On Well-Possedness of General Linear Boundary Value Problems for High Order Ordinary Linear Differential Equations

Malkhaz Ashordia ${ }^{1,2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia;
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
E-mails: malkhaz.ashordia@tsu.ge, M.Ashordia@sou.edu.ge
Nestan Kekelia
Sokhumi State University, Tbilisi, Georgia
E-mail: N.Kekelia@sou.edu.ge

We consider the question on the well-posedness of the boundary value problem

$$
\begin{gather*}
u^{(n)}=\sum_{l=1}^{n} p_{l}(t) u^{(l-1)}+p_{0}(t) \text { for a.a. } t \in I, \tag{1}\\
\ell_{i}\left(u, u^{\prime}, \ldots, u^{(n-1)}\right)=c_{i 0}(i=1, \ldots, n), \tag{2}
\end{gather*}
$$

where $I=[a, b]$ is an arbitrary closed interval from $\mathbb{R}, p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), c_{i o} \in \mathbb{R}$ $(i=1, \ldots, n)$, and $\ell_{i}: \operatorname{AC}^{(n-1)}(I ; \mathbb{R}) \rightarrow \mathbb{R}(i=1, \ldots, n)$ are linear bounded functionals with respect to the norm

$$
\|u\|_{\mathrm{AC}}=\sum_{j=1}^{n}\left\|u^{(j-1)}\right\|_{c} .
$$

Here $\mathrm{AC}^{(n-1)}(I ; \mathbb{R})$ is the set of all functions $u: I \rightarrow \mathbb{R}$ such that the derivatives $u^{(j)}(j=$ $0, \ldots, n-1)$ are absolutely continuous functions on I, i.e., such that $u^{(j)} \in \mathrm{AC}(I ; \mathbb{R})(j=0, \ldots, n-$ 1), and $\|v\|_{c}=\max \{|v(t)|: t \in I\}$ for every continuous function $v: I \rightarrow \mathbb{R}$.

By $\||\ell|\|$ we denote the usual norm of the linear operator ℓ.
Under a solution of the differential equation (1) we understand a function $u \in \mathrm{AC}^{(n-1)}(I ; \mathbb{R})$ such that

$$
u^{(n)}(t)=\sum_{l=1}^{n} p_{l}(t) u^{(l-1)}(t)+p_{0}(t) \text { for a.a. } t \in I
$$

Let u_{0} be the unique solution of the Cauchy problem (1), (2).
Along with problem (1), (2) consider the sequence of problems

$$
\begin{gather*}
u^{(n)}=\sum_{l=1}^{n} p_{l k}(t) u^{(l-1)}+p_{0 k}(t) \text { for a.a. } t \in I, \tag{k}\\
\quad \ell_{i k}\left(u, u^{\prime}, \ldots, u^{(n-1)}\right)=c_{i k}(i=1, \ldots, n), \tag{k}
\end{gather*}
$$

$(k=1,2, \ldots)$, where $p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n), c_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=1,2, \ldots)$, and $\ell_{i k}: \mathrm{AC}^{(n-1)}(I ; \mathbb{R}) \rightarrow \mathbb{R}(i=1, \ldots, n ; k=1,2, \ldots)$ are linear bounded functionals.

Definition. We say that the sequence $\left(p_{1 k}, \ldots, p_{n k}, p_{0 k} ; \ell_{1 k}, \ldots, \ell_{n k}\right)(k=1,2, \ldots)$ belongs to the set $\mathcal{S}\left(p_{1}, \ldots, p_{n}, p_{0} ; \ell_{1}, \ldots, \ell_{n}\right)$ if for every $c_{i 0} \in \mathbb{R}(i=1, \ldots, n)$ and a sequence $c_{i k} \in \mathbb{R}$ $(i=1, \ldots, n ; k=1,2, \ldots)$, satisfying the condition

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} c_{i k}=c_{i 0} \quad(i=1, \ldots, n) \tag{3}
\end{equation*}
$$

the boundary value problem $\left(1_{k}\right),\left(2_{k}\right)$ has the unique solution u_{k} for any natural k and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} u_{k}^{(i-1)}(t)=u_{0}^{(i-1)}(t) \quad(i=1, \ldots, n) \tag{4}
\end{equation*}
$$

uniformly on I.
Along with equations (1) and $\left(1_{k}\right)(k=1,2, \ldots)$ we consider the corresponding homogeneous equations

$$
\begin{equation*}
u^{(n)}=\sum_{l=1}^{n} p_{l}(t) u^{(i-1)} \text { for a.a } t \in I \tag{0}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{(n)}=\sum_{l=1}^{n} p_{l k}(t) u^{(i-1)} \text { for a.a } t \in I \tag{0k}
\end{equation*}
$$

$(k=1,2, \ldots)$.
If the functions $v_{i} \in \mathrm{AC}^{(n-1)}(I ; \mathbb{R})(i=1, \ldots, n)$, then by

$$
w_{0}\left(v_{1}, \ldots, v_{n}\right)(t)=\operatorname{det}\left(\left(v_{i}^{(l-1)}(t)\right)_{i, l=1}^{n}\right)
$$

we denote the so called Wronskiú's determinant, and by $w_{i l}\left(v_{1}, \ldots, v_{n}\right)(t)(i, l=1, \ldots, n)$ we denote the cofactor of the $i l$-element of $w_{0}\left(v_{1}, \ldots, v_{n}\right)$.

Let $u_{l}(l=1, \ldots, n)$ and $u_{l k}(l=1, \ldots, n ; k=1,2, \ldots)$ be the fundamental systems of solutions of the homogeneous systems $\left(1_{0}\right)$ and $\left(2_{0 k}\right)(k=1,2, \ldots)$, respectively.

Below we give necessary and sufficient conditions, as well some sufficient conditions, guaranteeing the inclusion

$$
\begin{equation*}
\left(\left(p_{1 k}, \ldots, p_{n k}, p_{0 k} ; \ell_{1 k}, \ldots, \ell_{n k}\right)\right)_{k=1}^{+\infty} \in \mathcal{S}\left(p_{1}, \ldots, p_{n}, p_{0} ; \ell_{1}, \ldots, \ell_{n}\right) \tag{5}
\end{equation*}
$$

Theorem 1. Let the functions $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and let the linear functionals $\ell_{i}, \ell_{i k}(i=1, \ldots, n ; k=1,2, \ldots)$ be such that the conditions

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \ell_{i k}\left(u, u^{\prime}, \ldots, u^{(n-1)}\right) & =\ell_{i}\left(u, u^{\prime}, \ldots, u^{(n-1)}\right) \text { for } u \in \mathrm{AC}^{(n-1)}(I ; \mathbb{R}) \quad(i=1, \ldots, n) \tag{6}\\
& \limsup _{k \rightarrow+\infty}\| \| \ell_{i k} \mid \|<+\infty \quad(i=1, \ldots, n) \tag{7}
\end{align*}
$$

hold. Then inclusion (5) holds if and only if there exists a sequence of functions $h_{i l}, h_{\text {ilk }} \in \mathrm{AC}(I ; \mathbb{R})$ $(i, l=1, \ldots, n ; k=1,2, \ldots)$ such that the conditions

$$
\begin{equation*}
\inf \left\{\left|\operatorname{det}\left(\left(h_{i l}(t)\right)_{i, l=1}^{n}\right)\right|: t \in I\right\}>0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \sum_{i, l=1}^{n} \int_{a}^{b}\left|h_{i l k}^{\prime}(t)+h_{i l-1 k}(t) \operatorname{sgn}(l-1)+h_{i n k}(t) p_{l}(t)\right| d t<+\infty \tag{9}
\end{equation*}
$$

hold, and the conditions

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{i l k}(t)=h_{i l}(t) \quad(i, l=1, \ldots, n) \tag{10}
\end{equation*}
$$

and

$$
\lim _{k \rightarrow+\infty} \int_{a}^{t} h_{i n k}(\tau) p_{l k}(\tau) d \tau=\int_{a}^{t} h_{i n}(\tau) p_{l}(\tau) d \tau(i=1, \ldots, n ; l=0, \ldots, n)
$$

hold uniformly on I.
Theorem 2. Let the functions $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and let the linear functionals $\ell_{i}, \ell_{i k}(i=1, \ldots, n ; k=1,2, \ldots)$ be such that conditions (6) and (7) hold. Then inclusion (5) holds if and only if the conditions

$$
\lim _{k \rightarrow+\infty} u_{l k}^{(i-1)}(t)=u_{l}^{(i-1)}(t) \quad(i, l=1, \ldots, n)
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{a}^{t} \frac{w_{i n}\left(u_{1 k}, \ldots, u_{n k}\right)(\tau)}{w_{0}\left(u_{1 k}, \ldots, u_{n k}\right)(\tau)} p_{0 k}(\tau) d \tau=\int_{a}^{t} \frac{w_{i n}\left(u_{1}, \ldots, u_{n}\right)(\tau)}{w_{0}\left(u_{1}, \ldots, u_{n}\right)(\tau)} p_{0}(\tau) d \tau \quad(i=1, \ldots, n) \tag{11}
\end{equation*}
$$

hold uniformly on I.
Theorem 3. Let the functions $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and let the linear functionals $\ell_{i}, \ell_{i k}(i=1, \ldots, n ; k=1,2, \ldots)$ be such that conditions (6), (7) and

$$
\limsup _{k \rightarrow+\infty} \int_{a}^{b}\left\|p_{l k}(t)\right\| d t<+\infty \quad(l=1, \ldots, n)
$$

hold, and the condition

$$
\lim _{k \rightarrow+\infty} \int_{a}^{t} p_{l k}(\tau) d \tau=\int_{a}^{t} p_{l}(\tau) d \tau \quad(l=0, \ldots, n)
$$

hold uniformly on I. Then the boundary value problem $\left(1_{k}\right),\left(2_{k}\right)$ has the unique solution u_{k} for any natural k and condition (4) holds uniformly on I.

Corollary 1. Let the functions $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and let the linear functionals $\ell_{i}, \ell_{i k}(i=1, \ldots, n ; k=1,2, \ldots)$ be such that conditions (3), (6), (7) and (9) hold, and conditions (10) and

$$
\lim _{k \rightarrow+\infty} \int_{a}^{t} h_{i n k}(\tau) p_{l k}(\tau) d \tau=\int_{a}^{t} p_{l}^{*}(\tau) d \tau \quad(i=1, \ldots, n ; l=0, \ldots, n)
$$

hold uniformly on I, where $p_{l}^{*} \in L(I ; \mathbb{R})(l=0, \ldots, n) ; h_{i l}$, $h_{i l k} \in \operatorname{AC}(I ; \mathbb{R})(i, l=1, \ldots, n$; $k=1,2, \ldots)$. Then the inclusion

$$
\left(\left(p_{1 k}, \ldots, p_{n k}, p_{0 k} ; \ell_{1 k}, \ldots, \ell_{n k}\right)\right)_{k=1}^{+\infty} \in \mathcal{S}\left(p_{1}-p_{1}^{*}, \ldots, p_{n}-p_{n}^{*}, p_{0}-p_{0}^{*} ; \ell_{1}, \ldots, \ell_{n}\right)
$$

holds.

Remark. In Theorem 2 and Corollary 1, without loss of generality we can assume that $h_{i i}(t) \equiv 1$ and $h_{i l}(t) \equiv 0(i \neq l ; i, l=1, \ldots, n)$. So condition (8) is valid evidently.

Remark. If $n=2$ in Theorem 3, then condition (11) has the form

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{a}^{t} \frac{u_{1 k}^{\prime}(\tau) p_{0 k}(\tau)}{u_{1 k}(\tau) u_{2 k}^{\prime}(\tau)-u_{2 k}(\tau) u_{1 k}^{\prime}(\tau)} d \tau=\int_{a}^{t} \frac{u_{1}^{\prime}(\tau) p_{0}(\tau)}{u_{1}(\tau) u_{2}^{\prime}(\tau)-u_{2}(\tau) u_{1}^{\prime}(\tau)} d \tau \\
& \lim _{k \rightarrow+\infty} \int_{a}^{t} \frac{u_{1 k}(\tau) p_{0 k}(\tau)}{u_{1 k}(\tau) u_{2 k}^{\prime}(\tau)-u_{2 k}(\tau) u_{1 k}^{\prime}(\tau)} d \tau=\int_{a}^{t} \frac{u_{1}(\tau) p_{0}(\tau)}{u_{1}(\tau) u_{2}^{\prime}(\tau)-u_{2}(\tau) u_{1}^{\prime}(\tau)} d \tau
\end{aligned}
$$

In the equalities we can take $u_{2 k}$ instead of $u_{1 k}(k=1,2, \ldots)$ and u_{2} instead of u_{1}.
For the proof we use the well-know concept. It is well known that if the function u is a solution of problem (1), (2), then the vector-function $x=\left(x_{i}\right)_{i=1}^{n}, x_{i}=u^{(i-1)}(i=1, \ldots, n)$ is a solution of the following general linear boundary value problem for system of ordinary differential equations

$$
\begin{gathered}
\frac{d x}{d t}=P(t) x+q(t), \\
\ell(x)=c_{0},
\end{gathered}
$$

where the matrix- and vector-functions $P(t)=\left(p_{i l}(t)\right)_{i, l=1}^{n}$ and $q(t)=\left(q_{i}(t)\right)_{i=1}^{n}$ are defined, respectively, by

$$
\begin{aligned}
& p_{i l}(t) \equiv 0, \quad p_{i i+1} \equiv 1 \quad(l \neq i+1 ; i=1, \ldots, n-1 ; l=1, \ldots, n) \\
& p_{n l}(t) \equiv p_{l}(t) \quad(l=1, \ldots, n) \\
& q_{i}(t) \equiv 0 \quad(i=1, \ldots, n-1), \quad q_{n}(t) \equiv p_{0}(t) \\
& \ell(x)=\left(\ell_{l}\left(u, u^{\prime}, \ldots, u^{(n-1)}\right)\right)_{l=1}^{n}\left(x=\left(u^{(l-1)}\right)_{l=1}^{n}\right) ; \quad c_{0}=\left(c_{l 0}\right)_{l=1}^{n} .
\end{aligned}
$$

Analogously, problem $\left(1_{k}\right),\left(2_{k}\right)$ can be rewritten in the form of the last type problem for every natural k. So, using the results contained in $[1-3]$ we get the results given above.

References

[1] M. Ashordia, On the stability of solutions of linear boundary value problems for a system of ordinary differential equations. Georgian Math. J. 1 (1994), no. 2, 115-126.
[2] M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996), no. 3, 385-404.
[3] M. Ashordia, Systems of Generalized Ordinary Differential Equations, Linear Impulsive Differential and Ordinary Differential Systems. Numerical Solvability. Mem. Differ. Equ. Math. Phys. 81 (2020), 1-184.

