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Let Ω = (0, ω1) × (0, ω2) × (0, ω3) be an open rectangular box, and let E be an orthogonally
convex piecewise smooth domain inscribed in Ω.

A set G ∈ Rn is defined to be orthogonally convex if, for every line L that is parallel to one
of standard basis vectors, the intersection of G with L is empty, a point, or a single segment.

In the domain E consider the boundary value problem

u(2,2,2) =
∑
α<2

pα(x)u
(α) + q(x), (1)

u ν1
∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2
∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3
∣∣
∂E

= ν3(x)ψ3(x). (2)

Here x = (x1, x2, x3), 2 = (2, 2, 2), α = (α1, α2, α3) is a multi-index,

u(α)(x) =
∂α1+α2+α3u(x)

∂xα1
1 ∂xα2

2 ∂xα3
3

,

∂E is the boundary of E, and ν(x) = (ν1(x), ν2(x), ν2(x)) is the outward unit normal vector at
point x ∈ ∂E, pα ∈ C(E) (α < 2), q ∈ C(E), ψi ∈ C2,2,2(E) and E is the closure of E.

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈
C2,2,2(E) ∩ C2,2,0(E) satisfying equation (1) and the boundary conditions (2) everywhere in E
and ∂E, respectively.

C2,2,2(E) is the space of continuous functions u : E → R having continuous partial derivatives
u(α) (α ≤ 2).

Throughout the paper the following notations will be used.
0 = (0, 0, 0), 1 = (1, 1, 1).
α = (α1, α2, α3) < β = (β1, β2, β3) ⇐⇒ αi ≤ βi (i = 1, 2, 3) and α ̸= β.
α = (α1, α2, α3) ≤ β = (β1, β2, β3) ⇐⇒ α < β, or α = β.
∥α∥ = |α1|+ |α2|+ |α3|.
Υ2 =

{
α < 2 : αi = 2 for some i ∈ {1, 2, 3}

}
.

O2 =
{
α < 2 : ∥α∥ is odd

}
.

suppα = {i | αi > 0}.
xα = (χ(α1)x1, χ(α2)x2, χ(α3)x3), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0.
xα will be identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα.
x̂α = x− xα.

f+(z) =
f(z) + |f(z)|

2
, f−(z) =

|f(z)| − f(z)

2
.

H(f)(x) is the Hessian matrix of function f at point x.
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Along with problem (1), (2) consider the corresponding homogeneous problem

u(2,2,2) =
∑
α<2

pα(x)u
(α), (10)

u ν1
∣∣
∂E

= 0, u(2,0,0) ν2
∣∣
∂E

= 0, u(2,2,0) ν3
∣∣
∂E

= 0. (20)

Two-dimensional versions of problem (1), (2) were studied in [1–4]. The case of a characteristic
rectangle was considered [1] and [2]. In [3] and [4] two-dimensional problems were considered in a
orthogonally convex smooth domains.

Orthogonal convexity and smoothness of a domain are essential requirements and cannot be
relaxed. Examples attesting the paramount importance of orthogonal convexity and smoothness of
a domain were introduced in Remarks 1 and 2 of [4]. Similar examples can be easily constructed
for the three-dimensional case.

Characteristic rectangles were the only admissible piecewise smooth domains for two-dimensional
problems. In the three-dimensional case admissible piecewise smooth domains consist of character-
istic rectangular boxes and right cylinders with an orthogonally convex smooth base.

We study problem (1), (2) in the following three cases: characteristic rectangular box; a right
cylinder with an orthogonally convex smooth base; an orthogonally convex smooth domain.

It is not difficult to show that the problem

u(2,2,2) = 0,

u ν1
∣∣
∂E

= ν1(x)ψ1(x), u(2,0,0) ν2
∣∣
∂E

= ν2(x)ψ2(x), u(2,2,0) ν3
∣∣
∂E

= ν3(x)ψ3(x)

is uniquely solvable in all three aforementioned cases. Consequently, without loss of generality,
problem (1), (2) can always be reduced to the problem with the zero boundary conditions.

Due to this fact, for the sake of technical simplicity, all results will be formulated for problem
(1), (20).
Case I: Characteristic Rectangular Box. Let E = Ω. For the rectangular box Ω the boundary
conditions (20) receive the form

u(σ ω1, x1, x2) = 0, u(2,0,0)(x1, σ ω2, x2) = 0, u(2,2,0)(x1, x2, σ ω3) = 0 (σ = 0, 1).

It is easy to see that the latter conditions are equivalent to the following ones

u(σ ω1, x1, x2) = 0, u(x1, σ ω2, x2) = 0, u(x1, x2, σ ω3) = 0 (σ = 0, 1). (3)

Theorem 1. Let
pα(x) ≡ pα(x̂α) if α ∈ Υ2 ∩O2,

and let the following inequalities hold:

p220(x) ≡ p220(x3) > −π
2

ω2
3

, p202(x) ≡ p202(x2) > −π
2

ω2
2

, p022(x) ≡ p022(x1) > −π
2

ω2
1

, (4)

p−220(x3)
ω2
3

π2
+ p−202(x2)

ω2
2

π2
+ p+200(x)

ω2
2ω

2
3

π4
+
∣∣p211(x)∣∣ ω2ω3

π2
< 1, (5)

p−220(x3)
ω2
3

π2
+ p−022(x1)

ω2
1

π2
+ p+020(x)

ω2
1ω

2
3

π4
+
∣∣p121(x)∣∣ ω1ω3

π2
< 1, (6)

p−202(x2)
ω2
2

π2
+ p−022(x1)

ω2
1

π2
+ p+002(x)

ω2
1ω

2
2

π4
+
∣∣p112(x)∣∣ ω1ω2

π2
< 1. (7)

Then problem (1), (3) has the Fredholm property, i.e.:
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(i) problem (10), (3) has a finite dimensional space of solutions;

(ii) problem (1), (3) is uniquely solvable if and only if problem (10), (3) has only the trivial solution.

Furthermore, every solution of problem (1), (3) belongs to C2,2,2(Ω).

Remark 1. The strict inequalities (4)–(7) are sharp and cannot be replaced by nonstrict ones.
Violation of at least one of the above inequalities can lead to the loss of the Fredholm property of
problem (1), (2). To verify this, consider the problem

u(2,2,2) = (−1)∥α∥u(2α) + u− sinx1 sinx2 sinx3 q(x̂α), (8)
u(σ π, x1, x2) = 0, u(x1, σ π, x2) = 0, u(x1, x2, σ π) = 0 (σ = 0, 1) (9)

in the domain E = (0, π)×(0, π)×(0, π). Here 0 < α < 1, and q is an arbitrary non-differentiable
continuous function. The problem satisfies all of the inequalities (4)–(7) except the one for the
coefficient p2α: instead of (−1)∥α∥p2α > 1 we have (−1)∥α∥p2α = 1. As a result, problem (8), (9)
does not have the Fredholm property. Indeed, despite the fact that the homogeneous problem

u(2,2,2) = (−1)∥α∥u(2α) + u,

u(σ π, x1, x2) = 0, u(x1, σ π, x2) = 0, u(x1, x2, σ π) = 0 (σ = 0, 1)

has only the trivial solution, problem (8), (9) has the unique weak solution

u(x) = sinx1 sinx2 sinx3 q(x̂α),

which is not a classical solution due to non-differentiability of the function q.

Consider the equation

u(2,2,2) =
∑
α<1

p2α(x̂α)u
(2α) +

∑
α∈O2

pα(x̂α)u
(α) + q(x). (10)

Corollary 1. Let

(−1)∥α∥p2α(x̂α) ≥ 0 for α < 1. (11)

Then problem (10), (3) is uniquely solvable.

Case II: Right Cylinder. Let E = {(x1, x2, x3) ∈ Ω : (x1, x2) ∈ G, x3 ∈ (0, ω3)}, where G is
an orthogonally convex open domain with C2 boundary inscribed in the rectangle (0, ω1)× (0, ω2),
i.e.,

G =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
, (12)

and γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2).
In the right cylinder E consider the following equations

u(2,2,2) = p220(x3)u
(2,2,0)+p202(x2)u

(2,0,2)+p200(x)u
(2,0,0)+p020(x)u

(0,2,0)+p002(x2, x3)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x), (13)

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2) + p022(x1)u
(0,2,2)

+ p200(x)u
(2,0,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2) + p000(x2, x3)u+ q(x) (14)
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and

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2) + p022(x1)u
(0,2,2)

+ p200(x)u
(2,2,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x). (15)

In view of (12), conditions (20) receive the form

u(ζi(x2, x3), x2, x3) = 0, u(2,0,0)(x1, ηi(x1, x3), x3) = 0,

u(2,2,0)(x1, x2, γi(x1, x2)) = 0 (i = 1, 2). (16)

Theorem 2. Let the following inequalities hold:

p220(x3) ≥ 0, p202(x2) ≥ 0, p200(x) ≤ 0, p020(x) ≤ 0, p002(x2, x3) ≤ 0.

Then problem (13), (16) has the Fredholm property.

Theorem 3. Let G be a convex domain, i.e.,

(−1)i−1γ′′i (x1) ≥ 0 for x1 ∈ (0, ω1) (i = 1, 2) (17)

and
(−1)i−1η′′i (x2) ≥ 0 for x2 ∈ (0, ω2) (i = 1, 2), (18)

and let

p220(x3) ≥ 0, p202(x2) ≥ 0, p202(x1) ≥ 0, (19)
p200(x) ≤ 0, p020(x3) ≤ 0, p002(x2) ≤ 0, (20)

p000(x2, x3) ≥ 0.

Then problem (14), (16) is uniquely solvable.
Furthermore, if G is strongly convex, i.e.,

(−1)i−1γ′′i (x1) > 0 for x1 ∈ (0, ω1) (i = 1, 2) (21)

and
(−1)i−1η′′i (x2) > 0 for x2 ∈ (0, ω2) (i = 1, 2), (22)

then the solution of problem (14), (16) belongs to C2,2,2(E).

Corollary 2. Let inequalities (17)–(20) hold. Then problem (15), (16) has the Fredholm property.
Furthermore, if inequalities (21) and (22) hold, then every solution of problem (15), (16) belongs to
C2,2,2(E).

Case III: Smooth Domain. Let E be an orthogonally convex open domain with C2,2 boundary
inscribed in the characteristic box Ω, i.e.,

E =
{
(x1, x2, x3) ∈ Ω : (x1, x2) ∈ G12, x3 ∈ (γ1(x1, x2), γ2(x1, x2))

}
=

{
(x1, x2, x3) ∈ Ω : (x1, x3) ∈ G13, x2 ∈ (η1(x1, x3), η2(x1, x3))

}
=

{
(x1, x2, x3) ∈ Ω : (x2, x3) ∈ G13, x1 ∈ (ζ1(x2, x3), ζ2(x2, x3))

}
, (23)
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where γi ∈ C(G12) ∩ C2,2(G12), ηi ∈ C(G13) ∩ C2,2(G13), ζi ∈ C(G23) ∩ C2,2(G23) (i = 1, 2), and
G12, G13 and G23 are orthogonally convex smooth open domains inscribed in (0, ω1) × (0, ω2),
(0, ω1)× (0, ω3) and (0, ω2)× (0, ω3), respectively.

In the domain E consider the following equations:

u(2,2,2) = p220(x)u
(2,2,0) + p200(x1, x3)u

(2,0,0) +
∑
α≤1

pα(x)u
(α) + q(x), (24)

u(2,2,2) = p220(x3)u
(2,2,0) + p202(x2)u

(2,0,2)

+ p200(x)u
(2,0,0) + p020(x3)u

(0,2,0) + p002(x2)u
(0,0,2) + p000(x2, x3)u+ q(x) (25)

and

u(2,2,2) = p220(x3)u
(2,2,0)+p202(x2)u

(2,0,2)+p200(x)u
(2,2,0)+p020(x3)u

(0,2,0)+p002(x2)u
(0,0,2)

+
∑
α≤1

pα(x)u
(α) + q(x). (26)

In view of (23), conditions (20) receive the form

u(ζi(x2, x3), x2, x3) = 0, u(2,0,0)(x1, ηi(x1, x3), x3) = 0,

u(2,2,0)(x1, x2, γi(x1, x2)) = 0 (i = 1, 2). (27)

Theorem 4. Let the following inequalities hold:

p220(x) ≥ 0,

p200(x1, x3) ≤ 0.

Then problem (24), (27) has the Fredholm property.

Theorem 5. Let E be a convex domain, i.e., let

(−1)i−1H[γi](x1, x2) be positive semi-definite for (x1, x2) ∈ G12 (i = 1, 2), (28)
(−1)i−1H[ηi](x1, x3) be positive semi-definite for (x1, x3) ∈ G13 (i = 1, 2), (29)
(−1)i−1H[ζi](x2, x3) be positive semi-definite for (x2, x3) ∈ G23 (i = 1, 2), (30)

and let

p220(x3) ≥ 0, p202(x2) ≥ 0, (31)
p200(x) ≤ 0, p020(x3) ≤ 0, p002(x2) ≤ 0, (32)

p000(x2, x3) ≥ 0.

Then problem (25), (27) is uniquely solvable.
Furthermore, if E is strongly convex, i.e.,

(−1)i−1H[γi](x1, x2) is positive definite for (x1, x2) ∈ G12 (i = 1, 2), (33)
(−1)i−1H[ηi](x1, x3) is positive definite for (x1, x3) ∈ G13 (i = 1, 2), (34)
(−1)i−1H[ζi](x2, x3) is positive definite for (x2, x3) ∈ G23 (i = 1, 2), (35)

then the solution of problem (25), (27) belongs to C2,2,2(E).



122 International Workshop QUALITDE – 2020, December 19 – 21, 2020, Tbilisi, Georgia

Corollary 3. Let conditions (28)–(32) hold. Then problem (26), (27) has the Fredholm property.
Furthermore, if conditions (33)–(35) hold, then every solution of problem (26), (27) belongs to
C2,2,2(E).

Remark 2. In a strongly convex domain the boundary conditions (2) are equivalent to the bound-
ary conditions

u
∣∣
∂E

= ψ1(x), u(2,0,0)
∣∣
∂E

= ψ2(x), u(2,2,0)
∣∣
∂E

= ψ3(x).

Remark 3. Without the requirement that the domain E be strongly convex the solution of problem
(1), (2) may not belong to C2,2,2(E).

As an example, in the domain E = {(x1, x2, x3) : x41 + x42 + x43 < 1} consider the problem

u(2,2,2) = 0, (36)
u
∣∣
∂E

= 0, u(2,0,0)
∣∣
∂E

= 2, u(2,2,0)
∣∣
∂E

= 0. (37)

E is a convex domain. However, E is not strongly convex, since the Hessian matrices mentioned in
Theorem 5 are positive semi-definite rather than positive definite along the three ”main meridians”{

x41 + x42 = 1

x3 = 0
,

{
x41 + x43 = 1

x2 = 0
, and

{
x42 + x43 = 1

x1 = 0
.

As a result, the unique solution of problem (36), (37) u(x) = x21 −
√

1− x42 − x43 does not belong
to C2,2,2(E) since u(0,1,0) and u(0,0,1) are discontinuous along the third “main meridian”.

It is worth noticing that problem (36), (37) considered in the unit ball E = {(x1, x2, x3) :
x21 + x22 + x23 < 1} has a unique solution u(x) = x21 + x22 + x23 − 1 which belongs to C2,2,2(E). Such
contrast is explained by the fact that the unit ball is a strongly convex domain.
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