On Some Bounds for Coefficients of the Asymptotics to Robin Eigenvalue

A. V. Filinovskiy ${ }^{1,2}$
${ }^{1}$ Bauman Moscow State Technical University, Moscow, Russia;
${ }^{2}$ Lomonosov Moscow State University
E-mail: flnv@yandex.ru

Let us consider the Robin eigenvalue problem

$$
\begin{align*}
\Delta u+\lambda u & =0, \quad x \in \Omega \tag{1}\\
\left.\left(\frac{\partial u}{\partial \nu}+\alpha u\right)\right|_{x \in \Gamma} & =0, \quad \alpha \in \mathbb{R} \tag{2}
\end{align*}
$$

Here $\Omega \subset \mathbb{R}^{n}, n \geq 2$, is a bounded domain with the sufficiently smooth boundary Γ. We denote by $\lambda_{1}^{R}(\alpha)$ the first eigenvalue of problem (1), (2). Consider also the Dirichlet eigenvalue problem

$$
\begin{align*}
\Delta u+\lambda u & =0, \quad x \in \Omega \tag{3}\\
\left.u\right|_{x \in \Gamma} & =0 \tag{4}
\end{align*}
$$

Let λ_{1}^{D} be the first eigenvalue of problem (3), (4), and $u_{1}^{D}(x)$ be the first Dirichlet eigenfunction, satisfying $\left\|u_{1}^{D}\right\|_{L_{2}(\Omega)}=1$.

In the papers $[1-5]$ we get the following statement.
Theorem 1. The eigenvalue $\lambda_{1}^{R}(\alpha)$ satisfies the asymptotic representation

$$
\begin{align*}
\lambda_{1}^{R}(\alpha) & =\lambda_{1}^{D}-a_{1} \alpha^{-1}-a_{2} \alpha^{-2}+o\left(\alpha^{-2}\right), \quad \alpha \rightarrow+\infty \tag{5}\\
a_{1} & =\int_{\Gamma}\left(\frac{\partial u_{1}^{D}}{\partial \nu}\right)^{2} d s, \quad a_{2}=\int_{\Gamma} \frac{\partial u_{1}^{D}}{\partial \nu} \frac{\partial v}{\partial \nu} d s \tag{6}
\end{align*}
$$

The function $v \in H^{1}(\Omega)$ is a solution of the boundary value problem

$$
\begin{align*}
\Delta v+\lambda_{1}^{D} v & =\int_{\Gamma}\left(\frac{\partial u_{1}^{D}}{\partial \nu}\right)^{2} d s u_{1}^{D}, x \in \Omega \tag{7}\\
\left.v\right|_{x \in \Gamma} & =-\left.\frac{\partial u_{1}^{D}}{\partial \nu}\right|_{x \in \Gamma} \tag{8}
\end{align*}
$$

satisfying the condition

$$
\begin{equation*}
\int_{\Omega} v u_{1}^{D} d x=0 \tag{9}
\end{equation*}
$$

Problem (7)-(9) has a unique solution.
In this paper we establish two-sided estimates for the coefficient a_{1} in formula (5).

Theorem 2. Let $\Omega \subset B_{R_{0}}(0)=\left\{x \in \mathbb{R}^{n}:|x|<R_{0}\right\}$ and $\boldsymbol{b}(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right) \in C^{1}(\bar{\Omega})$ be a vector function. Then the following estimates hold:

$$
\begin{equation*}
\frac{2 \lambda_{1}^{D}}{R_{0}} \leq a_{1} \leq 4 n \inf _{\substack{b \in C^{1}(\bar{\Omega}) \\ b \mid \Gamma=\nu}} \max _{\Gamma=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})} \lambda_{1}^{D}, \quad\|f(x)\|_{C(\bar{\Omega})}=\sup _{x \in \bar{\Omega}}|f(x)| . \tag{10}
\end{equation*}
$$

Definition. We call Γ a strictly star-shaped surface if the inequality $(\nu, x)>0$ holds for all $x \in \Gamma$.
Theorem 3. Let Γ be a strictly star-shaped surface. Then the following estimate holds:

$$
\begin{equation*}
a_{1} \leq \frac{2 \lambda_{1}^{D}}{\inf _{x \in \Gamma}(\nu, x)} . \tag{11}
\end{equation*}
$$

Let us note that for $\Omega=B_{R_{0}}(0)$ it follows from (10), (11) that $a_{1}=\frac{2 \lambda_{1}^{D}}{R_{0}}$.
Proof. By direct computation we have the following equality for solutions of problem (3), (4):

$$
\begin{equation*}
\int_{\Gamma}(\mathbf{b}, \nu) u_{\nu}^{2} d s=\int_{\Omega}\left(2 \sum_{i, j=1}^{n}\left(b_{i}\right)_{x_{j}} u_{x_{i}} u_{x_{j}}+\operatorname{div} \mathbf{b}\left(\lambda u^{2}-|\nabla u|^{2}\right)\right) d x . \tag{12}
\end{equation*}
$$

Using (12) for $\left.\mathbf{b}\right|_{\Gamma}=\nu$, we get

$$
\begin{equation*}
\int_{\Gamma} u_{\nu}^{2} d s=\int_{\Gamma}(\mathbf{b}, \nu) u_{\nu}^{2} d s \leq 2 \int_{\Omega} \sum_{i, j=1}^{n}\left(b_{i}\right)_{x_{j}} u_{x_{i}} u_{x_{j}} d x+\int_{\Omega}|\operatorname{div} \mathbf{b}|\left(|\nabla u|^{2}+\lambda u^{2}\right) d x . \tag{13}
\end{equation*}
$$

We have

$$
\begin{align*}
\sum_{i, j=1}^{n}\left(b_{i}\right)_{x_{j}} u_{x_{i}} u_{x_{j}} & \leq \max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})} \sum_{i, j=1}^{n}\left|u_{x_{i}}\right|\left|u_{x_{j}}\right| \\
& =\max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})}\left(\sum_{i=1}^{n}\left|u_{x_{i}}\right|\right)^{2} \leq n \max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})}|\nabla u|^{2}, x \in \Omega . \tag{14}
\end{align*}
$$

Now, combine (13), (14) and the inequality

$$
|\operatorname{div} \mathbf{b}| \leq n \max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})}, \quad x \in \Omega,
$$

we get

$$
\begin{equation*}
\int_{\Gamma} u_{\nu}^{2} d s \leq \max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})}\left(3 n \int_{\Omega}|\nabla u|^{2} d x+\lambda \int_{\Omega} u^{2} d x\right) . \tag{15}
\end{equation*}
$$

It follows from (3), (4) that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x=\lambda \int_{\Omega} u^{2} d x \tag{16}
\end{equation*}
$$

Therefore, by (15) and (16),

$$
\begin{equation*}
\int_{\Gamma} u_{\nu}^{2} d s \leq 4 n \max _{i, j=1, \ldots, n}\left\|\left(b_{i}\right)_{x_{j}}\right\|_{C(\bar{\Omega})} \lambda \int_{\Omega} u^{2} d x . \tag{17}
\end{equation*}
$$

Taking $u=u_{1}^{D}$ with $\left\|u_{1}^{D}\right\|_{L_{2}(\Omega)}=1$, we get from (6) and (17) the upper estimate (10).
Let us prove now the lower estimate (10). We have the Rellich equality for normalized in $L_{2}(\Omega)$ eigenfunctions of problem (3), (4) (see [6, 7]):

$$
\begin{equation*}
\lambda=\frac{1}{2} \int_{\Gamma}(x, \nu) u_{\nu}^{2} d s \tag{18}
\end{equation*}
$$

Therefore,

$$
2 \lambda=\int_{\Gamma}(x, \nu) u_{\nu}^{2} d s \leq \int_{\Gamma}|x| u_{\nu}^{2} d s \leq \sup _{x \in \Gamma} \int_{\Gamma} u_{\nu}^{2} d s \leq R_{0} \int_{\Gamma} u_{\nu}^{2} d s
$$

Now, for $u=u_{1}^{D}$ we obtain

$$
a_{1} \geq \frac{2 \lambda_{1}^{D}}{R_{0}}
$$

The proof of Theorem 3 is based on the Rellich equality (18) for u_{1}^{D} in a strictly star-shaped domain Ω.

Acknowledgement

The reported study was partially supported by RSF, project \# 20-11-20272.

References

[1] A. Filinovskiy, On the asymptotic behavior of the first eigenvalue of Robin problem with large parameter. J. Elliptic Parabol. Equ. 1 (2015), 123-135.
[2] A. V. Filinovskiy, On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter. (Russian) Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser. 6(128) (2015), 135--140.
[3] A. V. Filinovskiy, On the asymptotic behavior of eigenvalues and eigenfunctions of the Robin problem with large parameter. Math. Model. Anal. 22 (2017), no. 1, 37-51.
[4] A. V. Filinovskiy, Asymptotic representation for the first eigenvalue of the Robin problem. In: Modern problems of mathematics and mechanics. Materials int. conf., dedicated. 80th anniversary of Acad. V. A. Sadovnichiy, pp. 392-394, MAKS-press, Moscow, 2019.
[5] A. V. Filinovskiy, On asymptotic representation for the first eigenvalue of the Robin problem. Diff. Equ. 55 (2019), 889-890.
[6] L. E. Payne and H. F. Weinberger, New bounds for solutions of second order elliptic partial differential equations. Pacific J. Math. 8 (1958), 551-573.
[7] F. Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u=0$ durch ein Randintegral. (German) Math. Z. 46 (1940), 635-636.

