# Investigation of Periodic Solutions of Autonomous System by Halving the Interval 

A. Rontó<br>Institute of Mathematics, Academy of Sciences of Czech Republic, Brno, Czech Republic E-mail: ronto@math.cas.cz<br>M. Rontó<br>Institute of Mathematics, University of Miskolc, Miskolc-Egyetemváros, Hungary E-mail: matronto@uni-miskolc.hu

I. Varga<br>Faculty of Mathematics, Uzhhorod National University, Uzhhorod, Ukraine E-mail: iana.varga@uzhnu.edu.ua

We study the $T$-periodic boundary value problem for the autonomous system of differential equations

$$
\begin{equation*}
u^{\prime}(t)=f(u(t)), \quad t \in[0, T] ; \quad u(0)=u(T), \tag{1}
\end{equation*}
$$

where $T$ is the unknown period, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous function defined on a closed bounded set (see (9)).

In [3] , we have suggested an approach for the investigation of general type of non-linear boundary value problem with the functional boundary conditions

$$
\begin{equation*}
u^{\prime}(t)=f(t, u(t)), \quad t \in[a, b], \quad \Phi(u)=d, \tag{2}
\end{equation*}
$$

where $\phi: C\left([a, b], \mathbb{R}^{n}\right)$ is a vector functional (possibly non-linear), which involves a kind of reduction to a parametrized family of problems with separated conditions

$$
\begin{gather*}
u^{\prime}(t)=f(t, u(t)), \quad t \in[a, b],  \tag{3}\\
u(a)=z, \quad u(b)=\eta, \tag{4}
\end{gather*}
$$

where $z:=\operatorname{col}\left(z_{1}, \ldots, z_{n}\right), \eta:=\operatorname{col}\left(\eta_{1}, \ldots, \eta_{n}\right)$ are unknown parameters. The techniques of [3] are based on properties of the iteration sequence

$$
\begin{align*}
& u_{m}(t, z, \eta):=z+\int_{a}^{t} f\left(s, u_{m-1}(s, z, \eta)\right) d s \\
&-\frac{t-a}{b-a} \int_{a}^{b} f\left(s, u_{m-1}(s, z, \eta)\right) d s+\frac{t-a}{b-a}[\eta-z], \quad t \in[a, b], \quad m=1,2, \ldots,  \tag{5}\\
& u_{0}(t, z, \eta):=z+\frac{t-a}{b-a}[\eta-z]
\end{align*}
$$

and on the solution of the algebraic system

$$
\begin{equation*}
\Delta(z, \eta):=\eta-z-\int_{a}^{b} f\left(s, u_{m}(s, z, \eta)\right) d s \tag{6}
\end{equation*}
$$

Formulas (5), (6) are used to compute the corresponding functions explicitly for certain values of $m$, which, under additional conditions, allows one to prove the solvability of the problem and construct approximate solutions.

It is known, that the $T$-periodic solution $u^{*}(t)$ of autonomous system is not isolated in the extended phase space which means that every member of the one-parameter family of functions $t \rightarrow u^{*}(t+\varphi), \varphi \in[0, T]$ is also a $T$-periodic solution. But, all these periodic solutions represent one and the same trajectory. In the autonomous $T$-periodic case (1) $z=\eta$ and the direct application of the successive approximation technique (5), (6) implies that

$$
u_{m}(t, z, \eta)=z, \quad \Delta(z, \eta)=f(z)=0
$$

Therefore, the successive approximations scheme determined by (5), (6) "detects" only constant stationary periodic solutions. In [1], it was considered the investigation of periodic solutions of autonomous systems by transforming them with special replacements into non-autonomous systems. Here we show that for the study of periodic solutions of autonomous systems it is advisable to use the technique of dividing a segment in half $[2,4]$.

In view of the foregoing, without loss of generality, having replaced $u^{*}$ by $u^{*}(\cdot+\varphi)$ with a suitable $\varphi$, we can assume in the subsequent consideration that a certain fixed, say $j$ th component of the periodic function $u^{*}(\cdot+\varphi)$ takes extremal value over $[0, T]$ at the point $t=0$. So, we study the periodic solution of (1) for which

$$
\begin{equation*}
f_{j}\left(u_{1}(0), u_{21}(0), \ldots, u_{n 1}(0)\right)=0 \tag{7}
\end{equation*}
$$

Let us fix certain closed bounded sets $D_{0}, D_{1} \subset \mathbb{R}^{n}$ and focus on the continuously differentiable $T$-periodic solutions $u$ ( $T$ is unknown) of problem (1), (7) with values

$$
\begin{equation*}
u(0) \in D_{0}, \quad u(T / 2) \in D_{1}, \quad u(T) \in D_{0} \tag{8}
\end{equation*}
$$

Based on the sets $D_{0}$ and $D_{1}$, we introduce the sets

$$
D_{0,1}=(1-\theta) z+\theta \eta, \quad z \in D_{0}, \quad \eta \in D_{1}, \quad \theta \in[0,1]
$$

and its component-wise vector $\rho$ neighborhood

$$
\begin{equation*}
D_{\rho}=O\left(D_{0,1}, \rho\right) \tag{9}
\end{equation*}
$$

The problem is to find a continuously differentiable solution $u:[0, T] \rightarrow D_{\rho}$ to problem (1) for which inclusions (8) hold. We introduce the vectors of parameters

$$
z=\operatorname{col}\left(z_{1}, z_{2}, \ldots, z_{n}\right), \quad \eta=\operatorname{col}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)
$$

by formally putting

$$
\begin{equation*}
z:=u(0), \quad \eta:=u(T / 2), \quad z:=u(T) \tag{10}
\end{equation*}
$$

Instead of (1) using a natural interval halving technique, we will consider on the intervals $t \in[0, T / 2]$ and $[T / 2, T]$, respectively, the following two "model-type" two-point problems with separated parametrised conditions

$$
\begin{array}{ll}
x^{\prime}(t)=f(x(t)), \quad t \in[0, T / 2], & x(0)=z, \quad x(T / 2)=\eta \\
y^{\prime}(t)=f(y(t)), \quad t \in[T / 2, T], & y(T / 2)=\eta, \quad y(T)=z \tag{12}
\end{array}
$$

We suppose that

$$
\begin{align*}
& f \in \operatorname{Lip}\left(K, D_{\rho}\right) \text { with the vector } \rho \text { satisfying the inequality } \rho \geq \frac{T}{2} \delta_{D_{\rho}}(f),  \tag{13}\\
& \qquad r(Q)<1, \text { where } Q=\frac{3 T}{20} K, \quad \delta_{D_{\rho}}(f)=\frac{1}{2}\left(\max _{x \in D_{\rho}} f(x)-\min _{x \in D_{\rho}} f(x)\right) .
\end{align*}
$$

o study the solutions of problems (11) and (12) let us introduce the following parametrised sequence of functions

$$
\begin{align*}
& x_{m}(t, z, \eta, T):= z+\int_{0}^{t} f\left(x_{m-1}(s, z, \eta, T)\right) d s \\
&-\frac{2 t-}{T} \int_{0}^{T / 2} f\left(x_{m-1}(s, z, \eta, T)\right) d s+\frac{2 t}{T}[\eta-z], \quad t \in[0, T / 2], \quad m=1,2, \ldots,  \tag{14}\\
& x_{0}(t, z, \eta, T):=z+\frac{2 t}{T}[\eta-z],
\end{align*}
$$

and

$$
\begin{align*}
y_{m}(t, z, \eta, T):= & \eta+\int_{T / 2}^{t} f\left(y_{m-1}(s, z, \eta, T)\right) d s-\frac{2(t-T / 2)}{T} \int_{T / 2}^{T} f\left(y_{m-1}(s, z, \eta, T)\right) d s \\
& +\frac{2(t-T / 2)}{T}[z-\eta], \quad t \in[T / 2, T], \quad m=1,2, \ldots,  \tag{15}\\
y_{0}(t, z, \eta, T):= & \eta+\frac{2(t-T / 2)}{T}[\eta-z] .
\end{align*}
$$

Theorem 1. Assume that for problem (1) conditions (13) are satisfied. Then for arbitrary $(z, \eta) \in$ $D_{0} \times D_{1}$ :

1. All members of sequences (14), (15) are continuously differentiable functions on the intervals $t \in[0, T / 2]$ and $t \in[T / 2, T]$ satisfying conditions

$$
x_{m}(0, z, \eta)=z, \quad x_{m}(T / 2, z, \eta)=\eta, \quad y_{m}(T / 2, z, \eta)=\eta, \quad y_{m}(T, z, \eta)=z .
$$

2. Sequences (14), (15) in $t \in[0, T / 2]$ and $t \in[T / 2, T]$, respectively, converge uniformly as $m \rightarrow \infty$ to the limit functions

$$
x_{\infty}(t, z, \eta, T)=\lim _{m \rightarrow \infty} x_{m}(t, z, \eta, T), \quad y_{\infty}(t, z, \eta, T)=\lim _{m \rightarrow \infty} y_{m}(t, z, \eta, T)
$$

3. The limit functions are the unique continuously differentiable solution of the following additively perturbed equations for all $(z, \eta) \in D_{0} \times D_{1}$

$$
\begin{aligned}
& x(t):=z+\int_{0}^{t} f(x(s)) d s-\frac{2 t-}{T} \int_{0}^{T / 2} f(x(s)) d s+\frac{2 t}{T}[\eta-z], t \in[0, T / 2], \\
& y(t):=\eta+\int_{T / 2}^{t} f(y(s)) d s-\frac{2(t-T / 2)}{T} \int_{T / 2}^{T} f(y(s)) d s+\frac{2(t-T / 2)}{T}[z-\eta], \quad t \in[T / 2, T] .
\end{aligned}
$$

Theorem 2. Let the conditions of Theorem 1 hold. Then the function

$$
u_{\infty}(t)= \begin{cases}x_{\infty}(t, z, \eta), & t \in[0, T / 2] \\ x_{\infty}(t, z, \eta), & t \in[T / 2, T]\end{cases}
$$

is a continuously differentiable T-periodic solution of (1) if and only if the triplet $(z, \eta, T)$ satisfies the system of $2 n+1$ algebraic or transcendental determining equations

$$
\begin{gather*}
\Delta(z, \eta, T)=\eta-z-\int_{0}^{T / 2} f\left(x_{\infty}(s, z, \eta, T)\right) d s=0  \tag{16}\\
H(z, \eta, T)=\eta-z-\int_{T / 2}^{T} f\left(y_{\infty}(s, z, \eta, T)\right) d s=0 \\
f_{j}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=0
\end{gather*}
$$

Note that the solvability of (1) can be established by studying the approximate determining system, when in (16) instead of $\infty$ stands $m$.

Let us apply the approach described above to the system

$$
\begin{align*}
\frac{d u_{1}}{d t} & =u_{2}  \tag{17}\\
\frac{d u_{2}}{d t} & =-4 u_{1}+u_{1}^{2}+\frac{u_{2}^{2}}{16}-\frac{1}{64}
\end{align*}
$$

The domains $D_{0}, D_{1}$, vector $\rho$ can be choosen to satisfy the conditions of Theorem 1. Applying Maple (14), we carried out the calculations. Note that as a zeroth approximation in formulas (14), (15), one can choose any function with values in domain $D_{\rho}$.

Introduce the following parameters $z=\operatorname{col}\left(z_{1}, z_{2}\right), \eta=\operatorname{col}\left(\eta_{1}, \eta_{2}\right)$. If in (7) $j=1$, then from (17) it follows that $z_{2}=0$. The system (17) has two stationary constant solutions

$$
z_{1}=-0.9765029026 \cdot 10^{-3}, \quad z_{2}=0 \text { and } z_{1}=16.00097650, z_{2}=0
$$

The exact $\frac{\pi}{2}$-periodic solution of system (17) is $u_{1}(t)=\frac{1}{8} \cos (4 t), u_{2}(t)=-\frac{1}{2} \sin (4 t)$. For a different number of approximations $m$, we obtain from (14), (15) and from the approximate determining system (16) the following numerical values for the introduced parameters which are presented in Table 1.

Table 1.

| m | $z_{1}$ | $\eta_{1}$ | $\eta_{2}$ | T |
| :---: | ---: | ---: | ---: | ---: |
| 0 | 0.09964844522 | -0.1003515548 | $1.079348881 \cdot 10^{-12}$ | 1.570796327 |
| 1 | 0.09965288938 | -0.1003558995 | $3.849442526 \cdot 10^{-12}$ | 1.570796327 |
| 3 | 0.0996603478 | -0.1003631726 | $-1.637826662 \cdot 10^{-12}$ | 1.570796327 |
| Exact | 0.125 | -0.1250000000 | 0 | 1.570796327 |

Note that the second equilibrium point and the $\frac{\pi}{2}$-periodic solution are unstable.
On Figure 1, we have the graphs of the exact solution (solid line) and its third approximation $(\times)$ for the first and second components on the intervals $t \in[0, T]$.


Figure 1.

## References

[1] A. Rontó and M. Rontó, Successive approximation techniques in non-linear boundary value problems for ordinary differential equations. Handbook of differential equations: ordinary differential equations. Vol. IV, 441-592, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.
[2] A. Rontó, M. Rontó and N. Shchobak, Notes on interval halving procedure for periodic and two-point problems. Bound. Value Probl. 2014, 2014:164, 20 pp.
[3] A. Rontó, M. Rontó and J. Varha, A new approach to non-local boundary value problems for ordinary differential systems. Appl. Math. Comput. 250 (2015), 689-700.
[4] M. Rontó and J. Varha, Successive approximations and interval halving for integral boundary value problems. Miskolc Math. Notes 16 (2015), no. 2, 1129-1152.

