On Positive Periodic Solutions to Parameter-Dependent Second-Order Differential Equations with a Sub-Linear Non-Linearity

Alexander Lomtatidze^{1,2}

¹Faculty of Mechanical Engineering, Institute of Mathematics, Brno University of Technology Brno, Czech Republic;
²Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic E-mail: lomtatidze@fme.vutbr.cz

Jiří Šremr

Faculty of Mechanical Engineering, Institute of Mathematics, Brno University of Technology Brno, Czech Republic

E-mail: sremr@fme.vutbr.cz

We are interested in the existence and non-existence of a **positive** solution to the periodic boundary value problem

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu f(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega).$$
(0.1)

Here, $p, h, f \in L([0, \omega])$,

 $h(t) \ge 0$ for a.e. $t \in [0, \omega], h(t) \not\equiv 0,$

 $\lambda \in]0,1[$, and a parameter $\mu \in \mathbb{R}$. By a *solution* to problem (0.1), as usually, we understand a function $u : [0, \omega] \to \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies given equation almost everywhere, and verifies periodic conditions.

Definition 0.1. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}^+(\omega)$ (resp. $\mathcal{V}^-(\omega)$) if for any function $u \in AC^1([0, \omega])$ satisfying

 $u''(t) \ge p(t)u(t)$ for a.e. $t \in [0, \omega], \quad u(0) = u(\omega), \quad u'(0) = u'(\omega),$

the inequality

 $u(t) \ge 0$ for $t \in [0, \omega]$ (resp. $u(t) \le 0$ for $t \in [0, \omega]$)

is fulfilled.

Definition 0.2. We say that the function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}_0(\omega)$ if the problem

$$u'' = p(t)u; \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$
(0.2)

has a positive solution.

For the cases $p \in \mathcal{V}^{-}(\omega)$, $p \in \mathcal{V}_{0}(\omega)$, and $p \in \mathcal{V}^{+}(\omega)$, we provide some results concerning the existence or non-existence of positive solutions to problem (0.1) depending on the choice of a parameter μ .

1 The case $p \in \mathcal{V}^{-}(\omega)$

Theorem 1.1. Let $p \in \mathcal{V}^{-}(\omega)$ and

$$\int_{0}^{\omega} [f(t)]_{-} \mathrm{d}t > \exp\left(\int_{0}^{\omega} [p(t)]_{+} \mathrm{d}t\right) \int_{0}^{\omega} [f(t)]_{+} \mathrm{d}t.$$

Then there exists $\mu_* \geq 0$ such that

- for any $\mu > \mu_*$, problem (0.1) has a unique positive solution,
- for any $\mu \leq \mu_*$, problem (0.1) has no positive solution.

Theorem 1.1 yields immediately the following result.

Theorem 1.2. Let $p \in \mathcal{V}^{-}(\omega)$ and

$$\int_{0}^{\omega} [f(t)]_{+} \,\mathrm{d}t > \exp\left(\int_{0}^{\omega} [p(t)]_{+} \,\mathrm{d}t\right) \int_{0}^{\omega} [f(t)]_{-} \,\mathrm{d}t.$$

Then there exists $\mu^* \leq 0$ such that

- for any $\mu < \mu^*$, problem (0.1) has a unique positive solution,
- for any $\mu \ge \mu^*$, problem (0.1) has no positive solution.

2 The case $p \in \mathcal{V}_0(\omega)$

Theorem 2.1. Let $p \in \mathcal{V}_0(\omega)$ and

$$\int_{0}^{\omega} f(t)u_0(t) \,\mathrm{d}t < 0,$$

where u_0 is a positive solution to problem (0.2). Then there exists $\mu_* \geq 0$ such that

- for any $\mu > \mu_*$, problem (0.1) has a unique positive solution,
- for any $\mu \leq \mu_*$, problem (0.1) has no positive solution.

From Theorem 2.1, we immediately derive the following result.

Theorem 2.2. Let $p \in \mathcal{V}_0(\omega)$ and

$$\int_{0}^{\omega} f(t)u_0(t) \,\mathrm{d}t > 0,$$

where u_0 is a positive solution to problem (0.2). Then there exists $\mu^* \leq 0$ such that

- for any $\mu < \mu^*$, problem (0.1) has a unique positive solution,
- for any $\mu \ge \mu^*$, problem (0.1) has no positive solution.

123

3 The case $p \in \mathcal{V}^+(\omega)$

Theorem 3.1. Let $p \in \text{Int } \mathcal{V}^+(\omega)$ and the solution u to the problem

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$
(3.1)

be non-negative. Then there exists $-\infty < \mu_* < 0$ such that

- for any $\mu > \mu_*$, problem (0.1) has a positive solution,
- for any $\mu < \mu_*$, problem (0.1) has no positive solution.

Remark 3.1. The assumption about the non-negativity of u in Theorem 3.1 is meaningful. For instance, it follows from Definition 0.1 that the solution u to problem (3.1) is non-negative provided

$$f(t) \ge 0$$
 for a.e. $t \in [0, \omega]$.

Moreover, it is known that if

$$\int_{0}^{\omega} [f(t)]_{+} \,\mathrm{d}t > \Delta(p) \int_{0}^{\omega} [f(t)]_{-} \,\mathrm{d}t,$$

where $\Delta(p)$ is a number depending only on p, then the solution u to problem (3.1) is positive.

Theorem 3.1 yields immediately the following result.

Theorem 3.2. Let $p \in \text{Int } \mathcal{V}^+(\omega)$ and the solution u to the problem

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$

be non-positive. Then there exists $0 < \mu^* < +\infty$ such that

- for any $\mu < \mu^*$, problem (0.1) has a positive solution,
- for any $\mu > \mu^*$, problem (0.1) has no positive solution.

The last statement complements Theorems 3.1 and 3.2.

Theorem 3.3. Let $p \in \text{Int } \mathcal{V}^+(\omega)$ and the solution u to the problem

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$

change its sign. Then there exist $-\infty < \mu_* < 0$ and $0 < \mu^* < +\infty$ such that

- for any $\mu \in]\mu_*, \mu^*[$, problem (0.1) has a positive solution,
- for any $\mu \in]-\infty, \mu_*[\cup]\mu^*, +\infty[$, problem (0.1) has no positive solution.

Acknowledgement

The research has been supported by the internal grant FSI-S-17-4464 of FME BUT. For the first author, published results were also supported by RVO:67985840.