities are fulfilled:

|A(t, x)| ≤ K(1 + |x|), ∥B(t, x)∥ ≤ K(1 + |x|), |Ii| ≤ K(1 + |x|), |C(t, x)| ≤ K(1 + |x|).

Let the averaging conditions also be satisfied:

1.8) uniformly for x ∈ D, u ∈ U , v ∈ V there are boundaries:

lim
s→∞

1

s

∑
0<ti<s

Ii(x, v) = I0(x, v),

lim
s→∞

1

s

∑
0<ti<s

ψi(x, v) = ψ0(x, v).

Problem (1.1) on the interval [0, Tε ] will correspond to the following averaged problem:

ẏ = ε
[
A0(y) +B0(y)u+ I0(y, v0)

]
, t ∈

[
0,
T

ε

)
, (2.1)

y
(
0, u(0), vi(0)

)
= x0,

where u is the allowable control of the averaging problem (2.1), that satisfies the same conditions
as the allowable control of the exact problem (1.1), and v0 for each vi is selected from condition a5).
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The set of admissible controls (u(t), v0) of problem (2.1) is denoted by Ω. The quality criterion
of the problem of averaging is as follows:

Jε(u, v) = ε

T
ε∫

0

[
C0(y(t)) + F (t, u) + ψ0(y(t), v0)

]
dt.

Let’s denote

J∗
ε = inf

(u(t),vi)∈Ω
Jε(u, v),

J
∗
ε = inf

(u(t),v0)∈Ω
Jε(u, v).

The purpose of this work is to prove for the problem of optimal control the following statement:
for an arbitrary η > 0 there is ε0 = ε0(η) such that for ε < ε0 the inequality∣∣J∗

ε − Jε(u
∗, v∗0)

∣∣ ≤ η

holds; u ∗, v∗0 is the optimal control pair for the problem of averaging, i.e., the optimal control of
the problem of averaging is almost optimal for the exact one.

For the averaged system (2.1) we assume that the following condition is fulfilled:

(A) If the control u satisfies the estimate

ε

T
ε∫

0

|u(t)| dt ≤ R,

where R > 0 does not depend on ε, u, then there is ε0 = ε0(R) such that for 0 < ε < ε0 the
solution of the averaged Cauchy problem y(t, u, v0) for t ∈ [0, Tε ] lies in the region D together
with some ρ-neighborhood, and ρ does not depend on ε, u, v0.

The following theorem holds.

Theorem. Under conditions 1.1)–1.7) and condition (A) there exists ε0 > 0 such that for 0 < ε < ε0
the exact and averaged control problems have solutions, and for an arbitrary η > 0 there exists
ε1 = ε1(η) ≤ ε0 such that for 0 < ε < ε1 the inequality∣∣J∗

ε − Jε(u
∗, v∗0)

∣∣ ≤ η

is fulfilled, where (u ∗, v∗0) is the optimal control of the averaging system.
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