On an Upper Estimate for the First Eigenvalue of a Sturm-Liouville Problem

S. Ezhak, M. Telnova
Plekhanov Russian University of Economics, Moscow, Russia
E-mail: svetlana.ezhak@gmail.com; mytelnova@yandex.ru

1 Introduction

Consider the Sturm-Liouville problem

$$
\begin{gather*}
y^{\prime \prime}+Q(x) y+\lambda y=0, \quad x \in(0,1), \tag{1.1}\\
y(0)=y(1)=0, \tag{1.2}
\end{gather*}
$$

where Q belongs to the set $T_{\alpha, \beta, \gamma}$ of all measurable locally integrable on $(0,1)$ functions with non-negative values such that the following integral conditions hold

$$
\begin{gather*}
\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) d x=1, \quad \alpha, \beta, \gamma \in \mathbb{R}, \quad \gamma \neq 0 \tag{1.3}\\
\int_{0}^{1} x(1-x) Q(x) d x<\infty
\end{gather*}
$$

A function y is a solution to problem (1.1),(1.2) if it is absolutely continuous on the segment $[0,1]$, satisfies (1.2), its derivative y^{\prime} is absolutely continuous on any segment $[\rho, 1-\rho]$, where $0<\rho<\frac{1}{2}$, and equality (1.1) holds almost everywhere in the interval $(0,1)$.

This work is a continuation of studies of estimates for the first eigenvalue of the Sturm-Liouville problem with the equation $y^{\prime \prime}+\lambda Q(x) y=0$, Dirichlet boundary conditions, and a non-negative summable on $[0,1]$ potential Q satisfying the condition $\|Q\|_{L_{\gamma}(0,1)}=1, \gamma \neq 0$, initiated by Y. V. Egorov and V. A. Kondratiev in [1]. We study a problem of that kind provided the integral conditions contain weight functions.

For $\gamma<0, \alpha \leq 2 \gamma-1,-\infty<\beta<+\infty$ or $\gamma<0, \beta \leq 2 \gamma-1,-\infty<\alpha<+\infty$, the set $T_{\alpha, \beta, \gamma}$ is empty and the first eigenvalue of problem (1.1), (1.2) does not exist. For other values of $\alpha, \beta, \gamma, \gamma \neq 0$, denote

$$
M_{\alpha, \beta, \gamma}=\sup _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) .
$$

2 Main results

It [2], the following theorem was proved.
Theorem 2.1. If $0<\gamma<1, \alpha, \beta>2 \gamma-1$, then $M_{\alpha, \beta, \gamma}<\pi^{2}$.

In the proof of this theorem it was supposed that for any $0<\gamma<1, \alpha, \beta>2 \gamma-1$ we have $M_{\alpha, \beta, \gamma}=\pi^{2}$, that is, for any sufficiently small $\varepsilon>0$ there exists a function $Q \in T_{\alpha, \beta, \gamma}$ such that $\lambda_{1}(Q)>(\pi-\varepsilon)^{2}$. Under this assumption we got a contradiction with condition (1.3), namely, it was proved that in this case there exists a positive constant C, depending on α, β, γ, such that

$$
\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) d x \leq C \varepsilon^{M}
$$

where

$$
M=\min \left\{\frac{(\alpha-2 \gamma+1) \gamma}{1-\gamma+\alpha}, \frac{(\beta-2 \gamma+1) \gamma}{1-\gamma+\beta}\right\}>0
$$

Let us prove the following
Theorem 2.2. If $\alpha, \beta>1$, then $M_{\alpha, \beta, 1}<\pi^{2}$.
Proof. Suppose that $M_{\alpha, \beta, 1}=\pi^{2}, \alpha, \beta>1$.
Let $0<\gamma<1$. By the Hölder inequality, we have

$$
\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q^{\gamma}(x) d x \leqslant\left(\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q(x) d x\right)^{\gamma}
$$

Then

$$
\begin{equation*}
\left(\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q^{\gamma}(x) d x\right)^{\frac{1}{\gamma}} \leqslant \int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q(x) d x=1 . \tag{2.1}
\end{equation*}
$$

Note that, for $0<\gamma<1$, the inequality $\alpha \gamma>2 \gamma-1$ holds if and only if $\alpha>1$. Similarly, $\beta \gamma>2 \gamma-1$ if and only if $\beta>1$.

Denote by $\widetilde{T}_{\alpha \gamma, \beta \gamma, \gamma}$ a set of measurable non-negative locally integrable on $(0,1)$ functions Q such that

$$
\left(\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q^{\gamma}(x) d x\right)^{\frac{1}{\gamma}} \leqslant 1 .
$$

By virtue of (2.1),

$$
T_{\alpha, \beta, 1} \subset \widetilde{T}_{\alpha \gamma, \beta \gamma, \gamma}
$$

If we suppose that

$$
M_{\alpha, \beta, 1}=\sup _{Q \in T_{\alpha, \beta, 1}} \lambda_{1}(Q)=\pi^{2}
$$

then for $0<\gamma<1$, we also have

$$
M_{\alpha \gamma, \beta \gamma, \gamma}=\sup _{Q \in \widetilde{T}_{\alpha \gamma, \beta \gamma, \gamma}} \lambda_{1}(Q)=\pi^{2} .
$$

If $M_{\alpha, \beta, 1}=\sup _{Q \in T_{\alpha, \beta, 1}} \lambda_{1}(Q)=\pi^{2}$, then for any $\varepsilon>0$ there exists a function $Q_{*} \in T_{\alpha, \beta, 1}$ such that

$$
\lambda_{1}\left(Q_{*}\right)>(\pi-\varepsilon)^{2} .
$$

This function Q_{*} belongs to $\widetilde{T}_{\alpha \gamma, \beta \gamma, \gamma}$ either and following the proof of Theorem 2.1, we can find a positive constant C, depending on α, β, γ, such that

$$
\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q_{*}^{\gamma}(x) d x \leqslant C \varepsilon^{M}
$$

where

$$
M=\min \left\{\frac{(\alpha \gamma-2 \gamma+1) \gamma}{1-\gamma+\alpha \gamma}, \frac{(\beta \gamma-2 \gamma+1) \gamma}{1-\gamma+\beta \gamma}\right\} .
$$

Suppose that $M=\frac{(\alpha \gamma-2 \gamma+1) \gamma}{1-\gamma+\alpha \gamma}$ (in case $M=\frac{(\beta \gamma-2 \gamma+1) \gamma}{1-\gamma+\beta \gamma}$ the proof is similar). For any $0<\gamma<1$, $\alpha>1$, we have $\alpha \gamma>2 \gamma-1$ and M is positive.

Note that for a fixed $\alpha>1$, if γ approaches 1 , the exponent of $\varepsilon^{\frac{(\alpha \gamma-2 \gamma+1) \gamma}{1-\gamma+\alpha \gamma}}$ approaches a concrete positive number $\frac{\alpha-1}{\alpha}$.

As soon as γ tends to 1 , the factor C, depending on α, β, γ, tends to some constant \widetilde{C}. Let us choose ε in such a way that the following inequality

$$
\widetilde{C} \varepsilon^{\frac{\alpha-1}{\alpha}}<\frac{1}{2}
$$

holds.
Then we get a contradiction

$$
1=\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q(x) d x=\lim _{\gamma \rightarrow 1}\left(\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q^{\gamma}(x) d x\right)^{\frac{1}{\gamma}} \leqslant \widetilde{C} \varepsilon^{\frac{\alpha-1}{\alpha}}<\frac{1}{2}
$$

Note that, while γ increases from 0 to 1 , the integral $\left(\int_{0}^{1} x^{\alpha \gamma}(1-x)^{\beta \gamma} Q^{\gamma}(x) d x\right)^{\frac{1}{\gamma}}$ also increases.
Indeed, if $\gamma_{1}<\gamma_{2}$, then by virtue of the Hölder inequality, since $\frac{\gamma_{2}}{\gamma_{1}}>1$, we have

$$
\int_{0}^{1} x^{\alpha \gamma_{1}}(1-x)^{\beta \gamma_{1}} Q^{\gamma_{1}}(x) d x \leqslant\left(\int_{0}^{1} x^{\alpha \gamma_{2}}(1-x)^{\beta \gamma_{2}} Q^{\gamma_{2}}(x) d x\right)^{\frac{\gamma_{1}}{\gamma_{2}}}
$$

and

$$
\left(\int_{0}^{1} x^{\alpha \gamma_{1}}(1-x)^{\beta \gamma_{1}} Q^{\gamma_{1}}(x) d x\right)^{\frac{1}{\gamma_{1}}} \leqslant\left(\int_{0}^{1} x^{\alpha \gamma_{2}}(1-x)^{\beta \gamma_{2}} Q^{\gamma_{2}}(x) d x\right)^{\frac{1}{\gamma_{2}}}
$$

References

[1] Yu. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, 89. Birkhäuser Verlag, Basel, 1996.
[2] S. Ezhak and M. Telnova, On conditions on the potential in a Sturm-Liouville problem and an upper estimate of its first eigenvalue. Springer Proceedings in Mathematics \& Statistics, International Conference on Differential \& Difference Equations and Applications ICDDEA 2019, pp. 481-496, Differential and Difference Equations with Applications, 2019.

