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In the presentation, we consider the well-posed question for the general linear boundary value
problem for the impulsive differential systems

dx

dt
= P0(t)x+ q0(t) for a.a. t ∈ I \ T, (1)

x(τl+)− x(τl−) = G0(τl)x(τl) + u0(τl) (l = 1, 2, . . . ); (2)
ℓ0(x) = c0, (3)

where I = [a, b] ⊂ R, P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), G0 ∈ B(T ;Rn×n), u0 ∈ B(T ;Rn), T =
{τ1, τ2, . . . }, τl ∈ I (l = 1, 2, . . . ), τl ̸= τk if l ̸= k (l, k = 1, 2, . . . ), ℓ0 : BV(I;Rn) → Rn is a linear
vector-functional, bounded with respect to the norm ∥.∥∞, and c0 ∈ Rn.

Along with the impulsive general boundary (1)–(3), consider the sequence of problems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I \ T, (1m)

x(τl+)− x(τl−) = Gm(τl)x(τl) + um(τl) (l = 1, 2, . . . ); (2m)
ℓm(x) = cm (3m)

(m = 1, 2, . . . ), where Pm ∈ L(I;Rn×n), qm ∈ L(I;Rn), Gm ∈ B(T ;Rn×n), um ∈ B(T ;Rn),
ℓm : BV(I;Rn) → Rn is a linear vector-functional, bounded with respect to the norm ∥ · ∥∞, and
cm ∈ Rn (m = 1, 2, . . . ).

We give the necessary and sufficient conditions (as well, some effective sufficient conditions)
for the existence of a unique solution for problem (1m)–(3m) for every sufficiently large m and the
nearness these solutions to the solution of problem (1)–(3). The problem quite fully is already
investigated in [3] (see also the references therein). Such problem was studied in [3–5] for linear
ordinary differential systems.

Similar problem is investigated in [2] (see also the references therein) for the initial problems
for linear impulsive systems.

A number of issues of the theory of linear systems of differential equations with impulsive effect
have been studied sufficiently well [1–3,6] (see also the references therein).

The use will be made of the following notation and definitions.
R = ] −∞,+∞[ . Rn×m is the space of all real n ×m matrices X = (xi,j)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |. In is the identity n× n-matrix.
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Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :
[a, b] → Rn×m at the point t.

b∨
a
(X) is the sum of total variations on [a, b] of the components of the matrix-function X.

BV([a, b];Rn×m) is the space of all bounded variation matrix-functions X : [a, b] → Rn×m, with
the norm ∥X∥∞ = sup{∥X(t)∥ : t ∈ [a, b]}.

AC([a, b];Rn×m) is the set of all absolutely continuous matrix-functions.
ACloc(J ;Rn×m), where J ⊂ R, is the set of all matrix-functions whose restrictions to an arbitrary

closed interval [a, b] from J belong to AC([a, b];D).
BVACloc(I, T ;Rn×m) = BV (I;Rn×m) ∩ACloc(I \ T ;Rn×m).

B(T ;Rn×m) is the set of all matrix-functions G : T → Rn×m such that
+∞∑
l=1

∥G(τl)∥ < +∞;

|||ℓ||| is the norm of a linear bounded vector-functional ℓ.
For the corresponding matrix-functions X, Y and Z, we set

Bι(X;Y, Z)(t) ≡
t∫

a

X(τ)Y (τ) dτ +
∑

τl∈[a,t[

X(τl+)Z(τl).

Everywhere, we assume that

lim
m→+∞

ℓm(x) = ℓ0(x) for x ∈ BV(I;Rn), lim sup
m→+∞

|||ℓm||| < +∞

and det(In +G(τl)) ̸= 0 (l = 1, 2, . . . ).
The last inequalities guarantee the unique solvability of the Cauchy problem for the impulsive

system (1), (2) (see [2, 6]).

Definition 1. A vector-function x ∈ ACloc(I \ T ;Rn) is said to be a solution of system (1), (2)
if x′(t) = P (t)x(t) + q(t) for a.a. t ∈ I \ T and there exist onesided limits x(τl−) and x(τl+)
(l = 1, 2, . . . ) satisfying equalities (2).

Without loss of generality, we can assume that the solution x of the impulsive differential
system (1), (2) is continuous from the left at the points of the impulses actions τl (l = 1, 2, . . . ),
i.e., x(τl) = x(τl−) (l = 1, 2, . . . ).

Let x0 be a unique solution of problem (1)–(3) (about existence conditions see, for example,
[1, 3, 6]).

We give the necessary and sufficient and effective sufficient conditions for the boundary value
problem (1m)–(3m) to have a unique solution xm for any sufficiently large m and

lim
m→+∞

∥xm − x0∥∞ = 0. (4)

Remark 1. If we consider the case where for every natural m, the impulses points depend on m
in the impulsive systems (1m), (2m) (m = 1, 2, . . . ), in particular, the linear algebraic system (2m)
has the form

x(τlm+)− x(τlm−) = Gm(τlm)x(τlm) + um(τlm) (l = 1, 2, . . . ),

where τlm ∈ I (l = 1, 2, . . . ), then the last general case will be reduced to case (2m) using the
following conception given in [2, 3].
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Along with systems (1), (2) and (1m), (2m) (m = 1, 2, . . . ), we consider the corresponding ho-
mogeneous systems

dx

dt
= Pm(t)x for a.a. t ∈ I \ T, (1m0)

x(τl+)− x(τl−) = Gm(τl)x(τl) (l = 1, 2, . . . ). (2m0)

Definition 2. We say that the sequence (Pm, qm;Gm, um; ℓm) (m = 1, 2, . . . ) belongs to the set
S(P0, q0;G0, u0; ℓ0) if for every c0 ∈ Rn and cm ∈ Rn (m = 1, 2, . . . ), satisfying condition lim

k→+∞
cm =

c0, problem (1m)–(3m) has a unique solution xm for any sufficiently large m and condition (4) holds.

Theorem 1. The inclusion(
(Pm, qm;Gm, um; ℓm)

)∞
m=1

∈ S(P0, q0;G0, u0; ℓ0) (5)

holds if and only if there exists a sequence Hm ∈ BVACloc(I, T ;Rn×n) (m = 0, 1, . . . ) such that
condition

lim sup
m→+∞

b∨
a

(
Hm + Bι(Hm;Pm, Gm)

)
< +∞ (6)

holds, and conditions

lim
m→+∞

Hm(t) = In, (7)

lim
m→+∞

Bι(Hm;Pm, Gm)(t) = Bι(In;P0, G0)(t),

lim
m→+∞

Bι(Hm; qm, um)(t) = Bι(In; q0, u0)(t)

hold uniformly on I.

Theorem 2. Let det(In + Gm(τl)) ̸= 0 (l = 1, 2, . . . ; m = 0, 1, . . . ). Then inclusion (5) holds if
and only if the conditions

lim
m→+∞

X−1
m (t) = In,

lim
m→+∞

( t∫
a

X−1
m (τ)qm(τ) dτ+

∑
τl∈[a,t[

X−1
m (τl+)um(τl)

)
=

t∫
a

q0(τ) dτ+
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where Xm is the fundamental matrix of the homogeneous system (1m0), (2m0)
(m = 1, 2, . . . ).

Remark 2. Note that condition (6) holds if

lim sup
m→+∞

( b∫
a

∥∥H ′
m(t) +Hm(t)Pm(t)

∥∥ dt+ +∞∑
l=1

∥d2Hm(τl) +Hm(τl+)Gm(τl)∥
)

< +∞.

Now we give some effective sufficient conditions guaranteeing inclusion (5).
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Theorem 3. Let the condition

lim sup
m→+∞

( b∫
a

∥Pm(t)∥ dt+
∞∑
l=1

∥Gm(τl)∥
)

< +∞

hold and let the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
=

t∫
a

P0(τ) dτ +
∑

τl∈[a,t[

G0(τl),

lim
m→+∞

( t∫
a

qm(τ) dτ +
∑

τl∈[a,t[

um(τl)

)
=

t∫
m

q0(τ) dτ +
∑

τl∈[a,t[

u0(τl)

hold uniformly on I. Then inclusion (5) holds.

Corollary 1. Let (6) hold and let conditions (7),

lim
m→+∞

t∫
a

Hm(τ)Pm(τ)dτ =

t∫
a

P0(τ)dτ, lim
m→+∞

t∫
a

Hm(τ)qm(τ)dτ =

t∫
a

q0(τ) dτ

hold uniformly on I, and the conditions

lim
m→+∞

Gm(τl) = G0(τl) and lim
m→+∞

um(τl) = u0(τl)

hold uniformly on T, where Hm ∈ BVACloc(I, T ;Rn×n) (m = 1, 2, . . . ). Let, moreover, either

lim sup
m→+∞

∞∑
l=1

(
∥Gm(τl)∥+ ∥um(τl)∥

)
< +∞ or lim sup

m→+∞

∞∑
l=1

∥Hm(τl+)−Hm(τl)∥ < +∞.

Then inclusion (5) holds.

Corollary 2. Let condition (6) hold and let the conditions

lim
m→+∞

( t∫
a

Pm(τ) dτ +
∑

τl∈[a,t[

Gm(τl)

)
= B(t)−B(a),

lim
m→+∞

( t∫
a

Hm(τ)Pm(τ) dτ+
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))Gm(τl)

)
=

t∫
a

P0(τ) dτ+
∑

τl∈[a,t[

G0(τl),

lim
m→+∞

( t∫
a

Hm(τ) qm(τ) dτ+
∑

τl∈[a,t[

(B(τl+)−Gm(τl+))um(τl)

)
=

t∫
t0

q0(τ) dτ+
∑

τl∈[a,t[

u0(τl)

hold uniformly on I, where B ∈ BVACloc(I, T ;Rn×n) and

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ −
∑

τl∈[a,t[

Gm(τl) +B(t)−B(a) (m = 1, 2, . . . ).

Then inclusion (5) holds.
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