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In the plane of independent variables x and y consider quasilinear Karman’s equation, arising
in a variety of physical problems such as nonlinear vibrations, and irrotational transonic flows of
baritropic gas [1-4,6,12],

(Ug) Uz — Uyy = 0. (1)

Equation (1) is considered in the class of hyperbolic solutions which in this case is determined

by the condition
uy > 0. (2)

Let
«

m::m, —2# a€R:=(—o00,+0). (3)

Theorem. If the condition m € N := {1,2,3,...} is fulfilled, then the general classical solution
u € C? of equation (1) is given by the formulas
o’ F(X)-G(Y)
oxmaym X-Y ’
an—Z F' X) _ G/(Y)
oxXm-1gym-1 X-Y

T = (X _ Y)2m+1

y =m[2(1 - 2m)]*"

)

m m—1 m H2m—2 F/(X) . G,(Y)
u=m[2(1—2m))? {(2m S — ) T — 1
m-1 9" F(X)-G(Y) _
S 2m — 1 9Xm—29ym-1 X_V for m=23,...
and
r=—=2[F(X) =G|+ [F(X)+G )X -Y),
4F'(X) - C'(Y)]
B X—-vy (5)
_AYF(X) - XG'(Y)] ,
U= X_v for m=1.

Here F,G € C™L are arbitrary functions with respect to the variables X and Y, respectively.

Proof. Let us introduce the Riemann invariants of equation (1) as independent variables

a+2

pz,

X =
Q+oz+2
2 a+2

Y=0— —"—_p =2
4 a+2p ’
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in terms of which equation (1) can be rewritten in the form of a system of equations of the first
order [7,8]
X, —p2 X, =0,
o (7)
Y, +p2Y, =0.
Here p := u,, q := uy.
In system (7), we choose X and Y as the independent variables, while z(X,Y’) and y(X,Y) as
the desired functions. Applying the formulas of differentiation of implicit functions of two variables

rx = DY,, xy=-DXy, yx=-DY,, yy=DX,,

where D := g(()?yy)) is the Jacobian of transformation, from system (7) we obtain

xy —p2yx =0,

zy +p2yy =0.

Here p? = {M(X - Y)}gm due (2), (3) and (6).
Eliminating the function y(X,Y’) from system (8) we obtain that the function z(X,Y") satisfies
the Euler-Poisson-Darboux-Riemann equation [4,10]

m m
S
X-v X x_v

rxy + zy = 0. 9)

By a similar way for the function y(X,Y) we get

m m
~ —0. 1
YXy X—YyX+X—YyY 0 (10)

General solutions of equations (9) and (10) under the conditions of the theorem have the
following form [9, 11]

T = (X o Y)2m+1

)

0?m  Fi(X) - G(Y)
dXmoym X-Y

_ o*m—2 Fy(X) — Ga(Y)
9Xm-lgym—1 X-Y ’

(11)

Y

respectively. Here ', G € C™2 and Fy, Gy € C™*! are arbitrary functions.
Taking into account (11), satisfying system (8), we get

(X)) =m[2(1 —2m))*"F{(X), G2(Y)=m[2(1 - 2m)]*" G\ (Y). (12)
Further, to obtain the final form of the function u, due (3), (6) and (8) we have
du=pdzr+qdy
at2 a2
=plexdX +oydY)+qlyx dX +yydY)=(¢+p 2 JyxdX +(¢—p 2 Jyy dY
—1 —1
:(m X4+ Y)deX+< m x4 Y)Z/YdY7

2m —1 2m —1 2m —1 2m —1
whence
m—1 m m m—1
UX_(zm—1X+2m—1Y)yX’ UY_(zm—1X+2m—1Y>yY‘ (13)
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By virtue of the first equality in (13), we obtain

m—1
U(X,Y):2m_1/XdeX+2m_1Yy+cp(Y)
m—1 m
= Xy — dX Y Y 14
2m_1< y /y >+2m_1 y+eY), (14)

where ¢ is an arbitrary function.
According to the second equality from (13), for definition of the function ¢, we get

m—1 m , m m—1
CT— <XyY—/deX>+2m_1(y+YyY)+<P(Y)—<2m_1X+2m_1Y)yY- (15)

By virtue of (10), we obtain

Y - X Y - X 1
/yde=/< yxy+yx>dX= - yy+m/yde+y.

m

Thus, we have

Y - X
/yde: yy—i—mTilyform;él.

m—1

Taking into account the latter equality, from (15) we obtain
d(Y)=0 = p=const for m=23,.... (16)
Analogously, from (14) for m = 1, we get
UX,Y)=Yy+pY). (17)
According to the second equality from (13) for m = 1, for definition of the function ¢, we get
V)= (X =Yy —y=-G(Y) = ¢(Y) =—-Go(Y). (18)
Now, introducing the notation F' := Fij, G := G; and taking into account (11), (12), (14), (16)—(18),
we obtain (4) and (5), respectively. O

Remark. In the case m = 1, i.e. for o = —4, the solution (5) of equation (1) by the method of
Lee’s group has been obtained in [5].
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