Boundary-Value Problems for Weakly Singular Integral Equations

O. A. Boichuk, V. A. Feruk
Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
E-mails: boichuk.aa@gmail.com; feruk.viktor@gmail.com

In the space $L_{2}[a, b]$, we consider a perturbed linear boundary-value problem for a weakly singular integral equation

$$
\begin{gather*}
x(t)-\int_{a}^{b} K(t, s) x(s) d s=f(t)+\varepsilon \int_{a}^{b} \bar{K}(t, s) x(s) d s, \tag{1}\\
l x(\cdot)=\alpha+\varepsilon J x(\cdot) \tag{2}
\end{gather*}
$$

We establish conditions for the bifurcation of solutions of the boundary-value problem (1), (2) and determine the structure of these solutions under the condition that the generating boundaryvalue problem

$$
\begin{equation*}
x(t)-\int_{a}^{b} K(t, s) x(s) d s=f(t), \quad l x(\cdot)=\alpha \tag{3}
\end{equation*}
$$

is unsolvable.
Here, $K(t, s)=\frac{H(t, s)}{|t-s|^{\gamma}}$ and $\bar{K}(t, s)=\frac{\bar{H}(t, s)}{|t-s|^{\beta}}$, where $H(t, s), \bar{H}(t, s)$ are functions bounded in the domain $[a, b] \times[a, b], 0<\gamma<1,0<\beta<1, f \in L_{2}[a, b], l=\operatorname{col}\left(l_{1}, l_{2}, \ldots, l_{p}\right): L_{2}[a, b] \rightarrow \mathbb{R}^{p}$, $J=\operatorname{col}\left(J_{1}, J_{2}, \ldots, J_{p}\right): L_{2}[a, b] \rightarrow \mathbb{R}^{p}$ are bounded linear functionals, $l_{\nu}, J_{\nu}: L_{2}[a, b] \rightarrow \mathbb{R}, \nu=\overline{1, p}$, $\alpha=\operatorname{col}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \in \mathbb{R}^{p}$ and $\varepsilon \ll 1$ is a small parameter.

By using the results obtained in [2], we show that the study of the problem of appearance of solutions of the boundary-value problem (1), (2) reduces to the corresponding task for the perturbed boundary-value problem for the Fredholm integral equation

$$
\begin{gather*}
x(t)=f_{n}(t)+\sum_{k=0}^{n} \varepsilon^{k} \int_{a}^{b} R_{n}^{k}(t, s) x(s) d s \tag{4}\\
f_{n}(t)=f(t)+\sum_{k=1}^{n-1} \int_{a}^{b} R_{k}^{0}(t, s) f(s) d s+\sum_{k=1}^{n-1} \varepsilon^{k} \sum_{m=k}^{n-1} \int_{a}^{b} R_{m}^{k}(t, s) f(s) d s,
\end{gather*}
$$

where $R_{n}^{k}(t, s), k=\overline{0, n}$, are the sums of C_{n}^{k} kernels of all possible products of $n-k$ integral operators K and k integral operators \bar{K}

$$
(K w)(t)=\int_{a}^{b} \frac{H(t, s)}{|t-s|^{\gamma}} w(s) d s \text { and }(\bar{K} w)(t)=\int_{a}^{b} \frac{\bar{H}(t, s)}{|t-s|^{\beta}} w(s) d s
$$

We apply the approach described in [3] to the study of the boundary-value problem (4), (2) and show that it can be reduced to the operator equation. Let $\left\{\varphi_{i}(t)\right\}_{i=1}^{\infty}$ be a complete orthonormal
system of functions in $L_{2}[a, b]$. We introduce the notation

$$
\begin{gathered}
x_{i}=\int_{a}^{b} x(t) \varphi_{i}(t) d t, \quad a_{i j}=\int_{a}^{b} \int_{a}^{b} K_{n}(t, s) \varphi_{i}(t) \varphi_{j}(s) d t d s, \\
a_{i j}^{k}=\int_{a}^{b} \int_{a}^{b} R_{n}^{k}(t, s) \varphi_{i}(t) \varphi_{j}(s) d t d s, \quad k=\overline{1, n} \\
f_{i}=\int_{a}^{b} f(t) \varphi_{i}(t) d t+\sum_{k=1}^{n-1} \int_{a}^{b} \int_{a}^{b} R_{k}^{0}(t, s) f(s) \varphi_{i}(t) d t d s \\
f_{i}^{k}=\sum_{m=k}^{n-1} \int_{a}^{b} \int_{a}^{b} R_{m}^{k}(t, s) f(s) \varphi_{i}(t) d s d t, \quad k=\overline{1, n-1} .
\end{gathered}
$$

By using this notation in the boundary-value problem (4), (2), we obtain the operator equation:

$$
\begin{equation*}
U z=q+\sum_{k=1}^{n-1} \varepsilon^{k} q_{k}+\sum_{k=1}^{n} \varepsilon^{k} U_{k} z, \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
U=\left[\begin{array}{c}
\Lambda \\
W
\end{array}\right], \quad U_{1}=\left[\begin{array}{c}
\Lambda_{1} \\
W_{1}
\end{array}\right], \quad U_{k}=\left[\begin{array}{c}
\Lambda_{k} \\
0
\end{array}\right], \quad k=\overline{2, n}, \\
q=\left[\begin{array}{c}
g \\
\alpha
\end{array}\right], \quad q_{k}=\left[\begin{array}{c}
g_{k} \\
0
\end{array}\right], \quad k=\overline{1, n-1},
\end{gathered}
$$

where the vectors $z, g, g_{k}, k=\overline{1, n-1}$ and the matrices $W, W_{1}, \Lambda, \Lambda_{k}, k=\overline{1, n}$ have the form

$$
\begin{aligned}
& z=\operatorname{col}\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots\right), \quad g=\operatorname{col}\left(f_{1}, f_{2}, \ldots, f_{i}, \ldots\right) \text {, } \\
& g_{k}=\operatorname{col}\left(f_{1}^{k}, \quad f_{2}^{k}, \ldots, \quad f_{i}^{k}, \quad \ldots\right), \quad W=l \Phi(\cdot), \quad W_{1}=J \Phi(\cdot), \\
& \Lambda=\left(\begin{array}{ccccc}
1-a_{11} & -a_{12} & \ldots & -a_{1 i} & \ldots \\
-a_{21} & 1-a_{22} & \ldots & -a_{2 i} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-a_{i 1} & -a_{i 2} & \ldots & 1-a_{i i} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right), \quad \Lambda_{k}=\left(\begin{array}{ccccc}
a_{11}^{k} & a_{12}^{k} & \ldots & a_{1 i}^{k} & \ldots \\
a_{21}^{k} & a_{22}^{k} & \ldots & a_{2 i}^{k} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{i 1}^{k} & a_{i 2}^{k} & \ldots & a_{i i}^{k} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right), \\
& \Phi(t)=\left(\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{i}(t), \ldots\right) .
\end{aligned}
$$

The generating equation for the operator equation (5) has the form

$$
\begin{equation*}
U z=q . \tag{6}
\end{equation*}
$$

The operator $\Lambda: \ell_{2} \rightarrow \ell_{2}$ appearing on the left-hand side of the operator equation (6) has the form $\Lambda=I-A$, where $I: \ell_{2} \rightarrow \ell_{2}$ is the identity operator and $A: \ell_{2} \rightarrow \ell_{2}$ is a compact operator. Hence, according to S. Krein's classification, the operator $\Lambda: \ell_{2} \rightarrow \ell_{2}$ is a Fredholm operator of index zero $\left(\operatorname{dim} \operatorname{ker} \Lambda=\operatorname{dim} \operatorname{ker} \Lambda^{*}<\infty\right)$ and the operator $U: \ell_{2} \rightarrow \ell_{2} \times \mathbb{R}^{p}$ is a Fredholm operator of nonzero index ($\operatorname{dim} \operatorname{ker} U<\infty$, $\operatorname{dim} \operatorname{ker} U^{*}<\infty$).

The following statement is true for equation (6) (see [4]).

Theorem 1. The homogeneous equation (6) ($q=0$) possesses a d_{2}-parameter family of solutions $z \in \ell_{2}$,

$$
z=P_{\Lambda_{r}} P_{Q_{d_{2}}} c_{d_{2}} \forall c_{d_{2}} \in \mathbb{R}^{d_{2}} .
$$

The inhomogeneous equation (6) is solvable if and only if the following $r+d_{1}$ linearly independent conditions are satisfied:

$$
P_{\Lambda_{r}^{*}}^{* g} g=0, \quad P_{Q_{d_{1}}^{*}}^{*}\left(\alpha-W \Lambda^{+} g\right)=0
$$

and the equation possesses a d_{2}-parameter family of solutions $z \in \ell_{2}$ of the form

$$
z=P_{\Lambda_{r}} P_{Q_{d_{2}}} c_{d_{2}}+P_{\Lambda_{r}} Q^{+}\left(\alpha-W \Lambda^{+} g\right)+\Lambda^{+} g \quad \forall c_{d_{2}} \in \mathbb{R}^{d_{2}} .
$$

Here, $Q=W P_{\Lambda_{r}}$ is a $(p \times r)$-matrix, $P_{\Lambda_{r}}\left(P_{\Lambda_{r}^{*}}\right)$ is a matrix formed by a complete system of r linearly independent columns (rows) of the matrix projector $P_{\Lambda}\left(P_{\Lambda^{*}}\right)$, where $P_{\Lambda}\left(P_{\Lambda^{*}}\right)$ is the projector onto the kernel (cokernel) of the matrix Λ, and $P_{Q_{d_{2}}}\left(P_{Q_{d_{1}}^{*}}\right)$ is a matrix formed by the complete system of $d_{2}\left(d_{1}\right)$ linearly independent columns (rows) of the matrix projector $P_{Q}\left(P_{Q^{*}}\right)$, where $P_{Q}\left(P_{Q^{*}}\right)$ is the projector onto the kernel (cokernel) of the matrix Q and $\Lambda^{+}\left(Q^{+}\right)$is the pseudoinverse Moore-Penrose matrix for the matrix $\Lambda(Q)$.

We now determine the conditions required for the bifurcation of solutions of the perturbed inhomogeneous boundary-value problem (1), (2) and study the structure of these solutions under the conditions that the solution of the homogeneous generating the boundary-value problem (3) $(f(t)=0, \alpha=0)$ is not unique, i.e. (see [2]), $P_{\Lambda_{r}} P_{Q_{d_{2}}} \neq 0$, and that the inhomogeneous generating boundary-value problem (3) is unsolvable.

It is known (see [9]) that small perturbations preserve the Fredholm property of the operator, i.e., the operator $\left(U-\sum_{k=1}^{n} \varepsilon^{k} U_{k}\right)$ is a Fredholm operator with nonzero index. This enables one to investigate equation (5) by the methods of the theory of perturbed operator boundary-value problems with Fredholm linear part (see, e.g., $[1,4,11]$) obtained as a generalization of the classical methods of the perturbation theory of periodic boundary-value problems in the theory of oscillations (see [5, $7,8,10]$).

The analysis of the appearance of solutions of equation (5) is closely connected with the ($(r+$ $\left.d_{1}\right) \times d_{2}$)-matrix

$$
B_{0}=\left[\begin{array}{c}
P_{\Lambda_{r}^{*}} \Lambda_{1} P_{\Lambda_{r}} P_{Q_{d_{2}}} \\
P_{Q_{d_{1}}^{*}}\left(W_{1}-W \Lambda^{+} \Lambda_{1}\right) P_{\Lambda_{r}} P_{Q_{d_{2}}}
\end{array}\right],
$$

constructed by using the coefficients of equation (5).
We introduce an $\left(\left(r+d_{1}\right) \times\left(r+d_{1}\right)\right)$-matrix $P_{B_{0}^{*}}$, which is a projector onto the cokernel of the matrix B_{0} and a matrix

$$
G=\left[\begin{array}{cc}
-P_{\Lambda_{r}^{*}} & 0 \\
P_{Q_{d_{1}}^{*}} W \Lambda^{+} & -P_{Q_{d_{1}}^{*}}
\end{array}\right],
$$

formed by $r+d_{1}$ rows and infinitely many columns. Moreover, as the matrix B_{0}, it is completely determined by the coefficients of equation (5).

By the Vishik-Lyusternik method (see [12]), we find efficient conditions for the coefficients guaranteeing the appearance of a family of solutions of the perturbed linear boundary-value problem (5) in the form of a Laurent series in powers of the small parameter ε with singularity at the point $\varepsilon=0$.

The results obtained for the perturbed equations (5) enable us to establish the conditions for the existence of a d_{2}-parameter family of solutions of the original perturbed boundary-value problem (1), (2). Indeed, if the boundary-value problem (1), (2) possesses at least one solution,
then, according to the Riesz-Fischer theorem, one can find an element $x \in L_{2}[a, b]$ such that the quantities $x_{i}, i=\overline{1, \infty}$, determined from equation (5) are the Fourier coefficients of this elements, i.e., the following representation is true:

$$
\begin{equation*}
x(t)=\Phi(t) z . \tag{7}
\end{equation*}
$$

As in [6], we conclude that the element $x(t)$ given by relations (7) is the required d_{2}-parameter family of solutions of the original boundary-value problem (1), (2). Therefore, the following statement is true.

Theorem 2. Suppose that the generating boundary-value problem (3) is unsolvable. If conditions

$$
P_{\Lambda_{r}} P_{Q_{d_{2}}} \neq 0, \quad P_{B_{0}^{*}} G=0,
$$

are satisfied, then the boundary-value problem (1), (2) has a d_{2}-parameter family of solutions in the form of series with singularity at the point $\varepsilon=0$ convergent for sufficiently small fixed $\varepsilon \in\left(0, \varepsilon_{*}\right]$.

References

[1] A. Boichuk, J. Diblík, D. Khusainov and M. Růžičková, Boundary-value problems for weakly nonlinear delay differential systems. Abstr. Appl. Anal. 2011, Art. ID 631412, 19 pp.
[2] O. A. Boǐchuk and V. A. Feruk, Linear boundary value problems for weakly singular integral equations. (Ukrainian) Nel̄̄nı̄̆n̄̄ Koliv. 22 (2019), no. 1, 27-35; translation in J. Math. Sci. (N.Y.) 247 (2020), no. 2, 248-257.
[3] O. A. Boǐchuk, N. O. Kozlova and V. A. Feruk, Weakly perturbed integral equations. (Ukrainian) Nel̄̄̄ñıй Koliv. 19 (2016), no. 2, 151-160; translation in J. Math. Sci. (N.Y.) 223 (2017), no. 3, 199-209.
[4] A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm BoundaryValue Problems. Second edition. Translated from the Russian by Peter V. Malyshev. Inverse and Ill-posed Problems Series, 59. De Gruyter, Berlin, 2016.
[5] E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods of Analyzing Nonlinear Systems. Nonlinear Analysis and its Applications. (Russian) Nauka, Moscow, 1979.
[6] D. Hilbert, The Theory of Algebraic Number Fields. Translated from the German and with a preface by Iain T. Adamson. With an introduction by Franz Lemmermeyer and Norbert Schappacher. Springer-Verlag, Berlin, 1998.
[7] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and its Applications (Soviet Series), 89. Kluwer Academic Publishers Group, Dordrecht, 1993.
[8] I. T. Kiguradze and B. Půža, On boundary value problems for systems of linear functionaldifferential equations. Czechoslovak Math. J. 47(122) (1997), no. 2, 341-373.
[9] S. G. Krein, Linear Equations in a Banach Space. (Russian) Izdat. "Nauka", Moscow, 1971.
[10] I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.
[11] A. Samoilenko, A. Boichuk and S. Chuiko, Hybrid difference-differential boundary-value problem. Miskolc Math. Notes 18 (2017), no. 2, 1015-1031.
[12] M. I. Vishik and L. A. Ljusternik, Solution of some perturbation problems in the case of matrices and self-adjoint or non-selfadjoint differential equations. I. (Russian) Uspehi Mat. Nauk 15 no. 3 (93), 3-80; translated in Russian Math. Surveys 15 (1960), no. 3, 1-73.

