# The Equation in Variations for the Controlled Differential Equation with Delay and its Application 

Tamaz Tadumadze<br>Department of Mathematics, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia;<br>I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia<br>E-mail: tamaz.tadumadze@tsu.ge

Abdeljalil Nachaoui
J. Leray Laboratory of Mathematics, University of Nantes, Nantes, France

E-mail: nachaoui@math.cnrs.fr
Tea Shavadze
Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia;
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
E-mail: tea.shavadze@gmail.com

The controlled differential equations with delay arise in different areas of natural sciences and economics. To illustrate this, below we will consider the simplest model of economic growth. Let $p(t)$ be a quantity of a product produced at the moment $t$ expressed in money units. The fundamental principle of the economic growth has the form

$$
\begin{equation*}
p(t)=a(t)+i(t), \tag{1}
\end{equation*}
$$

where $a(t)$ is the so-called apply function and $i(t)$ is a quantity induced investment. We consider the case where the functions $a(t)$ and $i(t)$ have the form

$$
\begin{equation*}
a(t)=u_{1}(t) p(t) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
i(t)=u_{2}(t) p(t-\tau)+\alpha \dot{p}(t), \tag{3}
\end{equation*}
$$

where $u_{i}(t) \in(0,1)$ for $i=1,2$, are control functions, $\alpha>0$ is a given number and $\tau>0$ is so-called delay parameter.

Formula (3) shows that the value of investment at the moment $t$ depends on the quantity of money at the moment $t-\tau$ (in the past) and on the velocity (production current) at the moment $t$. From formulas (1)-(3) we get the delay controlled differential equation

$$
\begin{equation*}
\dot{p}(t)=\frac{1-u_{1}(t)}{\alpha} p(t)-\frac{u_{2}(t)}{\alpha} p(t-\tau) . \tag{4}
\end{equation*}
$$

Let $I=\left[t_{0}, t_{1}\right]$ be a given interval, suppose that $O \subset \mathbb{R}^{n}$ is an open set and $U \subset \mathbb{R}^{r}$ is a compact set. Let the $n$-dimensional function $f(t, x, y, u, v)$ be continuous on $I \times O^{2} \times U^{2}$ and continuously differentiable with respect to $x, y$ and $u, v$. Furthermore, let $\tau_{2}>\tau_{1}>0$ and $\theta>0$
be given numbers; let $\Phi$ be a set of continuously differentiable functions $\varphi: I_{1}=\left[\widehat{\tau}, t_{0}\right] \rightarrow O$, where $\widehat{\tau}=t_{0}-\tau_{2}$ and let $\Omega$ be a set of piecewise-continuous functions $u(t) \in U, t \in I_{2}=\left[\widehat{\theta}, t_{1}\right]$, where $\widehat{\theta}=t_{0}-\theta$. To each element $\mu=(\tau, \varphi, u) \in \Lambda:=\left[\tau_{1}, \tau_{2}\right] \times \Phi \times \Omega$ we assign the delay controlled differential equation

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t), x(t-\tau), u(t), u(t-\theta)), \quad t \in\left(t_{0}, t_{1}\right) \tag{5}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in I_{1} . \tag{6}
\end{equation*}
$$

Definition. Let $\mu=(\tau, \varphi, u) \in \Lambda$. A function $x(t ; \mu) \in O$ for $t \in I_{3}=\left[\widehat{\tau}, t_{1}\right]$, is called a solution of equation (5) with the initial condition (6), or a solution corresponding to the element $\mu$ and defined on the interval $I_{3}$, if $x(t ; \mu)$ satisfies condition (6), is absolutely continuous on the interval $I$ and it satisfies equation (5) almost everywhere on $\left(t_{0}, t_{1}\right)$.

Let us introduce notations

$$
|\mu|=|\tau|+\|\varphi\|_{1}+\|u\|, \quad \Lambda_{\varepsilon}\left(\mu_{0}\right)=\left\{\mu \in \Lambda:\left|\mu-\mu_{0}\right| \leq \varepsilon\right\},
$$

where

$$
\|\varphi\|_{1}=\sup \left\{|\varphi(t)|+|\dot{\varphi}(t)|: t \in I_{1}\right\}, \quad\|u\|=\sup \left\{|u(t)|: t \in I_{2}\right\},
$$

$\varepsilon>0$ is a fixed number and $\mu_{0}=\left(\tau_{0}, \varphi_{0}, u_{0}\right) \in \Lambda$ is a fixed initial element; furthermore,

$$
\begin{gathered}
\delta \tau=\tau-\tau_{0}, \quad \delta \varphi(t)=\varphi(t)-\varphi_{0}(t), \quad \delta u(t)=u(t)-u_{0}(t), \\
\delta \mu=\mu-\mu_{0}=(\delta \tau, \delta \varphi, \delta u), \quad|\delta \mu|=|\delta \tau|+\|\delta \varphi\|_{1}+\|\delta u\| .
\end{gathered}
$$

Theorem. Let $x_{0}(t):=x\left(t ; \mu_{0}\right)$ be the solution corresponding to the initial element $\mu_{0}=\left(\tau_{0}, \varphi_{0}, u_{0}\right) \in$ $\Lambda$ and defined on the interval $I_{3}$, where $\tau_{0} \in\left(\tau_{1}, \tau_{2}\right)$. Then, there exists $\varepsilon_{1}>0$ such that for each perturbed element $\mu \in \Lambda_{\varepsilon_{1}}\left(\mu_{0}\right)$ there corresponds the solution $x(t ; \mu)$ defined on the interval $I_{3}$ and the following representation holds

$$
\begin{equation*}
x(t ; \mu)=x_{0}(t)+\delta x(t ; \delta \mu)+o(t ; \delta \mu), \quad t \in\left(t_{0}, t_{1}\right) \tag{7}
\end{equation*}
$$

where

$$
\lim _{|\delta \mu| \rightarrow 0} \frac{|o(t ; \delta \mu)|}{|\delta \mu|}=0 \text { uniformly for } t \in\left(t_{0}, t_{1}\right)
$$

Moreover, the function

$$
\delta x(t)= \begin{cases}\delta \varphi(t), & t \in I_{1} \\ \delta x(t ; \delta \mu), & t \in\left(t_{0}, t_{1}\right)\end{cases}
$$

is a solution to the "equation in variations"

$$
\begin{equation*}
\dot{\delta} x(t)=f_{x}[t] \delta x(t)+f_{y}[t] \delta x\left(t-\tau_{0}\right)-f_{y}[t] \dot{x}_{0}\left(t-\tau_{0}\right) \delta \tau+f_{u}[t] \delta u(t)+f_{v}[t] \delta u(t-\theta), \quad t \in\left(t_{0}, t_{1}\right) \tag{8}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
\delta x(t)=\delta \varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right] . \tag{9}
\end{equation*}
$$

Here $f_{x}[t]=f_{x}\left(t, x_{0}(t), x_{0}\left(t-\tau_{0}\right), u_{0}(t), u_{0}(t-\theta)\right)$.

The theorem is proved by the scheme given in [1]. Formula (7) and equation (8) allow us to obtain an approximate solution of the perturbed equation (5) in analytical form. In fact, for a small $|\delta \mu|$, from (7) it follows that

$$
\begin{equation*}
x(t ; \mu) \approx x_{0}(t)+\delta x(t ; \delta \mu), \quad t \in\left(t_{0}, t_{1}\right) . \tag{10}
\end{equation*}
$$

For the economical model (4), where $u_{0}(t)=\left(u_{10}(t), u_{20}(t)\right)$ in the initial element $\mu_{0}=$ $\left(\tau_{0}, \varphi_{0}, u_{0}\right)$ and $p_{0}(t)=p\left(t ; \mu_{0}\right)$, the equation in variations and the initial condition, respectively, have the forms

$$
\begin{aligned}
\dot{\delta} p(t)=\frac{1-u_{10}(t)}{\alpha} \delta p(t)- & \frac{u_{20}(t)}{\alpha} \delta p\left(t-\tau_{0}\right) \\
& +\frac{u_{20}(t)}{\alpha} \dot{p}_{0}\left(t-\tau_{0}\right) \delta \tau-\frac{p_{0}(t)}{\alpha} \delta u_{1}(t)-\frac{p_{0}\left(t-\tau_{0}\right)}{\alpha} \delta u_{2}(t), \quad t \in\left(t_{0}, t_{1}\right)
\end{aligned}
$$

and

$$
\delta p(t)=\delta \varphi(t), \quad t \in\left[\widehat{\tau}, t_{0}\right] .
$$

Below, on the basis of formula (10) an approximate solution is constructed for the perturbed equation.

## Example.

(a) Let $t_{0}=0, t_{1}=2, \tau_{1}=0.5, \tau_{2}=1.5, \tau_{0}=1, \varphi_{0}(t) \equiv 1$,

$$
u_{0}(t)= \begin{cases}\sqrt{2(t+1)^{2}+1}, & t \in[0,1] \\ \sqrt{2(t+1)^{2}+t^{2}}, & t \in[1,2]\end{cases}
$$

i.e., in this case $\mu_{0}=\left(1,1, u_{0}\right)$. Consider the scalar original equation

$$
\dot{x}(t)=2 x^{2}(t)+x^{2}(t-1)-u_{0}^{2}(t)+1, \quad t \in(0,2)
$$

with the initial condition

$$
x(t)=1, \quad t \in[-1.5,0] .
$$

It is easy to see that

$$
x_{0}(t):=x\left(t ; \mu_{0}\right)= \begin{cases}1, & t \in[-1.5,0], \\ t+1, & t \in[0,2] .\end{cases}
$$

(b) The perturbed equation

$$
\dot{x}(t)=2 x^{2}(t)+x^{2}\left(t-1-\rho_{1}\right)-\left[u_{0}(t)+\rho_{3} \sin (t)\right]^{2}+1, \quad t \in(0,2),
$$

with the perturbed initial condition

$$
x(t)=1+2 \rho_{2} \cos (t), \quad t \in[-1.5,0],
$$

where $\left|\rho_{i}\right|$ for $i=1,2,3$ are small fixed numbers. In this case we have

$$
\begin{gathered}
\mu=\left(1+\rho_{1}, 1+2 \rho_{2} \cos (t), u_{0}(t)+\rho_{3} \sin (t)\right), \\
\delta \tau=\rho_{1}, \delta \varphi(t)=2 \rho_{2} \cos (t), \quad \delta u(t)=\rho_{3} \sin (t)
\end{gathered}
$$

(c) It is clear that

$$
f_{x}[t]=4 x_{0}(t)=4(t+1), \quad f_{y}[t]=2 x_{0}(t-1), \quad f_{u}[t]=-2 u_{0}(t) .
$$

Thus, (8) and (9), respectively, have the forms

$$
\dot{\delta} x(t)=4(t+1) \delta x(t)+2 x_{0}(t-1) \delta x(t-1)-2 \rho_{1} x_{0}(t-1) \dot{x}_{0}(t-1)-2 \rho_{3} \sin (t) u_{0}(t)
$$

and

$$
\delta x(t)=2 \rho_{2} \cos (t), \quad t \in[-1.5,0] .
$$

By elementary calculations we obtain

$$
\delta x(t ; \delta \mu)= \begin{cases}\delta x_{1}(t), & t \in[0,1) \\ \delta x_{2}(t), & t \in[1,2)\end{cases}
$$

where

$$
\begin{aligned}
\delta x_{1}(t)= & 2\left\{e^{2 t(t+2)}\left[\rho_{2}+\int_{0}^{t} e^{-2 s(s+2)}\left(2 \rho_{2} \cos (s-1)-\rho_{3} \sin (s) \sqrt{2(s+1)^{2}+1}\right) d s\right]\right\} \\
\delta x_{2}(t)= & e^{2\left(t^{2}+2 t-3\right)} \\
& \times\left\{\delta x_{1}(1)+\int_{1}^{t} e^{-2\left(s^{2}+2 s-3\right)}\left(2 s \delta x_{1}(s-1)-2 \rho_{1} s-2 \rho_{3} \sin (s) \sqrt{2(s+1)^{2}+s^{2}}\right) d s\right\} .
\end{aligned}
$$

Consequently, the approximate solution $x(t ; \mu)$ of the perturbed equation has the form (see (10))

$$
x(t ; \mu) \approx t+1+\delta x(t ; \delta \mu), \quad t \in(0,2)
$$

## Acknowledgment

This work is supported partly by the Shota Rustaveli National Science Foundation (Georgia), Grant \# PhD-F-17-89.

## References

[1] T. Tadumadze, Variation formulas of solutions for functional differential equations with several constant delays and their applications in optimal control problems. Mem. Differ. Equ. Math. Phys. 70 (2017), 7-97.

