Solution of Izobov-Bogdanov Problem on Irregularity Sets of Linear Differential Systems with a Parameter-Multiplier

Andrew Lipnitskii
Institute of Mathematics, National Academy of Sciences, Minsk, Belarus
E-mail: ya.andrei173@yandex.by

We consider depending on a parameter $\mu \in \mathbb{R}$ linear differential system

$$
\dot{x}=\mu C(t) x, \quad x(t) \in \mathbb{R}^{n}, \quad t \geq 0
$$

with a piecewise continuous bounded coefficients. By an irregularity set of the system

$$
\begin{equation*}
\dot{x}=C(t) x, \quad x(t) \in \mathbb{R}^{n}, \quad t \geq 0 \tag{C}
\end{equation*}
$$

we call [2] the set of those values $\mu \in \mathbb{R}$ such that the corresponding system (1_{μ}) is irregular under Lyapunov.
E. K. Makarov constructed (see references in [2]) examples of systems $\left(2_{C}\right)$ that have various metric and topological properties of their irregularity sets. Some of them have an arbitrary Lebesgue measure [5].

Later E. A.Barabanov proved [1] that every open set of real line without zero point can be realized as irregularity set of some system $\left(2_{C}\right)$. Paper [4] held an analogous result for closed sets.

Recently P. A. Khudyakova has established that the reducibility sets of systems (1_{μ}) are exactly the class of F_{σ} sets [3].

In the present talk we completely describe the structure of irregularity sets for system $\left(2_{C}\right)$, that solve N. A. Izobov's problem from [2].

For every $\varphi \in \mathbb{R}$ we denote a rotation matrix with the angle φ clockwise as

$$
U(\varphi) \equiv\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right),
$$

and let

$$
J:=U\left(2^{-1} \pi\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

For each $y=\left(y_{1}, y_{2}\right)^{\top} \in \mathbb{R}^{2}$ and 2×2-matrix Z we use the notations $\|y\| \equiv \sqrt{y_{1}^{2}+y_{2}^{2}}$ for an Euclid norm and $\|Z\| \equiv \max _{\|y\|=1}\|Z y\|$ for a spectral norm.

For any strongly increasing sequence $\left\{m_{k}\right\}_{k=1}^{+\infty} \subset \mathbb{N}$ and for the numbers $5 \leq i_{k} \in \mathbb{N}$ we define the sequence $\left\{T_{k}\right\}_{k=1}^{+\infty}$, setting

$$
T_{1}:=2, \quad T_{k+1}:=m_{k}\left(i_{k}+2\right) T_{k}, \quad k \in \mathbb{N}
$$

Next let

$$
\theta_{k}:=m_{k} i_{k} T_{k}, \quad \tau_{k}:=\theta_{k}+m_{k} T_{k}, \quad k \in \mathbb{N} .
$$

For every sequence $\left\{b_{k}\right\}_{k=1}^{+\infty} \subset \mathbb{R}$ and for a number $d \in \mathbb{R}, d \neq 0$, we define the matrix $A(\cdot)=$ $A\left(\cdot, d,\left\{m_{k}, i_{k}, b_{k}\right\}_{k=1}^{\infty}\right)$, for each $l=\overline{1, T_{k}}, k \in \mathbb{N}$ setting

$$
\begin{aligned}
& A(t) \equiv b_{k} J, \quad t \in\left(\tau_{k}-m_{k} l, \tau_{k}-m_{k} l+1\right], \\
& A(t) \equiv-b_{k} J, \quad t \in\left[\tau_{k}+m_{k} l-1, \tau_{k}+m_{k} l\right) .
\end{aligned}
$$

For all other $t \geq 0$ let $A(t) \equiv d \operatorname{diag}[1,-1]$.
We denote as $X_{A}(t, s)$ the Cauchy matrix for system $\left(2_{A}\right)$ and define the number $\delta(d)$ in the case $d>0$ by the equality $\delta(d):=1$, and in the case $d<0$, let $\delta(d):=2$. Let us denote as well

$$
L_{d}(\alpha):=\left\{x \in \mathbb{R}^{2}:\left|\frac{x_{3-\delta(d)}}{x_{\delta(d)}}\right| \leq \alpha\right\} .
$$

Note that

$$
\left(\begin{array}{cc}
m & 0 \\
0 & \frac{1}{m}
\end{array}\right) L_{d}(\alpha)=L_{d}\left(m^{-2 \operatorname{sgn} d} \alpha\right) .
$$

Lemma 1. The matrix $X_{A}\left(T_{k+1}, \theta_{k}\right)$ is self-conjugated.
For all $d \neq 0$ we define $k_{0}(d) \in \mathbb{N}$ by the equality $k_{0}(d):=2+\left[|d|^{-1}\right]([\cdot]$ denotes the integer part of a number).
Lemma 2. For every $k \in \mathbb{N}, k \geq k_{0}(d)-1$, the next inclusion holds

$$
X\left(T_{k+1}, T_{k_{0}(d)}\right) e_{\delta(d)} \subset L_{d}\left(2 e^{4 m_{k} T_{k}|d|}\right)
$$

Let us denote

$$
\widehat{Y}_{\varkappa}(\gamma):=U(\gamma) \operatorname{diag}\left[e^{\varkappa}, e^{-\varkappa}\right], \quad \gamma, \varkappa \in \mathbb{R} .
$$

Lemma 3. For all $\gamma, \varkappa \in \mathbb{R}$ such that $|\cos \gamma| \leq e^{-2|\varkappa|}$, the next estimation is true $\left\|\widehat{Y}_{\varkappa}^{2}(\gamma)\right\|<e^{2}$.
Lemma 4. If $d \neq 0$ and there exist $l \in \mathbb{N}$ and a sequence $\left(k_{j}\right)_{j=1}^{+\infty} \subset \mathbb{N}$ such that for all $p \in\left(k_{j}\right)_{j=1}^{+\infty}$ both the inequalities $i_{p} \leq l, m_{p} \geq 2 \max \left\{l,|d|^{-1}\right\}$ and the estimate $\left|\cos b_{p}\right|<e^{-2 m_{p}|d|}$ hold, then system $\left(2_{A}\right)$ is irregular under Lyapunov.

Let us denote

$$
\widetilde{L}_{\varkappa}:=L_{\operatorname{sgn} \varkappa}\left(2^{3} \varkappa^{2}\right), \quad \varkappa \in \mathbb{R}, \quad \widehat{L}_{k, d}:=L_{d}\left(2^{3} d^{2}\left(m_{k}-1\right)^{2}\right) .
$$

Lemma 5. For all $\gamma, \varkappa \in \mathbb{R},|\sin \gamma| \geq \varkappa^{-2}, \varkappa>2^{4}$, the inclusion

$$
\widehat{Y}_{\varkappa}\left(\gamma+\frac{\pi}{2}\right) \widetilde{L}_{\varkappa} \subset \widetilde{L}_{\varkappa}
$$

and for any $x \in \widetilde{L}_{\varkappa}$ the inequality

$$
\left\|\widehat{Y}_{\varkappa}\left(\gamma+\frac{\pi}{2}\right) x\right\|>\|x\| e^{\varkappa-\sqrt{\varkappa}}
$$

are correct.
Lemma 6. For all $d \neq 0, k \in \mathbb{N}$ such that

$$
m_{k}>1+2^{4}|d|^{-1}, \quad\left|\cos b_{k}\right| \geq d^{-2}\left(m_{k}-1\right)^{-2}
$$

the inclusion

$$
X_{A}\left(T_{k+1}, \theta_{k}-m_{k}+1\right) \widehat{L}_{k, d} \subset \widehat{L}_{k, d}
$$

holds, and for any solution $x(\cdot)$ of system $\left(2_{A}\right)$ with the initial condition $x\left(\theta_{k}-m_{k}+1\right) \in \widehat{L}_{k, d}$ for every $1 \leq l \leq 2 T_{k}$ the next estimation is true

$$
\frac{\left\|x\left(\theta_{k}+m_{k} l\right)\right\|}{\left\|x\left(\theta_{k}+m_{k}(l-1)\right)\right\|} \geq e^{|d|\left(m_{k}-1\right)-\sqrt{|d|\left(m_{k}-1\right)}} .
$$

Lemma 7. If $m_{k} \rightarrow+\infty$ whereas $k \rightarrow+\infty$ and for any $l \in \mathbb{N}$ there exists $k_{l} \in \mathbb{N}$ such that for all $k \geq k_{l}$, satisfying the condition $i_{k} \leq l$, the estimate $\left|\cos b_{k}\right|>|d|^{-2}\left(m_{k}-1\right)^{-2}$ holds, then system $\left(2_{A}\right)$ is regular under Lyapunov.

Let M be an arbitrary $G_{\delta \sigma}$ set. One can find an open sets $\check{M}_{n, l} \subset \mathbb{R}, l, n \in \mathbb{N}$, for which the sets $\widetilde{M}_{l}, l \in \mathbb{N}$, defined by the equalities $\widetilde{M}_{l}:=\bigcap_{n=1}^{+\infty} \check{M}_{n, l}$, satisfy the relation $M=\bigcup_{l=1}^{+\infty} \widetilde{M}_{l}$. Let us denote $\widehat{M}_{n, l}:=\bigcap_{p=1}^{n} \check{M}_{p, l}$. It is easy to see that the inclusion $\widehat{M}_{n+1, l} \subset \widehat{M}_{n, l}$ as well as the equality $\widetilde{M}_{l}=\bigcap_{n=1}^{+\infty} \widehat{M}_{n, l}$ are correct.

We define by the recurrence a sequence $\left\{j_{n}\right\}_{n=0}^{\infty} \subset \mathbb{N} \cup\{0\}$, by set up

$$
j_{0}:=0, \quad j_{n}:=2 n 9^{n+n^{3}}+j_{n-1}, \quad n \in \mathbb{N} .
$$

For any $k, l, n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$ we denote

$$
\begin{gathered}
J_{n}:=\left\{j_{n-1}+1, \ldots, j_{n}\right\}, \quad \varkappa_{k}(n):=9^{-n-n^{3}}\left(k-2^{-1}\left(j_{n}+j_{n-1}\right)\right), \\
\rho_{n, l}(\alpha)=\rho_{n, l}\left(\alpha, \widehat{M}_{n, l}\right):=\inf _{\beta \in \mathbb{R} \backslash \widehat{M}_{n, l}}|\alpha-\beta| .
\end{gathered}
$$

Moreover, let us denote $I_{n, k}=I_{n, k}\left(\left\{\widehat{M}_{n, l}\right\}_{n, l \in \mathbb{N}}\right)$ for the set of all $l \in \mathbb{N}$ such that either $\rho_{n, l}\left(\varkappa_{k}(n)\right) \geq$ $2 n^{-1}$, or there exists $p \in\{1, \ldots, n-1\}$ for which

$$
2 n^{-1} \leq \rho_{p, l}\left(\varkappa_{k}(n)\right) \leq 5 n^{-1} .
$$

Lemma 8. For all $\mu \notin M$ and $l \in \mathbb{N}$ one can find $n_{0}=n_{0}(\mu, l) \in \mathbb{N}$ such that for every $n \geq n_{0}$ the correctness for some $k \in J_{n}$ of the inequality $\left|\mu-\varkappa_{k}(n)\right|<2 n^{-1}$ implies the inclusion $l \notin I_{n, k}$.

For any integer k there exists a singular $n=n(k) \in \mathbb{N}$, for which $k \in J_{n}$. We define the values m_{k}, i_{k} and b_{k}, depending on a choice of the open sets $\check{M}_{n, l} \subset \mathbb{R}, l, n \in \mathbb{N}$, such that $M=\bigcup_{l=1}^{+\infty} \bigcap_{n=1}^{+\infty} \check{M}_{n, l}$, by the equalities

$$
d:=\mu, \quad \mu \in \mathbb{R}, \quad m_{k}:=1+n(k)^{2}, \quad n \in \mathbb{N} .
$$

Let

$$
i_{k}:=\max \left\{5, \min I_{n, k}\right\}, \quad b_{k}(\mu):=2^{-1} \pi+n^{-1}\left(\mu-\varkappa_{k}(n)\right), \quad \mu \in \mathbb{R}
$$

in the case $I_{n, k} \neq \varnothing$, and let

$$
i_{k}:=5, \quad b_{k}(\mu) \equiv 0, \quad \text { if } I_{n, k}=\varnothing
$$

Let us define the matrix $\widetilde{A}_{\mu}(\cdot)=\widetilde{A}_{\mu}\left(\cdot,\left\{\widehat{M}_{n, l}\right\}_{n, l \in \mathbb{N}}\right), \mu \in \mathbb{R}$, by the equality

$$
\widetilde{A}_{\mu}(t):=A(t)=A\left(t, d,\left\{m_{k}, i_{k}, b_{k}\right\}_{k=1}^{\infty}\right), \quad t \geq 0
$$

with the defined as above values of parameters d, m_{k}, i_{k}, b_{k}.
Lemma 9. If $0 \notin M$, then the system $\left(2_{\widetilde{A}_{\mu}}\right)$ is irregular under Lyapunov for all $\mu \in M$ and is regular for any other $\mu \in \mathbb{R} \backslash M$.

Let us denote by \mathcal{T} the set of all $t \in \mathbb{R}_{+}:=\mathbb{R} \cap[0,+\infty)$ such that $\widetilde{A}_{\mu}(t)=\mu \operatorname{diag}[1,-1]$.
For any $t \in \mathcal{T}$ we define the function $\omega(\cdot)$ by the equality $\omega(t) \equiv 0$. For all other $t \in\left[T_{k}, T_{k+1}\right)$, $k \in \mathbb{N}$, let $q_{t}:=0$ if $t<\tau_{k, j}$, and $q_{t}:=1$ in another case, and let $\omega(t):=(-1)^{q_{t}} b_{k}(0)$. We define a matrix $C(t), t \geq 0$, by the relations

$$
\begin{equation*}
C(t):=U^{-1}(\tau)\left(\widetilde{A}_{1}(t) U(\tau)-\frac{\mathrm{d}}{\mathrm{~d} t} U(\tau)\right), \quad t \geqslant 0, \quad \tau=\tau(t):=\int_{0}^{t} \omega(s) d s \tag{1}
\end{equation*}
$$

Next statement contains the main result of this paper.
Theorem. For every $G_{\delta \sigma}$ set $M \subset \mathbb{R}, 0 \notin M$, system $\left(1_{\mu}\right)$ with the matrix $C(\cdot)$, given by equality (1), is irregular under Lyapunov for all $\mu \in M$ and is regular for any other $\mu \in \mathbb{R}$.

References

[1] E. A. Barabanov, On the irregularity sets of families of linear differential systems. (Russian) Differ. Uravn. 45 (2009), no. 8, 1067-1084; translation in Differ. Equ. 45 (2009), no. 8, 10871104.
[2] N. A. Izobov, Investigations in Belarus in the theory of characteristic Lyapunov exponents and its applications. (Russian) Differentsial'nye Uravneniya 29 (1993), no. 12, 2034-2055, 2205 (1994); translation in Differential Equations 29 (1993), no. 12, 1771-1788 (1994).
[3] P. A. Khudyakova, Complete description of the reducibility sets of linear differential systems with real parameter multiplying the coefficient matrix. (Russian) Differ. Uravn. 54 (2018), no. 5, 613 626; translation in Differ. Equ. 54 (2018), no. 5, 608-621.
[4] A. V. Lipnitskiǐ, Closed irregularity sets of linear differential systems with a parameter multiplying the derivative. (Russian) Differ. Uravn. 47 (2011), no. 2, 189-194; translation in Differ. Equ. 47 (2011), no. 2, 187-192
[5] E. K. Makarov, The measure of an irregularity set of a linear system with a parameter multiplying the derivative. (Russian) Dokl. Akad. Nauk BSSR 33 (1989), no. 4, 302-305, 380.

