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1 Introduction
The problem of the existence of solutions to Emden–Fowler type equations with prescribed number
of zeros on a given domain is studied.

Consider the equation

y(n) + p(t, y, y′, . . . , yn−1)|y|k sgn y = 0, k ∈ (0, 1) ∪ (1,∞). (1.1)

We say that p ∈ Pn if for some m,M ∈ R the inequalities 0 < m ≤ p(t, ξ1, ξ2, . . . , ξn) ≤ M < ∞
hold, the function p(t, ξ1, ξ2, . . . , ξn) is continuous and Lipschitz continuous in (ξ1, ξ2, . . . , ξn).

We prove that this equation with p ∈ Pn has a solution with a given finite number of zeros
on a given interval. Results considering the existence of solutions with countable number of zeros
are presented in [9, 10]. For the equation (1.1) with n = 3, 4 and constant potential p = p0 the
existence of solutions with a given finite number of zeros on a given interval is proved in [4], and
for the case n = 3, p ∈ Pn – in [5, 7]. Now we generalise this result for n > 3, p ∈ Pn.

2 Main result
Theorem 2.1. For any k ∈ (0, 1) ∪ (1,∞), n ≥ 3, p ∈ Pn, [a, b] ⊂ R, and integer S ≥ 2, equation
(1.1) has a solution defined on the segment [a, b], vanishing on its end points a, b, and having exactly
S zeros on [a, b].

3 Sketch of the proof
3.1 The case of constant potential
In the case of constant potential p proof is based on the following theorems.

Theorem 3.1 ([3], [1, Theorem 5]). For any n > 2 and real k > 1 there exists a non-constant
oscillatory periodic function h such that for any p0 ∈ R with p0 > 0 and any t∗ ∈ R the function

y(t) = |p0|
1

1−k (t∗ − t)−αh(log(t∗ − t)), −∞ < t < t∗, α =
n

k − 1
,

is a solution to equation (1.1) with constant potential p = p0.

Theorem 3.2 ([1, Theorem 9]). For any n > 2 and real k ∈ (0, 1) there exists a non-constant
oscillatory periodic function h such that for any p0 ∈ R with (−1)np0 > 0 and any t∗ ∈ R function

y(t) = |p0|
1

1−k (t∗ − t)−αh(log(t∗ − t)), −∞ < t < t∗, α =
n

k − 1
,

is a solution to equation (1.1) with constant potential p = p0.
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Lemma 3.1 ([2, Lemma 6.1]). If y(t) is a solution to equation (1.1) with constant potential p = p0,
and constants A, B, C satisfy |A| = B

n
k−1 , B > 0, then z(t) = Ay(Bt + C) is also a solution to

the same equation.

From theorems 3.1 and 3.2 it follows that equation (1.1) with constant potential p = p0 has a
solution y(t) with countable number of zeros. Then it is possible to choose segment [t1, t2] where
y(t1) = y(t2) = 0 and y(t) has exactly S zeros on the segment. Then, due to lemma 3.1, function

ỹ(t) =
( |t2 − t1|

|b− a|

) n
k−1

y
(
x1 +

|t2 − t1|
|b− a|

(t− a)
)
, (3.1)

is a solution to the equation, it is defined on the segment [a, b], y(a) = 0, y(b) = 0, and y(t) has
exactly S zeros on [a, b]. When n is odd, we use substitution t 7→ −t to consider p0 with opposite
sign. This completes the proof in the case of constant potential.

3.2 The case of variable potential
It is impossible to use same methods to prove main theorem when p ∈ Pn. The full proof of the
main theorem is given in [8] (the case k ∈ (1,∞)) and in [6] (the case k ∈ (0, 1)). The proof is
based on the following results.

Lemma 3.2 (generalisation of [2, Lemma 7.1]). If y(t) is a solution to (1.1) satisfying, at some t0,
the conditions

y(t0) ≥ 0, y′(t0) > 0, y′′(t0) ≥ 0, . . . , y(n−1)(t0) ≥ 0,

then at some t′0 > t0 the solution has a local maximum and satisfies

t′0 − t0 ≤ (µy′(t0))
− k−1

k+n−1 ,

y(t′0) > (µy′(t0))
n

k+n−1 ,

where the constant µ > 0 depends only on n, k, m, M .

Lemma 3.3 (generalisation of [2, Lemma 7.2]). If y(t) is a solution to (1.1) satisfying, at some t′0,
the conditions

y(t′0) > 0, y′(t′0) ≤ 0, . . . , y(n−1)(t′0) ≤ 0,

then at some t0 > t′0 the solution is equal to zero, and

t0 − t′0 ≤ (µy(t′0))
− k−1

n ,

y′(t0) < −(µy(t′0))
k+n−1

n ,

where the constant µ > 0 depends only on n, k, m, M .

Lemma 3.4 (generalisation of [2, Lemma 7.3]). Under the assumptions of Lemmas 3.2 and 3.3,
for any t1 > t0 with y(t0) = 0, y(t1) = 0 the inequality

|y′(t1)| > Q|y′(t0)|

holds true, where the constant Q > 1 depends only on k, m, M .

Lemma 3.5 ([5, 8]). Suppose D ⊂ Rn and D̃ ⊂ Rn+1 are open connected sets such that for every
c ∈ D there exists a segment [0, xc] with [0, xc] × {c} ⊂ D̃. Suppose that f(x, c) is a continuous
function D̃ → R as well as its derivative in x. Suppose that for every c ∈ D the following conditions
are fulfilled.
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• f(0, c) = 0.

• There exists x1(c) ∈ (0, xc) such that f(x1(c), c) = 0 and f(x, c) ̸= 0 for all x ∈ (0, x1(c)).

•
f ′
x(x, c)

∣∣
x=0

̸= 0, f ′
x(x, c)

∣∣
x=x1(c)

̸= 0.

Then x1(c) is a continuous function D → R.
In the case k > 1 the main result is proved as follows. We consider a solution y(t) with initial

values
y(a) = 0, y′(a) = y1, y

′′(a) = y2, . . . , y
(n−1)(a) = yn−1,

where yi > 0, i = 1, . . . , n − 1. Due to Lemmas 3.2–3.4, the solution y(t) oscillates; so, y(t) has a
sequence of zeros tj , j ∈ N. We consider the position of a particular zero tS−1 as a function of initial
values y1, . . . , yn−1, and with the help of Lemma 3.5 we find out that this function is continuous.
Then, obtaining some estimates, we prove that the range of values of tS−1(y1, . . . , yn−1) is (a,+∞),
and that means that for some initial values we have tS−1 = b, whence the corresponding solution
y(t) has exactly S zeros on [a, b].

In the case k ∈ (0, 1) the same methods apply, but equation (1.1) with k ∈ (0, 1) does not
satisfy the conditions of the theorem of continuous dependence of solutions to ODE, which was
used in the proof. We have to find a workaround here, and it is provided by the following lemmas
(see [6]), which act as replacements for the mentioned continuous dependence theorem.
Lemma 3.6 ([6]). Suppose that n ≥ 3, k ∈ (0, 1), p ∈ Pn, and y is a solution to

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, y(i)(t0) = yi, i = 0, n− 1,

defined on [a, b]. In addition, suppose that for some w ∈ R the inequality |y′| ≥ w > 0 holds true
on [a, b]. Then there exists v ∈ R+ such that for every I = [t0, t

∗] ⊂ [a, b] with |I| < v, for every
ε > 0 there exists δ > 0 such that if some q ∈ Pn, zi ∈ R, i = 0, n− 1, satisfy the inequalities

|p− q| < δ, |zi − yi| < δ, i = 0, n− 1,

and z is a solution to

z(n) + q(t, z, z′, . . . , z(n−1))|z|k sgn z = 0, z(i)(t0) = zi, i = 0, n− 1,

then z is defined on or can be extended onto I with the inequalities∣∣z(i)(t)− y(i)(t)
∣∣ < ε, i = 0, n− 1,

satisfied on it.
Lemma 3.7 ([6]). Suppose that n ≥ 3, k ∈ (0, 1), p ∈ Pn, and y is a solution to

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, y(i)(t0) = yi, i = 0, n− 1,

defined on [a, c], and y has a finite number of zeros, all of them being of first order. Then for every
ε > 0 there exists δ > 0 such that if some q ∈ Pn, zi ∈ R, i = 0, n− 1, satisfy the inequalities

|p− q| < δ, |zi − yi| < δ, i = 0, n− 1,

and z is a solution to

z(n) + q(t, z, z′, . . . , z(n−1))|z|k sgn z = 0, z(i)(t0) = zi, i = 0, n− 1,

then z is defined on or can be extended onto [a, c] with the inequalities∣∣z(i)(t)− y(i)(t)
∣∣ < ε, i = 0, n− 1,

satisfied on it.
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