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In the space L2[a, b], we consider a perturbed linear boundary-value problem for a weakly
singular integral equation

x(t)−
b∫

a

K(t, s)x(s) ds = f(t) + ε

b∫
a

K(t, s)x(s) ds, (1)

lx( · ) = α+ εJx( · ). (2)

We establish conditions for the bifurcation of solutions of the boundary-value problem (1), (2)
and determine the structure of these solutions under the condition that the generating boundary-
value problem

x(t)−
b∫

a

K(t, s)x(s) ds = f(t), lx( · ) = α (3)

is unsolvable.
Here, K(t, s) = H(t,s)

|t−s|γ and K(t, s) = H(t,s)
|t−s|β , where H(t, s), H(t, s) are functions bounded in the

domain [a, b] × [a, b], 0 < γ < 1, 0 < β < 1, f ∈ L2[a, b], l = col(l1, l2, . . . , lp) : L2[a, b] → Rp,
J = col(J1, J2, . . . , Jp) : L2[a, b] → Rp are bounded linear functionals, lν , Jν : L2[a, b] → R, ν = 1, p,
α = col(α1, α2, . . . , αp) ∈ Rp and ε ≪ 1 is a small parameter.

By using the results obtained in [2], we show that the study of the problem of appearance of
solutions of the boundary-value problem (1), (2) reduces to the corresponding task for the perturbed
boundary-value problem for the Fredholm integral equation

x(t) = fn(t) +
n∑

k=0

εk
b∫

a

Rk
n(t, s)x(s) ds, (4)

fn(t) = f(t) +

n−1∑
k=1

b∫
a

R0
k(t, s)f(s) ds+

n−1∑
k=1

εk
n−1∑
m=k

b∫
a

Rk
m(t, s)f(s) ds,

where Rk
n(t, s), k = 0, n, are the sums of Ck

n kernels of all possible products of n − k integral
operators K and k integral operators K

(Kw)(t) =

b∫
a

H(t, s)

|t− s|γ
w(s) ds and (Kw)(t) =

b∫
a

H(t, s)

|t− s|β
w(s) ds.

We apply the approach described in [3] to the study of the boundary-value problem (4), (2) and
show that it can be reduced to the operator equation. Let {φi(t)}∞i=1 be a complete orthonormal
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system of functions in L2[a, b]. We introduce the notation

xi =

b∫
a

x(t)φi(t) dt, aij =

b∫
a

b∫
a

Kn(t, s)φi(t)φj(s) dt ds,

akij =

b∫
a

b∫
a

Rk
n(t, s)φi(t)φj(s) dt ds, k = 1, n,

fi =

b∫
a

f(t)φi(t) dt+
n−1∑
k=1

b∫
a

b∫
a

R0
k(t, s)f(s)φi(t) dt ds,

fk
i =

n−1∑
m=k

b∫
a

b∫
a

Rk
m(t, s)f(s)φi(t) ds dt, k = 1, n− 1.

By using this notation in the boundary-value problem (4), (2), we obtain the operator equation:

Uz = q +
n−1∑
k=1

εkqk +
n∑

k=1

εkUkz, (5)

where

U =

[
Λ
W

]
, U1 =

[
Λ1

W1

]
, Uk =

[
Λk

0

]
, k = 2, n,

q =

[
g
α

]
, qk =

[
gk
0

]
, k = 1, n− 1,

where the vectors z, g, gk, k = 1, n− 1 and the matrices W , W1, Λ, Λk, k = 1, n have the form

z = col
(
x1, x2, . . . , xi, . . .

)
, g = col

(
f1, f2, . . . , fi, . . .

)
,

gk = col
(
fk
1 , fk

2 , . . . , fk
i , . . .

)
, W = lΦ( · ), W1 = JΦ( · ),

Λ =


1− a11 −a12 . . . −a1i . . .
−a21 1− a22 . . . −a2i . . .
. . . . . . . . . . . . . . .
−ai1 −ai2 . . . 1− aii . . .
. . . . . . . . . . . . . . .

 , Λk =


ak11 ak12 . . . ak1i . . .
ak21 ak22 . . . ak2i . . .
. . . . . . . . . . . . . . .
aki1 aki2 . . . akii . . .
. . . . . . . . . . . . . . .

 ,

Φ(t) =
(
φ1(t), φ2(t), . . . , φi(t), . . .

)
.

The generating equation for the operator equation (5) has the form

Uz = q. (6)

The operator Λ : ℓ2 → ℓ2 appearing on the left-hand side of the operator equation (6) has the
form Λ = I − A, where I : ℓ2 → ℓ2 is the identity operator and A : ℓ2 → ℓ2 is a compact operator.
Hence, according to S. Krein’s classification, the operator Λ : ℓ2 → ℓ2 is a Fredholm operator of
index zero (dimkerΛ = dimkerΛ∗ < ∞) and the operator U : ℓ2 → ℓ2×Rp is a Fredholm operator
of nonzero index (dimkerU < ∞, dimkerU∗ < ∞).

The following statement is true for equation (6) (see [4]).
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Theorem 1. The homogeneous equation (6) (q = 0) possesses a d2-parameter family of solutions
z ∈ ℓ2,

z = PΛrPQd2
cd2 ∀ cd2 ∈ Rd2 .

The inhomogeneous equation (6) is solvable if and only if the following r+d1 linearly independent
conditions are satisfied:

PΛ∗
r
g = 0, PQ∗

d1
(α−WΛ+g) = 0,

and the equation possesses a d2-parameter family of solutions z ∈ ℓ2 of the form

z = PΛrPQd2
cd2 + PΛrQ

+(α−WΛ+g) + Λ+g ∀cd2 ∈ Rd2 .

Here, Q = WPΛr is a (p×r)-matrix, PΛr(PΛ∗
r
) is a matrix formed by a complete system of r linearly

independent columns (rows) of the matrix projector PΛ (PΛ∗), where PΛ (PΛ∗) is the projector onto
the kernel (cokernel) of the matrix Λ, and PQd2

(PQ∗
d1

) is a matrix formed by the complete system
of d2 (d1) linearly independent columns (rows) of the matrix projector PQ (PQ∗), where PQ (PQ∗)
is the projector onto the kernel (cokernel) of the matrix Q and Λ+ (Q+) is the pseudoinverse
Moore–Penrose matrix for the matrix Λ (Q).

We now determine the conditions required for the bifurcation of solutions of the perturbed
inhomogeneous boundary-value problem (1), (2) and study the structure of these solutions under
the conditions that the solution of the homogeneous generating the boundary-value problem (3)
(f(t) = 0, α = 0) is not unique, i.e. (see [2]), PΛrPQd2

̸= 0, and that the inhomogeneous generating
boundary-value problem (3) is unsolvable.

It is known (see [9]) that small perturbations preserve the Fredholm property of the operator,
i.e., the operator

(
U −

n∑
k=1

εkUk

)
is a Fredholm operator with nonzero index. This enables one

to investigate equation (5) by the methods of the theory of perturbed operator boundary-value
problems with Fredholm linear part (see, e.g., [1,4,11]) obtained as a generalization of the classical
methods of the perturbation theory of periodic boundary-value problems in the theory of oscillations
(see [5, 7, 8, 10]).

The analysis of the appearance of solutions of equation (5) is closely connected with the ((r +
d1)× d2)-matrix

B0 =

[
PΛ∗

r
Λ1PΛrPQd2

PQ∗
d1
(W1 −WΛ+Λ1)PΛrPQd2

]
,

constructed by using the coefficients of equation (5).
We introduce an ((r+ d1)× (r+ d1))-matrix PB∗

0
, which is a projector onto the cokernel of the

matrix B0 and a matrix

G =

[
−PΛ∗

r
0

PQ∗
d1
WΛ+ −PQ∗

d1

]
,

formed by r + d1 rows and infinitely many columns. Moreover, as the matrix B0, it is completely
determined by the coefficients of equation (5).

By the Vishik–Lyusternik method (see [12]), we find efficient conditions for the coefficients
guaranteeing the appearance of a family of solutions of the perturbed linear boundary-value problem
(5) in the form of a Laurent series in powers of the small parameter ε with singularity at the point
ε = 0.

The results obtained for the perturbed equations (5) enable us to establish the conditions
for the existence of a d2-parameter family of solutions of the original perturbed boundary-value
problem (1), (2). Indeed, if the boundary-value problem (1), (2) possesses at least one solution,
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then, according to the Riesz–Fischer theorem, one can find an element x ∈ L2[a, b] such that the
quantities xi, i = 1,∞, determined from equation (5) are the Fourier coefficients of this elements,
i.e., the following representation is true:

x(t) = Φ(t)z. (7)

As in [6], we conclude that the element x(t) given by relations (7) is the required d2-parameter
family of solutions of the original boundary-value problem (1), (2). Therefore, the following state-
ment is true.

Theorem 2. Suppose that the generating boundary-value problem (3) is unsolvable. If conditions

PΛrPQd2
̸= 0, PB∗

0
G = 0,

are satisfied, then the boundary-value problem (1), (2) has a d2-parameter family of solutions in the
form of series with singularity at the point ε = 0 convergent for sufficiently small fixed ε ∈ (0, ε∗].
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