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We consider two-point boundary value problems for higher order linear ordinary differential
equations 

x(n)(t) + p+(t)x(t)− p−(t)x(t) = f(t), t ∈ [a, b],

x(i)(0) = 0, i = 0, . . . ,m− 1,

x(j)(1) = 0, j = 0, . . . , n−m− 1,

(1)

where n, m are positive integer, n > m; f ∈ L[a, b], p = p+ − p− ∈ [a, b],

p+(t) =

{
p(t) if p(t) ≥ 0,

0 if p(t) < 0,
p−(t) =

{
−p(t) if p(t) < 0,

0 if p(t) ≥ 0,

L[a, b] is the space of Lebesgue integrable functions with the standard norm. Together with (1),
we will consider some more general problems.

It is a rather common case, when problem (1) has a unique solution for all functions p+ (or for
all functions p−) with a fixed another function p− (or p+). So, our aim is to find some conditions to
our boundary value problem (1) to be uniquely solvable for all integrable non-negative coefficients
p+ (or for all nonnegative coefficients p−).

In this report, we would like to remind about some classical results by F. R. Gantmacher,
M. G. Krein, S. Karlin, A. Yu. Levin [1–5]. These results allow us to find required conditions in a
very simple way. For higher-order equations, we don’t know another proof of these conditions, for
example, by means of mathematical analysis only.

A continuous function G( · , · ) : [a, b] × [a, b] → R is called a totally positive kernel [3] if all
determinants ∣∣∣∣∣∣∣

G(t1, t1) . . . G(t1, tk)
... . . . ...

G(tk, t1) . . . G(tk, tk)

∣∣∣∣∣∣∣
are positive for all ordered sets of points a < t1 < · · · < tk < b for all integer positive numbers k.

It is very hard to check this property directly. Fortunately, Green functions of many boundary
value problems for ordinary differential equations possess this property. Now we can formulate a
well-known statement on the spectrum of integral operators with totally positive kernels.

Let G(t, s) be a totally positive kernel, C[a, b] be the space of real continuous functions with
the standard norm.
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Consider the integral operator G : C[a, b] → C[a, b]

(Gx)(t) =

b∫
a

G(t, s)x(s) ds, t ∈ [a, b]. (2)

Theorem 1 (Sturm, Kellogg, Gantmacher, Krein, Karlin, Levin, Stepanov). The spectrum of the
operators G is a subset of the set [0,∞).

In the symmetric case, oscillating properties of the spectrum were known to Kellogg and Sturm.
F. R. Gantmacher and M. G. Krein [1] showed that kernels could be non-symmetric and proved
oscillation properties of the spectrum of many boundary value problems. Here we need only the
positivity of the spectrum and we do not mention all remarkable oscillation properties. So, if the
kernel G(t, s) is totally positive, then the non-zero spectrum of operator (2) is positive. The next
obvious step is only a more general formulation.

Let G(t, s) be a totally positive kernel, r ∈ L[a, b], r(t) ≥ 0, t ∈ [a, b].
Consider the integral operator Gr : C[a, b] → C[a, b]

(Grx)(t) =

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b].

Theorem 2 (Sturm–Kellogg–Gantmacher–Krein). The spectrum of the operators Gr is a subset
of the set [0,∞).

Therefore, in this case all characteristic values λ of the equation

x(t) = λ

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b],

are positive.
Now consider two-point boundary value problems for linear higher order ordinary differential

equations 

(Lx)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · ·+ pn(t)x(t) = f(t),

ℓix ≡
ki−1∑
k=0

γikx
(k)(a) + x(ki)(a), i = 1, . . . ,m,

ℓix ≡
ki−1∑
k=0

γikx
(k)(b) + x(ki)(b), i = m+ 1, . . . , n,

(3)

where pi ∈ L[a, b]; f ∈ L[a, b]; n, m, n > m, are positive integers; ki ∈ {0, 1, . . . , n−1}, i = 1, . . . , n.
Denote ℓ = {ℓ1, . . . , ℓn}.

Theorem 3. If r ∈ L[a, b], r(t) ≥ 0, t ∈ [a, b], and the Green function G(t, s) of this problem (3)
is a totally positive kernel, then problem{

(Lx)(t) + r(t)x(t) = f(t), t ∈ [a, b],

ℓx = 0,
(4)

is uniquely solvable.
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Proof. For f ≡ 0, (4) is equivalent to the integral equation

x(t) = λ

b∫
a

G(t, s)r(s)x(s) ds, t ∈ [a, b], (5)

where λ = −1. All eigenvalues of (5) are positive, therefore, problem (4) is uniquely solvable.

Together with the differential operator L, we consider operators L+ and L−:

(L+x)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · ·+ p+n (t)x(t), t ∈ [a, b],

(L−x)(t) ≡ x(n)(t) + p1(t)x
(n−1)(t) + · · · − p−n (t)x(t), t ∈ [a, b].

Theorem 4. Let G+(t, s) be the Green function of the problem L+x = f , ℓx = 0. If −G+(t, s) is
a totally positive kernel, then the problem{

(Lx)(t) = f(t),

ℓix = 0, i = 1, . . . , n,
(6)

is uniquely solvable for all non-negative functions p−n ∈ L[a, b].

Theorem 5. Let G−(t, s) be the Green function of the problem L−x = f , ℓx = 0. If G−(t, s)
is a totally positive kernel, then problem (6) is uniquely solvable for all non-negative functions
p+n ∈ L[a, b].

We say that the differential operator L (or the equation Lx = 0) is non-oscillating on the
interval [a, b] if every non-trivial solution has no more than n− 1 zeros in the interval [a, b] taking
into account the multiplicity of the zeros. Hartman-Levin’s criterion for non-oscillation can be
found, for example, in [4].

Theorem 6 (Gantmacher–Krein, see [4, 5]). Let Lx = 0 be non-oscillating, G(t, s) the Green
function of the problem 

(Lx)(t) = f(t),

x(i−1)(a) = 0, i = 1, . . . ,m,

x(i−1)(b) = 0, i = 1, . . . , n−m.

Then (−1)n−mG(t, s) is a totally positive kernel.

Let the operator L be non-oscillating. Then L has the Polia–Mammana decomposition

Lx = r0
d

dt
r1

d

dt
· · · rn−1

d

dt
rn,

where ri, i = 0, . . . , n, are sufficiently smooth positive functions. Let G(t, s) be the Green function
of the uniquely solvable problem

(Lx)(t) = f, t ∈ [a, b],
n∑

k=1

αik(Dk−1)(a) = 0, i = 1, . . . ,m,

n∑
k=1

βik(Dk−1)(b) = 0, i = 1, . . . , n−m,

where f ∈ L[a, b]; D0x = x, Dkx = d
dt (rn−k+1Dk−1x), k = 1, . . . , n; n, m, n > m, positive integers.
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Theorem 7 (Kalafaty–Gantmacher–Krein, see [4, 5]). If all m-th order minors of the matrix
||(−1)kαik||k=1,...,n

i=1,...,m and all (n − m)-th order minors of ||βik||k=1,...,n
i=1,...,n−m have the same sign, then

(−1)n−mG(t, s) is a totally positive kernel.

Theorem 8 (Levin–Stepanov, see [4,5]). Let G(t, s) be the Green function of the uniquely solvable
problem 

(Lx)(t) = f(t), t ∈ [a, b],
ki−1∑
k=0

γikx
(k)(a) + x(ki)(a), i = 1, . . . ,m,

ki−1∑
k=0

γikx
(k)(b) + x(ki)(b), i = 1, . . . , n−m,

nk = |{i : ki ≤ k, i = 1, . . . , n}|, h = 2(b− a).
If nk > k, k = 0, 1, . . . , n− 2, and

n∑
k=1

hk−1

b∫
a

|pk(t)| dt <
1

2
,

ki−1∑
k=0

|γik|hki−k <
1

2
, i = 1, . . . n,

then (−1)n−mG(t, s) is a totally positive kernel.

Example 1. The focal boundary value problem
x(n)(t) + (−1)n−mp(t)x(t) = f(t),

x(i)(a) = 0, i = 0, . . . ,m− 1,

x(i)(b) = 0, i = m, . . . , n− 1,

is uniquely solvable if p(t) ≥ 0, t ∈ [a, b], p ∈ L[a, b].

Example 2. Let p+ ∈ L[a, b], p+ ≥ 0, t ∈ [a, b], and

0 ≤ p−(t) ≤ 24 · 256
27(b− a)4

, p−(t) ̸≡ 24 · 256
27(b− a)4

. (7)

Then the problem 
x(4)(t) + p+(t)x(t)− p−(t)x(t) = f(t),

x(a) = 0, ẋ(a) = 0,

x(b) = 0, ẋ(b) = 0,

is uniquely solvable.
The constant in conditions (7) are better than the constant π4

(b−a)4
, which follows from Wirtinger’s

inequality.

The conclusion: the classical results on totally positive kernels could be very useful for boundary
value problems for ordinary differential equations.
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