On Increasing the Order of Smallness of Fast Variables in Linear Differential Systems

S. A. Shchogolev
Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mail: sergas1959@gmail.com

Let

$$
G=\left\{t, \varepsilon: t \in\left[t_{0},+\infty\right), \varepsilon \in\left(0, \varepsilon_{0}\right), \varepsilon_{0} \in \mathbf{R}^{+}\right\} .
$$

Definition. We say that the function $f(t, \varepsilon)$ belongs to the class $S(m), m \in \mathbf{N} \cup\{\mathbf{0}\}$, if:

1) $f: G \rightarrow \mathbf{C}$,
2) $f(t, \varepsilon) \in C^{m}(G)$ at t,
3) $d^{k} f(t, \varepsilon) / d t^{k}=\varepsilon^{k} f_{k}(t, \varepsilon)(0 \leq k \leq m)$,

$$
\|f\|_{S(m)} \stackrel{\text { def }}{=} \sum_{k=0}^{m} \sup _{G}\left|f_{k}(t, \varepsilon)\right|<+\infty
$$

By slowly varying function we mean a function from the class $S(m)$.
Consider the system of differential equations

$$
\begin{equation*}
\frac{d x}{d t}=\left(A_{0}(t, \varepsilon)+\sum_{s=1}^{r} A_{s}(t, \varepsilon, \theta(t, \varepsilon))(\mu(\theta(t, \varepsilon)))^{s}\right) x \tag{1}
\end{equation*}
$$

$x=\operatorname{colon}\left(x_{1}, \ldots, x_{n}\right), A_{0}(t, \varepsilon)-(N \times N)$-matrix, whose elements belong to the class $S(m)$. The function $\theta(t, \varepsilon)$ has the form

$$
\begin{equation*}
\theta(t, \varepsilon)=\int_{t_{0}}^{t} \varphi(\tau, \varepsilon) d \tau \tag{2}
\end{equation*}
$$

$\varphi \in \mathbf{R}^{+}, \varphi(t, \varepsilon) \in S(m), \inf _{G} \varphi(t, \varepsilon)=\varphi_{0}>0$. The elements of matrices $A_{s}(t, \varepsilon, \theta)$ belong to the class $S(m)$ with respect to t, ε, are continuous and 2π-periodic with respect to $\theta \in[0,+\infty)$. The function $\mu(\theta)$ is continuous in $[0,+\infty)$.

With a small function $\mu(\theta)$ system (1) is close to the system with slowly varying coefficients

$$
\frac{d x_{0}}{d t}=A_{0}(t, \varepsilon) x_{0}
$$

The terms depending on θ in system (1) has the order $O(\mu)$. We study the problem of reducing system (1) to the form where the terms depending on θ has the order $O\left(\mu^{r+1}\right)$, or $O(\varepsilon)$. If a parameter ε is sufficiently small, then the transformed system will be closer to a system with slowly varying coefficients than to system (1).

Theorem. Let system (1) satisfy the following conditions:

1) eigenvalues $\lambda_{j}(t, \varepsilon)(j=\overline{1, N})$ of matrix $A_{0}(t, \varepsilon)$ are such that

$$
\lambda_{j}(t, \varepsilon)-\lambda_{k}(t, \varepsilon)=i n_{j k} \varphi(t, \varepsilon), \quad n_{j k} \in \mathbf{Z}
$$

where the function $\varphi(t, \varepsilon)$ are defined by condition (2);
2) there exists a matrix $L(t, \varepsilon)$, the elements of which belong to the class $S(m)$ such that $\inf _{G}|\operatorname{det} L(t, \varepsilon)|>0$, and

$$
L^{-1}(t, \varepsilon) A_{0}(t, \varepsilon) L(t, \varepsilon)=\Lambda(t, \varepsilon)=\operatorname{diag}\left[\lambda_{1}(t, \varepsilon), \ldots, \lambda_{N}(t, \varepsilon)\right]
$$

3) the function $\mu(\theta)$ is such that

$$
\mu(\theta) \in \mathbf{R}, \quad \sup _{[\mathbf{0},+\infty)} \mu(\theta) \leq \mu_{\mathbf{0}}<+\infty, \quad \int_{\mathbf{0}}^{+\infty} \mu^{\mathbf{k}}(\theta) \mathbf{d} \theta \leq \mu_{\mathbf{0}}<+\infty \quad(\mathbf{k}=\overline{\mathbf{1}, \mathbf{r}})
$$

Then for sufficiently small values of μ_{0} there exists the transformation of the kind

$$
x=\Phi(t, \varepsilon, \theta(t, \varepsilon)) y
$$

where the elements of the matrix $\Phi(t, \varepsilon, \theta(t, \varepsilon))$ are bounded on $G \times\left[t_{0},+\infty\right)$, that leads system (1) to the kind

$$
\begin{equation*}
\frac{d y}{d x}=(\Lambda(t, \varepsilon)+\varepsilon V(t, \varepsilon, \theta)+W(t, \varepsilon, \theta)) y \tag{3}
\end{equation*}
$$

where the elements of the matrices $V(t, \varepsilon, \theta)$ and $W(t, \varepsilon, \theta)$ are bounded on $G \times\left[t_{0},+\infty\right)$, and the elements of the matrix $W(t, \varepsilon, \theta)$ has the order μ_{0}^{r+1}.
Proof. We make in system (1) the substitution

$$
x=L(t, \varepsilon) x^{(1)}
$$

where $x^{(1)}$ - new unknown vector od dimension N. We obtain

$$
\begin{equation*}
\frac{d x^{(1)}}{d t}=\left(\Lambda(t, \varepsilon)+\varepsilon H(t, \varepsilon)+\sum_{s=1}^{r} B_{s}(t, \varepsilon, \theta)(\mu(\theta))^{s}\right) x^{(1)} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
H(t, \varepsilon)=-\frac{1}{\varepsilon} L^{-1}(t, \varepsilon) \frac{d L(t, \varepsilon)}{d t}, \quad B_{s}(t, \varepsilon, \theta)=L^{-1}(t, \varepsilon) A_{s}(t, \varepsilon, \theta) L(t, \varepsilon) \tag{5}
\end{equation*}
$$

The elements of the matrix $H(t, \varepsilon)$ belong to the class $S(m-1)$.
We seek the transformation, which leads system (4) to the kind (3), in the form

$$
\begin{equation*}
\frac{d x^{(1)}}{d t}=\left(E+\sum_{s+1}^{r} Q_{s}(t, \varepsilon, \theta)\right) y \tag{6}
\end{equation*}
$$

where the matrices $Q_{s}(t, \varepsilon, \theta)(s=\overline{1, r})$ are defined from the next chain of the differential equations

$$
\begin{align*}
& \varphi(t, \varepsilon) \frac{\partial Q_{1}}{\partial \theta}=\Lambda(t, \varepsilon) Q_{1}-Q_{1} \Lambda(t, \varepsilon)+B_{1}(t, \varepsilon, \theta) \mu(\theta), \tag{7}\\
& \left.\varphi(t, \varepsilon) \frac{\partial Q_{2}}{\partial \theta}=\Lambda(t, \varepsilon) Q_{2}-Q_{2} \Lambda(t, \varepsilon)+B_{2}(t, \varepsilon, \theta)(\mu(\theta))^{2}+B_{1}(t, \varepsilon, \theta) Q_{1} t, \varepsilon, \theta\right) \mu(\theta), \\
& \varphi(t, \varepsilon) \frac{\partial Q_{r}}{\partial \theta}=\Lambda(t, \varepsilon) Q_{r}-Q_{r} \Lambda(t, \varepsilon)+B_{r}(t, \varepsilon, \theta)(\mu(\theta))^{r}+\sum_{s=1}^{r-1} B_{s}(t, \varepsilon, \theta) Q_{r-s}(t, \varepsilon, \theta)(\mu(\theta))^{s} .
\end{align*}
$$

The matrices $V(t, \varepsilon, \theta), W(t, \varepsilon, \theta)$ are defined from the equations

$$
\begin{align*}
& \left(E+\sum_{s=1}^{r} Q_{s}(t, \varepsilon, \theta)\right) V=H(t, \varepsilon)\left(E+\sum_{s=1}^{r} Q_{s}(t, \varepsilon, \theta)\right)-\frac{1}{\varepsilon} \sum_{s=1}^{r} \frac{\partial Q_{s}(t, \varepsilon, \theta)}{d t}, \tag{8}\\
& \left(E+\sum_{s=1}^{r} Q_{s}(t, \varepsilon, \theta)\right) W=\sum_{j=1}^{r} \sum_{s=j}^{r} B_{s}(t, \varepsilon, \theta) Q_{r+j-s}(t, \varepsilon, \theta)(\mu(\theta))^{s} . \tag{9}
\end{align*}
$$

Let

$$
Q_{s}=\left(q_{j k}^{(s)}\right)_{j, k=\overline{1, N}}, \quad B_{s}=\left(b_{j k}^{(s)}\right)_{j, k=\overline{1, N}}, \quad s=\overline{1, r} .
$$

Consider equation (7). By virtue condition 1) of the theorem equation (7) is equal to the set of scalar equations

$$
\begin{equation*}
\frac{\partial q_{j k}^{(1)}}{\partial \theta}=i n_{j k} q_{j k}^{(1)}+\frac{1}{\varphi(t, \varepsilon)} \mu(\theta) b_{j k}^{(1)}(t, \varepsilon, \theta), \quad j, k=\overline{1, N} . \tag{10}
\end{equation*}
$$

For each of equations (10), we consider its solution

$$
\begin{equation*}
q_{j k}^{(1)}(t, \varepsilon, \theta)=\frac{1}{\varphi(t, \varepsilon)} e^{i n_{j k} \theta} \int_{0}^{\theta} \mu(\vartheta) b_{j k}^{(1)}(t, \varepsilon, \vartheta) e^{-i n_{j k} \vartheta} d \vartheta, \quad j, k=\overline{1, N} . \tag{11}
\end{equation*}
$$

From the fact that elements of matrices $A_{s}(t, \varepsilon, \theta)$ in system (1) belong to the class $S(m)$ with respect to t, ε, and are continuous and 2π-periodic with respect to $\theta \in[0,+\infty)$, and from equality (5) it follows that the elements of the matrices $B_{s}(t, \varepsilon, \theta)$ also have similar properties. Hence

$$
\sup _{G \times[0,+\infty)}\left|b_{j k}^{(1)}(t, \varepsilon, \theta)\right|=c_{j k}^{(1)}<+\infty, \quad j, k=\overline{1, N} .
$$

From (11) and condition 3) of the theorem we have

$$
\sup _{G \times[0,+\infty)}\left|q_{j k}^{(1)}(t, \varepsilon, \theta)\right| \leq \frac{1}{\varphi_{0}} \mu_{0} c_{j k}^{(1)}, \quad j, k=\overline{1, N} .
$$

For $q_{j k}^{(r)}(t, \varepsilon, \theta)$ we define

$$
\begin{aligned}
& q_{j k}^{(r)}(t, \varepsilon, \theta)=\frac{1}{\varphi(t, \varepsilon)} e^{i n_{j k} \theta} \\
& \quad \times \int_{0}^{\theta}\left((\mu(\vartheta))^{r} b_{j k}^{(r)}(t, \varepsilon, \vartheta)+\sum_{s=1}^{r-1}(\mu(\vartheta))^{s} \sum_{l=1}^{N} b_{j l}^{(s)}(t, \varepsilon, \vartheta) q_{l k}^{(r-k)}(t, \varepsilon, \vartheta)\right) e^{-i n_{j k} \vartheta} d \vartheta, \quad j, k=\overline{1, N} .
\end{aligned}
$$

All functions $q_{j k}^{(s)}(t, \varepsilon, \theta)(j, k=\overline{1, N}, s=\overline{1, r-1})$ are bounded at $t \in G \times\left[t_{0},+\infty\right)$. All functions $b_{j k}^{(s)}(t, \varepsilon, \theta)(j, k=\overline{1, N}, s=\overline{1, r})$ are bounded also at $t \in G \times\left[t_{0},+\infty\right)$. Hence, the condition 3) of the theorem guarantees existence of bounded solutions $q_{j k}^{(r)}(t, \varepsilon, \theta)(j, k=\overline{1, N})$, and these solutions have the order μ_{0}^{r}. For the small μ_{0} the same condition guarantees non-degeneracy of transformation (6). The matrix $V(t, \varepsilon, \theta)$ is uniquely defined from equation (8), and the matrix $W(t, \varepsilon, \theta)$ is uniquely defined from equation (9), and how easy it is to see that the order of the elements of the matrix $W(t, \varepsilon, \theta)$ are not less than μ_{0}^{r+1}.

