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The process of electromagnetic field propagation into a substance, its mathematical modeling,
investigation, and numerical solution belong to one of the most important tasks in applied math-
ematics. As a rule, this process is accompanied by the release of thermal energy, which causes
changes in the permeability of the medium and affects the diffusion process since the coefficient
of conductivity of the medium significantly depends on temperature. Mathematical simulation of
the mentioned process, like many other applied problems, results in nonlinear partial differential
and integro-differential equations and systems of those equations. In a quasistationary case the
corresponding system of the Maxwell equations has the following form [12]:

∂H

∂t
= − rot(νm rotH), (1)

cν
∂θ

∂t
= νm(rotH)2, (2)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, cν and νm characterize
the heat capacity and electrical conductivity of the medium. Equation (1) describes the propagation
of the magnetic field in the medium whereas equation (2) expresses a change of the temperature due
to the Joule heating. Assume that coefficients of thermal heat capacity and electrical conductivity
of the substance depending on temperature. In this case, as it is shown in [3], system (1), (2) can
be reduced to the following nonlinear parabolic type integro-differential model

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
. (3)

Let us note that the above-mentioned integro-differential model (3) is complex and only par-
ticular classes are investigated (see, for example, [1–11, 13–15, 17, 18] and the references therein).
Consider the case when all three components of the magnetic field vector are functions of time and
one spatial variable Hi = Hi(x, t), i = 1, 2, 3. Thus, in this case we have:

rotH =
(
0,−∂H3

∂x
,
∂H2

∂x

)
,

rot(a(S) rotH) =

(
0,− ∂

∂x

(
a(S)

∂H2

∂x

)
,− ∂

∂x

(
a(S)

∂H3

∂x

))
,

where

S(x, t) =

t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ,
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and system (3) takes the following form:

∂H1

∂t
= 0,

∂H2

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+

(∂H3

∂x

)2
]
dτ

)
∂H2

∂x

]
= 0,

∂H3

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+

(∂H3

∂x

)2
]
dτ

)
∂H3

∂x

]
= 0.

(4)

Our goal is to study the convergence of the finite difference scheme for the following initial-
boundary value problem posed for the nonlinear integro-differential system (4) with source terms
and known right-hand sides:

∂H1

∂t
+ g1(H1) = f1,

∂H2

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ

)
∂H2

∂x

]
+ g2(H2) = f2,

∂H3

∂t
− ∂

∂x

[
a

( t∫
0

[(∂H2

∂x

)2
+
(∂H3

∂x

)2
]
dτ

)
∂H3

∂x

]
+ g3(H3) = f3,

(5)

H2(0, t) = H2(1, t) = H3(0, t) = H3(1, t) = 0, t ≥ 0, (6)
H1(x, 0) = H10(x), H2(x, 0) = H20(x), H3(x, 0) = H30(x), x ∈ [0, 1], (7)

where Hi0, gi, fi, i = 1, 2, 3 are given functions and gi are monotonically increased and positively
defined functions.

Due to the fact that the last two equations of system (5) are strongly connected to each other,
we will consider these equation jointly, whereas the first equation will be considered independently.

Let us correspond the finite difference scheme for problem (5)–(7). On [0, 1]× [0, T ] let us intro-
duce a net with mesh points denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N
with h = 1/M , τ = T/N . The initial line is denoted by j = 0. The discrete approximation at
(xi, tj) is designed by (uji , v

j
i , w

j
i ) and the exact solution to problem (5)–(7)) by (Hj

1i,H
j
2i,H

j
3i). We

will use the following known notations [16] of forward and backward derivatives:

rjx,i =
rji+1 − rji

h
, rjx,i =

rji − rji−1

h
, rjt,i =

rj+1
i − rji

τ
,

and inner products and corresponding norms:

(rj , yj) = h
M−1∑
i=1

rji y
j
i , (rj , yj ] = h

M∑
i=1

rji y
j
i ,

∥rj∥ = (rj , rj)1/2, ∥rj ]| = (rj , rj ]1/2.
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For problem (5)–(7) let us consider the following finite difference scheme:

uj+1
i − uji

τ
+ g1(u

j+1
i ) = f j

1,i,

vj+1
i − vji

τ
−
{
a

(
τ

j+1∑
k=1

[
(vkx,i)

2 + (wk
x,i)

2
])

vj+1
x,i

}
x,i

+ g2

(
vj+1
i

)
= f j

2,i,

wj+1
i − wj

i

τ
−
{
a

(
τ

j+1∑
k=1

[
(vkx,i)

2 + (wk
x,i)

2
])

wj+1
x,i

}
x,i

+ g3

(
wj+1
i

)
= f j

3,i,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

vj0 = vjM = wj
0 = wj

M = 0, j = 0, 1, . . . , N,

u0i = H10,i, v0i = H20,i, v0i = H30,i, i = 0, 1, . . . ,M.

(8)

Multiplying equations in (8) scalarly by uj+1, vj+1 and wj+1, respectively, it is not difficult to
get the inequalities:

∥un∥ < C, ∥vn∥2 +
n∑

j=1

∥vjx]|
2τ < C, ∥wn∥2 +

n∑
j=1

∥wj
x]|

2τ < C, n = 1, 2, . . . , N, (9)

where here and below C is a positive constant independent from τ and h.
The a priori estimates (9) guarantee the stability of scheme (8). The main statement of this

note can be stated as follows.

Theorem. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0 and gi, i = 1, 2, 3 are
positively defined and monotonically increased functions, and problem (5)–(7) has a sufficiently
smooth solution, then the solution of the difference scheme (8) tends to the solution of the continuous
problem (5)–(7) as τ → 0, h → 0 and the following estimates are true:

∥uj −Hj
1∥ ≤ C(τ), ∥vj −Hj

2∥ ≤ C(τ + h), ∥wj −Hj
3∥ ≤ C(τ + h).

We have carried out numerous numerical experiments for problem (5)–(7) with different kind
of right hand sides and initial-boundary conditions. Results of numerical experiments confirmed
findings in the above-stated theorem.
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