On Positive Periodic Solutions to Parameter-Dependent Second-Order Differential Equations with a Sub-Linear Non-Linearity

Alexander Lomtatidze ${ }^{1,2}$
${ }^{1}$ Faculty of Mechanical Engineering, Institute of Mathematics, Brno University of Technology Brno, Czech Republic;
${ }^{2}$ Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic E-mail: lomtatidze@fme.vutbr.cz

Jiří Šremr
Faculty of Mechanical Engineering, Institute of Mathematics, Brno University of Technology Brno, Czech Republic
E-mail: sremr@fme.vutbr.cz

We are interested in the existence and non-existence of a positive solution to the periodic boundary value problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+h(t)|u|^{\lambda} \operatorname{sgn} u+\mu f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega) \tag{0.1}
\end{equation*}
$$

Here, $p, h, f \in L([0, \omega])$,

$$
h(t) \geq 0 \text { for a.e. } t \in[0, \omega], \quad h(t) \not \equiv 0,
$$

$\lambda \in] 0,1[$, and a parameter $\mu \in \mathbb{R}$. By a solution to problem (0.1), as usually, we understand a function $u:[0, \omega] \rightarrow \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies given equation almost everywhere, and verifies periodic conditions.

Definition 0.1. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}^{+}(\omega)$ (resp. $\mathcal{V}^{-}(\omega)$) if for any function $u \in A C^{1}([0, \omega])$ satisfying

$$
u^{\prime \prime}(t) \geq p(t) u(t) \text { for a.e. } t \in[0, \omega], \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega),
$$

the inequality

$$
u(t) \geq 0 \text { for } t \in[0, \omega] \quad(\text { resp. } u(t) \leq 0 \text { for } t \in[0, \omega])
$$

is fulfilled.
Definition 0.2. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}_{0}(\omega)$ if the problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega) \tag{0.2}
\end{equation*}
$$

has a positive solution.
For the cases $p \in \mathcal{V}^{-}(\omega), p \in \mathcal{V}_{0}(\omega)$, and $p \in \mathcal{V}^{+}(\omega)$, we provide some results concerning the existence or non-existence of positive solutions to problem (0.1) depending on the choice of a parameter μ.

1 The case $p \in \mathcal{V}^{-}(\omega)$

Theorem 1.1. Let $p \in \mathcal{V}^{-}(\omega)$ and

$$
\int_{0}^{\omega}[f(t)]_{-} \mathrm{d} t>\exp \left(\int_{0}^{\omega}[p(t)]_{+} \mathrm{d} t\right) \int_{0}^{\omega}[f(t)]_{+} \mathrm{d} t
$$

Then there exists $\mu_{*} \geq 0$ such that

- for any $\mu>\mu_{*}$, problem (0.1) has a unique positive solution,
- for any $\mu \leq \mu_{*}$, problem (0.1) has no positive solution.

Theorem 1.1 yields immediately the following result.
Theorem 1.2. Let $p \in \mathcal{V}^{-}(\omega)$ and

$$
\int_{0}^{\omega}[f(t)]_{+} \mathrm{d} t>\exp \left(\int_{0}^{\omega}[p(t)]_{+} \mathrm{d} t\right) \int_{0}^{\omega}[f(t)]-\mathrm{d} t
$$

Then there exists $\mu^{*} \leq 0$ such that

- for any $\mu<\mu^{*}$, problem (0.1) has a unique positive solution,
- for any $\mu \geq \mu^{*}$, problem (0.1) has no positive solution.

2 The case $p \in \mathcal{V}_{0}(\omega)$

Theorem 2.1. Let $p \in \mathcal{V}_{0}(\omega)$ and

$$
\int_{0}^{\omega} f(t) u_{0}(t) \mathrm{d} t<0
$$

where u_{0} is a positive solution to problem (0.2). Then there exists $\mu_{*} \geq 0$ such that

- for any $\mu>\mu_{*}$, problem (0.1) has a unique positive solution,
- for any $\mu \leq \mu_{*}$, problem (0.1) has no positive solution.

From Theorem 2.1, we immediately derive the following result.
Theorem 2.2. Let $p \in \mathcal{V}_{0}(\omega)$ and

$$
\int_{0}^{\omega} f(t) u_{0}(t) \mathrm{d} t>0
$$

where u_{0} is a positive solution to problem (0.2). Then there exists $\mu^{*} \leq 0$ such that

- for any $\mu<\mu^{*}$, problem (0.1) has a unique positive solution,
- for any $\mu \geq \mu^{*}$, problem (0.1) has no positive solution.

3 The case $p \in \mathcal{V}^{+}(\omega)$

Theorem 3.1. Let $p \in \operatorname{Int} \mathcal{V}^{+}(\omega)$ and the solution u to the problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega) \tag{3.1}
\end{equation*}
$$

be non-negative. Then there exists $-\infty<\mu_{*}<0$ such that

- for any $\mu>\mu_{*}$, problem (0.1) has a positive solution,
- for any $\mu<\mu_{*}$, problem (0.1) has no positive solution.

Remark 3.1. The assumption about the non-negativity of u in Theorem 3.1 is meaningful. For instance, it follows from Definition 0.1 that the solution u to problem (3.1) is non-negative provided

$$
f(t) \geq 0 \text { for a.e. } t \in[0, \omega] .
$$

Moreover, it is known that if

$$
\int_{0}^{\omega}[f(t)]_{+} \mathrm{d} t>\Delta(p) \int_{0}^{\omega}[f(t)]_{-} \mathrm{d} t
$$

where $\Delta(p)$ is a number depending only on p, then the solution u to problem (3.1) is positive.
Theorem 3.1 yields immediately the following result.
Theorem 3.2. Let $p \in \operatorname{Int} \mathcal{V}^{+}(\omega)$ and the solution u to the problem

$$
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega)
$$

be non-positive. Then there exists $0<\mu^{*}<+\infty$ such that

- for any $\mu<\mu^{*}$, problem (0.1) has a positive solution,
- for any $\mu>\mu^{*}$, problem (0.1) has no positive solution.

The last statement complements Theorems 3.1 and 3.2.
Theorem 3.3. Let $p \in \operatorname{Int} \mathcal{V}^{+}(\omega)$ and the solution u to the problem

$$
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega)
$$

change its sign. Then there exist $-\infty<\mu_{*}<0$ and $0<\mu^{*}<+\infty$ such that

- for any $\mu \in] \mu_{*}, \mu^{*}[$, problem (0.1) has a positive solution,
- for any $\mu \in]-\infty, \mu_{*}[\cup] \mu^{*},+\infty[$, problem (0.1) has no positive solution.

Acknowledgement

The research has been supported by the internal grant FSI-S-17-4464 of FME BUT. For the first author, published results were also supported by RVO:67985840.

