On Asymptotics of Rapidly Varying Solutions of Non-Autonomous Differential Equations of Third-Order

V. M. Evtukhov, N. V. Sharay

Odessa I. I. Mechnikov National University, Odessa, Ukraine E-mails: emden@farlep.net; rusnat36@qmail.com

Consider the differential equation

$$y''' = \alpha_0 p(t) \varphi(y), \tag{1}$$

where $\alpha_0 \in \{-1,1\}$, $p:[a,\omega[\to]0,+\infty[$ is a continuous function, $y < a < \omega \le +\infty$, $\varphi:\Delta_{Y_0} \to [0,+\infty[$ is a continuously differentiable function such that

$$\varphi'(y) \neq 0 \text{ for } y \in \Delta_{Y_0}, \quad \lim_{\substack{y \to 0 \\ y \in \Delta_{Y_0}}} \varphi(y) = \begin{cases} \text{or } 0, & \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\varphi(y)\varphi''(y)}{\varphi'^2(y)} = 1, \end{cases}$$
 (2)

 Y_0 equals either zero or $\pm \infty$, Δ_{Y_0} is some one-sided neighborhood of Y_0 .

From the identity

$$\frac{\varphi''(y)\varphi(y)}{\varphi'^2(y)} = \frac{\left(\frac{\varphi'(y)}{\varphi(y)}\right)'}{\left(\frac{\varphi'(y)}{\varphi(y)}\right)^2} + 1 \text{ for } y \in \Delta_{Y_0}$$

and conditions (2) it follows that

$$\frac{\varphi'(y)}{\varphi(y)} \sim \frac{\varphi''(y)}{\varphi'(y)} \ \text{ for } \ y \to Y_0 \quad \left(\ y \in \Delta_{Y_0} \right) \ \text{ and } \ \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{y \varphi'(y)}{\varphi(y)} = \pm \infty.$$

This means that in the considered equation the continuous function φ and its first order derivatives are (see [8, Ch. 3, § 3.4, Lemmas 3.2, 3.3, pp. 91–92]) rapidly changing as $y \to Y_0$.

For two-term differential equations of the form (1) with nonlinearities satisfying condition (2), the asymptotic properties of solutions were studied in the works of M. Maric [8], V. M. Evtukhov and his students N. G. Drik, V. M. Kharkov, A. G. Chernikova [3–5].

In the works of V. M. Evtukhov, A. G. Chernikova [3] for the differential equation (1) of the second order in the case, when φ is a rapidly changing function as $t \to +\infty$, the asymptotic properties of the so-called $P_{\omega}(Y_0, \lambda_0)$ -solutions were studied. In this work, we propose the distribution of these results to third-order differential equations.

Definition 1. Solution y of equation (1) is called $P_{\omega}(Y_0, \lambda_0)$ -solution, where $-\infty \leq \lambda_0 \leq +\infty$, if it is specified on the interval $[t_0, \omega[\subset [a, \omega[$ and satisfies the following conditions

$$y(t) \in \Delta_{Y_0}, \text{ where } t \in [t_0, \omega[,$$

$$\lim_{t \uparrow \omega} y(t) = Y_0, \quad \lim_{t \uparrow \omega} y^{(k)}(t) = \begin{cases} \text{or } 0, \\ \text{or } \pm \infty, \end{cases} \quad k = 1, 2, \quad \lim_{t \uparrow \omega} \frac{y''^2(t)}{y'''(t)y'(t)} = \lambda_0.$$

The goal of this work is to establish the necessary and sufficient conditions for the existence for equation (1) of (Y_0, λ_0) -solutions in the non-singular case, when $\lambda_0 \in \mathbb{R} \setminus \{0, 1, \frac{1}{2}\}$, and in the singular case, when $\lambda_0 = 1$, as well as asymptotic for $t \uparrow \omega$ representations for such solutions and their derivatives up to the second order.

Without loss of generality, we will further assume that

$$\Delta_{Y_0} = \begin{cases} [y_0, Y_0[& \text{if } \Delta_{Y_0} \text{ is a left neighborhood of } Y_0, \\]Y_0, y_0] & \text{if } \Delta_{Y_0} \text{ is a right neighborhood of } Y_0, \end{cases}$$

where $y_0 \in \mathbb{R}$ is such that $|y_0| < 1$ when $Y_0 = 0$, and $y_0 > 1$ $(y_0 < -1)$, when $Y_0 = +\infty$ (when $Y_0 = -\infty$).

The function $f: \Delta_{Y_0} \to \mathbb{R} \setminus \{0\}$, satisfying condition (2), when $Y_0 = \pm \infty$, and $\lim_{y \to +\infty} f(y) = +\infty$, belongs to the class $\Gamma_{Y_0}(Z_0)$ of the functions $\varphi: \Delta_{Y_0} \to]0, +\infty[$, where Y_0 equals either zero or $\pm \infty$, and Δ_{Y_0} is a one-sided neighborhood of Y_0 , for which

$$\lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \varphi(y) = Z_0 = \begin{cases} 0, \\ \text{or } +\infty, \end{cases}$$
 (3)

which extends the class of function Γ , introduced by L. Khan (see, for example, [6, Ch. 3, p. 3.10, p. 175]).

If $f \in \Gamma_{Y_0}(Z_0)$ with the complementary function g, and, moreover, is continuous and strictly monotone, then there exists a continuous strictly monotone inverse function $f^{-1}: \Delta_{Z_0} \longrightarrow \Delta_{Y_0}$, where

$$\Delta_{Z_0} = \begin{cases} [z_0, Z_0[, \\ \text{or}]Z_0, z_0], & z_0 = f(y_0), \quad Z_0 = \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} f(y). \end{cases}$$

We introduce the necessary auxiliary notation. We assume that the domain of the function φ in equation (1) is determined by formula (3). Next, we set

$$\mu_0 = \operatorname{sign} \varphi'(y), \quad \nu_0 = \operatorname{sign} y_0, \quad \nu_1 = \begin{cases} 1 & \text{if } \Delta_{Y_0} = [y_0, Y_0], \\ -1 & \text{if } \Delta_{Y_0} = [Y_0, y_0], \end{cases}$$

and introduce the functions

$$J(t) = \int_{A}^{t} \pi_{\omega}^{2}(\tau) p(\tau) d\tau, \quad \Phi(y) = \int_{B}^{y} \frac{ds}{\varphi(s)},$$

where

$$\pi_{\omega} = \begin{cases} t & \text{if } \omega = +\infty, \\ t - \omega & \text{if } \omega < +\infty, \end{cases}$$

$$A = \begin{cases} \omega & \text{if } \int\limits_{a}^{\omega} \pi_{\omega}^{2}(\tau)p(\tau) \, d\tau = const, \\ a & \text{if } \int\limits_{a}^{\omega} \pi_{\omega}^{2}(\tau)p(\tau) \, d\tau = \infty, \end{cases}$$

$$B = \begin{cases} Y_{0} & \text{if } \int\limits_{y_{0}}^{Y_{0}} \frac{ds}{\varphi(s)} = const, \\ y_{0} & \text{if } \int\limits_{y_{0}}^{\infty} \frac{ds}{\varphi(s)} = const. \end{cases}$$

Considering the definition of $P_{\omega}(Y_0, \lambda_0)$ -solutions of the differential equation (1), we note that the numbers ν_0 , ν_1 , ν_2 and α_0 determine the signs of any $P_{\omega}(Y_0, \lambda_0)$ -solutions of its first, second and third derivatives (respectively) in some left neighborhood of ω . It is clear that the condition

$$\nu_0\nu_1 < 0$$
, if $Y_0 = 0$, $\nu_0\nu_1 > 0$, if $Y_0 = \pm \infty$,

is necessary for the existence of such solutions.

Now we turn our attention to some properties of the function Φ . It retains a sign on the interval Δ_{Y_0} , tends either to zero or $\pm \infty$ when $y \to Y_0$ and increasing by Δ_{Y_0} , because on this interval $\Phi'(y) = \frac{1}{\varphi(y)} > 0$. Therefore, for it there is an inverse function $\Phi^{-1}: \Delta_{Z_0} \to \Delta_{Y_0}$, where due to the second of conditions (2) and the monotone increase of Φ^{-1} ,

$$Z_{0} = \lim_{\substack{y \to Y_{0} \\ y \in \Delta_{Y_{0}}}} \Phi(y) = \begin{cases} 0, & \Delta_{Z_{0}} = \begin{cases} [z_{0}, Z_{0}[& \text{for } \Delta_{Y_{0}} = [y_{0}, Y_{0}[, \\]Z_{0}, z_{0}] & \text{for } \Delta_{Y_{0}} =]Y_{0}, y_{0}], \end{cases} \quad z_{0} = \varphi(y_{0}).$$

For $\lambda_0 \in \mathbb{R} \setminus \{0; 1; \frac{1}{2}\}$ we also introduce auxiliary functions:

$$q(t) = \frac{\alpha_0(\lambda_0 - 1)^2 \pi_\omega^3(t) p(t) \varphi\left(\Phi^{-1}\left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} \left(\lambda_0 - 1\right) J(t)\right)\right)}{\lambda_0 \Phi^{-1}\left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t)\right)},$$

$$H(t) = \frac{\Phi^{-1}\left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t)\right) \varphi'\left(\Phi^{-1}\left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t)\right)\right)}{\varphi\left(\Phi^{-1}\left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t)\right)\right)},$$

For equation (1) the following assertions take place.

Theorem 1. Let $\lambda_0 \in \mathbb{R} \setminus \{0; 1; \frac{1}{2}\}$. Then for the existence for the differential equation (1) of $P_{\omega}(Y_0, \lambda_0)$ -solutions, it is necessary to comply with the conditions

$$\alpha_0 \nu_1 \lambda_0 > 0$$
, $\nu_0 \nu_1 (2\lambda_0 - 1)(\lambda_0) \pi_\omega(t) > 0$ and $\alpha_0 \mu_0 \lambda_0 J(t) < 0$ for $t \in (a, \omega)$, (4)

$$\frac{\alpha_0}{\lambda_0} \lim_{t \uparrow \omega} J(t) = Z_0, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J'(t)}{J(t)} = \pm \infty, \quad \lim_{t \uparrow \omega} q(t) = \frac{2\lambda_0 - 1}{\lambda_0 - 1}. \tag{5}$$

Moreover, for each such solution, the following asymptotic representations take place:

$$y(t) = \Phi^{-1} \left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t) \right) \left[1 + \frac{o(1)}{H(t)} \right]$$
 for $t \uparrow \omega$, (6)

$$y'(t) = \frac{(2\lambda_0 - 1)}{(\lambda_0 - 1)} \frac{\Phi^{-1}(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t))}{\pi_\omega(t)} [1 + o(1)] \text{ for } t \uparrow \omega,$$
 (7)

$$y''(t) = \frac{\lambda_0(2\lambda_0 - 1)}{(\lambda_0 - 1)^2} \frac{\Phi^{-1}(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t))}{\pi_\omega^2(t)} [1 + o(1)] \text{ for } t \uparrow \omega.$$

Theorem 2. Let $\lambda_0 \in \mathbb{R} \setminus \{0; 1; \frac{1}{2}\}$, conditions (4), (5) met, there exist a finite or equal to $\pm \infty$ limit

$$\lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\left(\frac{\varphi'(y)}{\varphi(y)}\right)'}{\left(\frac{\varphi'(y)}{\varphi(y)}\right)^2} \sqrt[3]{\left(\frac{y\varphi'(y)}{\varphi(y)}\right)^2},$$

and there exist the limit

$$\lim_{t \uparrow \omega} \left[\frac{2\lambda_0 - 1}{\lambda_0 - 1} - q(t) \right] |H(t)|^{\frac{2}{3}} = 0,$$

Then, the differential equation (1) has at least one $P_{\omega}(Y_0, \lambda_0)$ -solution, which allows for $t \uparrow \omega$ the asymptotic representations

$$y(t) = \Phi^{-1} \left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t) \right) \left[1 + \frac{o(1)}{H(t)} \right],$$

$$y'(t) = \frac{2\lambda_0 - 1}{(\lambda_0 - 1)\pi_\omega(t)} \Phi^{-1} \left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t) \right) \left[1 + o(1)H^{-\frac{2}{3}} \right],$$

$$y''(t) = \frac{\lambda_0 (2\lambda_0 - 1)}{(\lambda_0 - 1)\pi_\omega^2(t)} \Phi^{-1} \left(\alpha_0 \frac{(\lambda_0 - 1)^2}{\lambda_0} J(t) \right) \left[1 + o(1)H^{-\frac{1}{3}} \right],$$
(8)

and in the case when

$$\mu_0 \lambda_0 (2\lambda_0 - 1)(\lambda_0 - 1) < 0 \text{ for } t \in (a, \omega),$$

the differential equation (1) has a one-parameter family of $P_{\omega}(Y_0,\lambda_0)$ -solutions, but in the case when

$$\mu_0 \lambda_0 (2\lambda_0 - 1)(\lambda_0 - 1) > 0 \text{ for } t \in (a, \omega),$$

the differential equation (1) has a two-parameter family of $P_{\omega}(Y_0, \lambda_0)$ -solutions with representations (6), (7), and such that the first and second order derivatives allow the asymptotic representations (8).

Introduce the functions

$$J_1(t) = \int_{A_1}^t p^{\frac{1}{3}}(\tau) d\tau, \quad \Phi_1(y) = \int_{B_1}^y \frac{ds}{|s|^{\frac{2}{3}} \varphi^{\frac{1}{3}}(s)},$$

where

$$A_{1} = \begin{cases} \omega & \text{if } \int_{a}^{\omega} p^{\frac{1}{3}}(\tau) d\tau < +\infty, \\ a & \text{if } \int_{a}^{\omega} p^{\frac{1}{3}}(\tau) d\tau = +\infty, \end{cases} B_{1} = \begin{cases} Y_{0} & \text{if } \int_{y_{0}}^{Y_{0}} \frac{ds}{|s|^{\frac{2}{3}} \varphi^{\frac{1}{3}}(s)} = const, \\ Y_{0} & \text{if } \int_{y_{0}}^{Y_{0}} \frac{ds}{|s|^{\frac{2}{3}} \varphi^{\frac{1}{3}}(s)} = \pm \infty. \end{cases}$$

Consider the definition of $P_{\omega}(Y_0, 1)$ -solutions of the differential equation (1). It is clear that the conditions

$$\nu_0 \nu_1 < 0$$
, if $Y_0 = 0$, $\nu_0 \nu_1 > 0$, if $Y_0 = \pm \infty$,

and

$$\nu_1 \alpha_0 < 0$$
, for $\lim_{t \uparrow \omega} y'(t) = 0$, $\nu_1 \alpha_0 > 0$, for $\lim_{t \uparrow \omega} y'(t) = \pm \infty$,

are necessary for the existence of such solutions. For $\lambda_0 = 1$, we also introduce the auxiliary functions

$$\begin{split} q_1(t) &= \frac{\alpha_0 \nu_1 J_3(t)}{p^{\frac{1}{3}}(t) \Phi_1^{-1}(\nu_1 J_1(t))^{\frac{2}{3}} \varphi^{\frac{1}{3}}(\Phi_1^{-1}(\nu_1 J_1(t)))} \,, \\ H_1(t) &= \frac{\Phi_1^{-1}(\nu_1 J_1(t)) \varphi'(\Phi_1^{-1}(\nu_1 J_1(t)))}{\varphi(\Phi_1^{-1}(\nu_1 J_1(t)))} \,, \\ J_2(t) &= \int\limits_{A_2}^t p(\tau) \varphi(\Phi_1^{-1}(\nu_1 J_1(\tau))) \, d\tau, \quad J_3(t) = \int\limits_{A_3}^t J_2(\tau) \, d\tau, \end{split}$$

where

$$A_{2} = \begin{cases} t_{0} & \text{if } \int_{t_{2}}^{\omega} p(\tau)\varphi(\Phi_{1}^{-1}(\nu_{1}J_{1}(\tau))) d\tau = +\infty, \\ \omega & \text{if } \int_{t_{2}}^{\omega} p(\tau)\varphi(\Phi_{1}^{-1}(\nu_{1}J_{1}(\tau))) d\tau < +\infty, \end{cases} A_{3} = \begin{cases} t_{0} & \text{if } \int_{t_{3}}^{\omega} J_{2}(\tau) d\tau = +\infty, \\ \omega & \text{if } \int_{t_{2}}^{\omega} J_{2}(\tau) d\tau < +\infty, \end{cases} t_{2}, t_{3} \in [a, \omega].$$

For equation (1) the following assertions take place.

Theorem 3. For the existence for the differential equation (1) of $P_{\omega}(Y_0, 1)$ -solutions it is necessary to comply with the conditions

$$\alpha_0 \nu_0 > 0, \quad \mu_0 \nu_1 J_1(t) < 0 \quad for \quad t \in]a, \omega[,$$

$$\nu_1 \lim_{t \uparrow \omega} J_1(t) = Z_0, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J_1'(t)}{J_1(t)} = \pm \infty, \quad \lim_{t \uparrow \omega} q_1(t) = 1, \quad \lim_{t \uparrow \omega} \frac{p(t) \varphi(\Phi_1^{-1}(\nu_1 J_1(t))) J_3(t)}{(J_2(t))^2} = 1.$$

Moreover, for each solution, there take place the asymptotic representations for $t \uparrow \omega$

$$y(t) = \Phi_1^{-1} \left(\alpha_0 (\lambda_0 - 1) J_1(t) \right) \left[1 + \frac{o(1)}{H_1(t)} \right],$$

$$y'(t) = \nu_1 p^{\frac{1}{3}}(t) \varphi^{\frac{1}{3}} \left(\Phi_1^{-1}(\nu_1 J_1(t)) \right) \left(\Phi_1^{-1}(\nu_1 J_1(t)) \right)^{\frac{2}{3}} [1 + o(1)],$$

$$y''(t) = \alpha_0 J_2(t) [1 + o(1)].$$

Similarly to Theorem 2, we prove a sufficient condition for the existence of $P_{\omega}(Y_0, 1)$ -solutions.

References

- [1] N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular Variation*. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987.
- [2] V. M. Evtukhov, On solutions vanishing at infinity of real nonautonomous systems of quasi-linear differential equations. (Russian) *Differ. Uravn.* **39** (2003), no. 4, 441–452; translation in *Differ. Equ.* **39** (2003), no. 4, 473–484.
- [3] V. M. Evtukhov and A. G. Chernikova, Asymptotic behavior of the solutions of second-order ordinary differential equations with rapidly changing nonlinearities. (Russian) *Ukraïn. Mat. Zh.* **69** (2017), no. 10, 1345–1363; translation in *Ukrainian Math. J.* **69** (2018), no. 10, 1561–1582.
- [4] V. M. Evtukhov and N. G. Drik, Asymptotic behavior of solutions of a second-order nonlinear differential equation. *Georgian Math. J.* **3** (1996), no. 2, 101–120.
- [5] V. M. Evtukhov and V. M. Khar'kov, Asymptotic representations of solutions of second-order essentially nonlinear differential equations. (Russian) *Differ. Uravn.* 43 (2007), no. 10, 1311– 1323.
- [6] V. M. Evtukhov and A. M. Samoĭlenko, Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities. (Russian) Differ. Uravn. 47 (2011), no. 5, 628–650; translation in Differ. Equ. 47 (2011), no. 5, 627–649.
- [7] V. M. Evtukhov and N. V. Sharay, Asymptotic behaviour of solutions of third-order differential equations with rapidly varying nonlinearities. *Mem. Differ. Equ. Math. Phys.* **77** (2019), 43–57.
- [8] V. Marić, Regular Variation and Differential Equations. Lecture Notes in Mathematics, 1726. Springer-Verlag, Berlin, 2000.