Asgeirsson Principle and Exact Boundary Controllability Problems for One Class of Hyperbolic Systems

Sergo Kharibegashvili
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: kharibegashvili@yahoo.com

In the domain $D_{T}: 0<x<l, 0<t<T$, of the plane $O_{x t}$ of independent variables x, t consider a hyperbolic system of the following form

$$
\begin{equation*}
u_{t t}-A u_{x x}=F(x, t), \quad(x, t) \in D_{T}, \tag{1}
\end{equation*}
$$

where A is a symmetric positively defined constant square matrix of order $n, F=$ $\left(F_{1}(x, t), \ldots, F_{n}(x, t)\right)$ is given and $u=\left(u_{1}(x, t), \ldots, u_{n}(x, t)\right)$ - unknown vector-functions, $n \geq 2$.

For system (1) consider an initial-boundary problem with the following statement: in the domain D_{T} find a solution $u=u(x, t)$ to system (1) that satisfies the following initial conditions

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad 0<x<l, \tag{2}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
u(0, t)=\mu_{1}(t), \quad u(l, t)=\mu_{2}(t), \quad 0<t<T \tag{3}
\end{equation*}
$$

where

$$
\varphi=\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right), \quad \psi=\left(\psi_{1}(x), \ldots, \psi_{n}(x)\right), \quad \mu_{i}(t)=\left(\mu_{i 1}(t), \ldots, \mu_{i n}(t)\right), \quad i=1,2,
$$

are given vector-functions.
As is known, problem (1), (2), (3) is posed correctly. We consider generalized solutions u of this problem in the space $C_{0}\left(\bar{D}_{T}\right)$ in the sense of the theory of distribution. Here the space $C_{0}\left(\bar{D}_{T}\right)$ is obtained by completion of the space $C^{1}\left(\bar{D}_{T}\right)$ with respect to the norm

$$
\|u\|_{C_{0}\left(\bar{D}_{T}\right)}=\|u\|_{C\left(\bar{D}_{T}\right)}+\left\|u_{t}(x, 0)\right\|_{C([0, l])},
$$

and consists of continuous vector-functions u from \bar{D}_{T} having continuous classical derivative u_{t} for $t=0, x \in[0, l]$. In this case, from the data of problem (1), (2), (3), i.e. from $\varphi, \psi, \mu_{1}, \mu_{2}$ and F, we require that

$$
\begin{equation*}
\varphi \in C([0, l]), \quad \psi \in C([0, l]), \quad \mu_{i} \in C_{0}([0, T]), \quad i=1,2 ; \quad F \in C\left(\bar{D}_{T}\right), \tag{4}
\end{equation*}
$$

and at the points $O(0,0)$ and $O_{1}(0,0)$ there are valid the following necessary conditions of agreement

$$
\begin{equation*}
\mu_{1}(0)=\psi(0), \quad \mu_{2}(0)=\varphi(l), \quad \mu_{1}^{\prime}(0)=\psi(0), \quad \mu_{2}^{\prime}(0)=\psi(l), \tag{5}
\end{equation*}
$$

where the space $C_{0}([0, T])$ is obtained by completion of the space $C^{1}([0, T])$ with respect to the norm

$$
\|\mu\|_{C_{0}([0, T])}=\|\mu\|_{C([0, T])}+\left\|\mu^{\prime}(0)\right\|
$$

and consists of the traces of vector-functions from the space $C_{0}\left(\bar{D}_{T}\right)$ on the side $\{x=0,0 \leq t \leq T\}$ of the rectangle D_{T}. At fulfillment of conditions (4), (5), problem (1), (2), (3) has a unique solution u in the space $C_{0}\left(\bar{D}_{T}\right)$. This solution will be a classical solution in the space $C^{2}\left(\bar{D}_{T}\right)$ if instead of (4) we require that

$$
\varphi \in C^{2}([0, l]), \quad \psi \in C^{1}([0, l]), \quad \mu_{i} \in C^{2}([0, T]), \quad i=1,2 ; \quad F \in C^{1}\left(\bar{D}_{T}\right),
$$

besides, in this case, at the points $O(0,0)$ and $O_{1}(0,0)$, together with (5) should be additionally fulfilled the following conditions of agreement

$$
\mu_{1}^{\prime \prime}(0)-A \varphi^{\prime \prime}(0)=F(0,0), \quad \mu_{2}^{\prime \prime}(0)-A \varphi^{\prime \prime}(l)=F(l, 0) .
$$

Problem (1), (2), (3) is said to be controllable, if for "arbitrary" initial data φ, ψ and the righthand side F of system (1), there exist appropriate "control" vector-functions μ_{1} and μ_{2} such that the solution of problem (1), (2), (3) satisfies the conditions

$$
\begin{equation*}
u(x, T)=u_{t}(x, T)=0, x \in[0, l] . \tag{6}
\end{equation*}
$$

Denote by k_{i} the characteristic numbers of the matrix A, and by v_{i} - the corresponding eigenvectors, i.e. $A v_{i}=k_{i} v_{i} . i=1, \ldots, n$. According to our requirements imposed on the matrix A we have

$$
\begin{equation*}
k_{i}=\lambda_{i}^{2}, \quad \lambda_{i}=\text { const }>0, \quad i=1, \ldots, n \tag{7}
\end{equation*}
$$

Due to (7) the hyperbolic system (1) has the following families of characteristic lines

$$
x+\lambda_{i} t=\text { const } \text { and } x-\lambda_{i} t=\text { const, } i=1, \ldots, n .
$$

Denote by K a square matrix of order n whose columns are vectors v_{1}, \ldots, v_{n}. It is obvious that $\operatorname{det} K \neq 0$ and denote by w_{1}, \ldots, w_{n} the components of the vector $K^{-1} u$ where u is a solution of system (1).

Denote by $P_{0}^{i} P_{1}^{i} P_{2}^{i} P_{3}^{i}$ the characteristic parallelogram whose sides $P_{0}^{i} P_{1}^{i}$ and $P_{2}^{i} P_{3}^{i}$ belong to the family of characteristic lines $x-\lambda_{i} t=$ const, while sides $P_{0}^{i} P_{2}^{i}$ and $P_{1}^{i} P_{3}^{i}$ belong to the characteristic lines $x+\lambda_{i} t=$ const, besides, the coordinate of point P_{0}^{i} with respect to the variable t exceeds the coordinates of the rest points P_{1}^{i}, P_{2}^{i} and P_{3}^{i} with respect to the same variable, $i=1, \ldots, n$.
Generalized Asgeirsson principle: for the components w_{1}, \ldots, w_{n} of the vector $K^{-1} u$, where $u \in C_{0}\left(\bar{D}_{T}\right)$ is a generalized solution of system (1), the following equalities

$$
w_{i}\left(P_{0}^{i}\right)=w_{i}\left(P_{1}^{i}\right)+w_{i}\left(P_{2}^{i}\right)-w_{i}\left(P_{3}^{i}\right)+\frac{1}{2 \lambda_{i}} \int_{P_{0}^{i} P_{1}^{i} P_{2}^{i} P_{3}^{i}} K^{-1} F(x, t) d x d t, \quad i=1, \ldots, n,
$$

are valid, where $P_{0}^{i} P_{1}^{i} P_{2}^{i} P_{3}^{i}$ is an arbitrary characteristic parallelogram lying in \bar{D}_{T}.
Below, for simplicity of presentation we will assume that $F=0$.
Remark 1. If $T=\frac{l}{\lambda_{i}}, 1 \leq i \leq n$, then for existence of the solution $u=u(x, t) \in C_{0}\left(\bar{D}_{T}\right)$ of problem (1), (2), (3), satisfying condition (6) it is necessary that the data of this problem φ and ψ satisfy the following condition

$$
\begin{equation*}
\widetilde{\varphi}_{i}(0)+\widetilde{\varphi}_{i}(l)+\frac{1}{\lambda_{i}} \int_{0}^{l} \widetilde{\psi}_{i}(\xi) d \xi=0 \tag{8}
\end{equation*}
$$

where

$$
\widetilde{\varphi}=\left(\widetilde{\varphi}_{1}, \ldots, \widetilde{\varphi}_{n}\right)=K^{-1} \varphi, \widetilde{\psi}=\left(\widetilde{\psi}_{1}, \ldots, \widetilde{\psi}_{n}\right)=K^{-1} \psi
$$

The proof of the following theorem is based on the generalized Asgeirsson principle.
Theorem. Let $T \geq T_{0}=\max _{1 \leq i \leq n} \frac{l}{\lambda_{i}}$ and the vector-functions $\varphi \in C([0, l]), \psi \in C([0, l])$ be given which satisfy conditions (8) for $i=1, \ldots, n$. Then there exist vector-functions $\mu_{1}, \mu_{2} \in C_{0}([0, T])$ satisfying the condition of agreement (5) such that the solution $u \in C_{0}\left(\bar{D}_{T}\right)$ of problem (1), (2), (3) satisfies condition (6).

Remark 2. If $T<T_{0}=\max _{1 \leq i \leq n} \frac{l}{\lambda_{i}}$, then not for all $\varphi \in C([0, l]), \psi \in C([0, l])$ problem (1), (2), (3) is exactly controllable.

Remark 3. At fulfillment of the conditions of the above theorem, uniqueness of the vector-functions μ_{1} and μ_{2} will hold when $\lambda_{0}:=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}$ for $T=T_{0}=\frac{l}{\lambda_{0}}$ and violated when $T>\lambda_{0}$.

