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Let Ω = (0, ω1)×(0, ω2) be an open rectangle, and let D be an orthogonally convex open domain
with C2 boundary inscribed in Ω such that

D = {(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

where γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2), and

γ1(ξ
∗
1) = 0, γ2(ξ

∗
2) = ω2, η1(ζ

∗
1 ) = 0, η2(ζ

∗
2 ) = ω1

for some ξ∗1 , ξ∗2 ∈ [0, ω1] and ζ∗1 , ζ
∗
2 ∈ [0, ω2].

In the domain D consider the problem

u(2,2) = p1(x1, x2)u
(2,0) + p2(x1, x2)u

(0,2) +
1∑

j=0

1∑
k=0

pjk(x1, x2)u
(j,k) + q(x1, x2), (1)

u(ηi(x2), x2) = φi(x2) (i = 1, 2); u(2,0)(x1, γi(x1)) = ψ′′
i (x1) (i = 1, 2), (2)

where
u(j,k)(x1, x2) =

∂j+ku

∂xj1∂x
k
2

,

pi ∈ C(D) (i = 1, 2), pjk ∈ C(D) (j, k = 0, 1), q ∈ C(D), ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2),
Cm,n(D) is the Banach space of functions u : D → R, having continuous partial derivatives u(i,j)
(i = 0, . . . ,m; j = 0, . . . , n), with the norm

∥u∥Cm,n(D) =

m∑
j=0

n∑
k=0

∥u(j,k)∥C(D),

and D is the closure of the set D.
Problem (1), (2) was studied in [1–3]. The Dirichlet problem for higher order linear hyperbolic

equations in a rectangular domain was studied in [4].
Along with problem (1), (2) consider its corresponding homogeneous problem

u(2,2) = p1(x1, x2)u
(2,0) + p2(x1, x2)u

(0,2) +
1∑

j=0

1∑
k=1

pjk(x1, x2)u
(j,k), (10)

u(ηi(x2), x2) = 0 (i = 1, 2); u(2,0)(x1, γi(x1)) = 0 (i = 1, 2). (20)

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ C2,2(D)∩
C2,0(D) satisfying equation (1) and boundary conditions (2) everywhere in D and ∂D, respectively.
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Theorem 1. Let pi ∈ C(Ω) (i = 1, 2), pjk ∈ C(Ω) (j, k = 0, 1), q ∈ C(Ω), ϕi ∈ C2([0, ω2]),
ψi ∈ C2([0, ω1]) (i = 1, 2), and let

p1(x1, x2) ≥ 0, p2(x1, x2) ≥ 0 for (x1, x2) ∈ D.

Then problem (1), (2) has the Fredholm property, i.e.:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) problem (1), (2) is uniquely solvable if and only if problem (10), (20) has only the trivial
solution.

Furthermore, every solution of problem (1), (2) in a unique way can be continued to a solution of
equation (1) in the domain Ω.

Remark 1. Orthogonal convexity of the domain D is very important and cannot be relaxed.
Indeed, in the domain

D =
{
(x1, x2) : x1 ∈ (0, 4), x2 ∈ (γ(x1), 2)

}
,

where

γ(x) =

{
e

1
(x−1)(x−3) for x ∈ (1, 3)

0 for x ∈ [0, 1] ∪ [3, 4]
,

consider the problem

u(2,2) = 0, (3)
u
∣∣
∂D

= 0; u(2,0)
∣∣
∂D

= 1. (4)

Notice that the function y = γ(x) belongs to C∞([0, 4]), it is increasing on the interval [1, 2] and it
is decreasing on the interval [2, 3]. It is easy to show that

η1(y) = 2−
√
1 + ln−1(y)

is the function inverse to γ(x) on the interval [1, 2], and

η2(y) = 2 +

√
1 + ln−1(y)

is the function inverse to γ(x) on the interval [2, 3].
It is clear that the only possible solution of problem (3), (4) is a solution of the problem

u(2,0) = 1, (5)
u
∣∣
∂D

= 0. (6)

Problem (5), (6) has the unique solution

u(x1, x2) =



x1(x1 − η1(x2))

2
for x1 ∈ [0, 2), x2 ∈ [0, e−1)

(x1 − η2(x2))(x1 − 4)

2
for x1 ∈ (2, 4], x2 ∈ [0, e−1)

x1(x1 − 4)

2
for x1 ∈ [0, 4], x2 ∈ (e−1, 2]

.

One can easily see that u(x1, x2) is not a classical solution of problem (3), (4), since it is
discontinuous along the line segment 0 ≤ x1 ≤ 4, x2 = e−1.
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Remark 2. C2 smoothness of the boundary of the domain D is very important and cannot be
relaxed. Indeed, let α ∈ [1, 2) be an arbitrary number,

γi(x2) = 1 + (−1)i
√
1− |x2 − 1|α(i = 1, 2)

and
ηi(x1) = 1 + (−1)ix

1
α
1 (2− x1)

1
α (i = 1, 2).

In the domain

D =
{
(x1, x2) : x1 ∈ (0, 2), x2 ∈

(
1− x

1
α
1 (2− x1)

1
α , 1 + x

1
α
1 (2− x1)

1
α
)}

=
{
(x1, x2) : x2 ∈ (0, 2), x1 ∈

(
1−

√
1− |x2 − 1|α, 1 +

√
1− |x2 − 1|α

)}
consider the problem

u(2,2) = 0, (7)
u(ηi(x2), x2) = 0 (i = 1, 2); u(2,0)(x1, γi(x1)) = 2 (i = 1, 2). (8)

It is clear that the only possible solution of problem (7), (8) is a solution of the problem

u(2,0) = 2, (9)
u(ηi(x2), x2) = 0 (i = 1, 2). (10)

Problem (9), (10) has the unique solution

u(x1, x2) =
(
x1 − 1−

√
1− |x2 − 1|α

)(
x1 − 1 +

√
1− |x2 − 1|α

)
= (x1 − 1)2 − 1 + |x2 − 1|α = x21 − 2x1 + |x2 − 1|α.

However, u(0,2)(x1, x2) is discontinuous along the line segment 0 ≤ x1 ≤ 2, x2 = 1, since α ∈ [1, 2).
Thus, problem (7), (8) is not solvable in classical sense due to the fact that the boundary ∂D is not
C2 smooth at points (0, 1) and (2, 1).

Consider the quasilinear equation

u(2,2) = ρ1
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(2,0) + ρ2

(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(0,2)

+

1∑
j=0

1∑
k=0

ρjk
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
u(j,k) + q

(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)
, (11)

where ρi(x1, x2, z) (i = 1, 2), ρjk(x1, x2, z) (j, k = 0, 1) and q(x1, x2, z) are continuous functions on
D× R4, and z = (z1, z2, z3, z4).

Theorem 2. Let ρi ∈ C(D × R4) (i = 1, 2), ρjk ∈ C(D × R4) (j, k = 0, 1), q ∈ C(D × R4),
ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2), and let there exist functions Pil ∈ C(D) (i, l = 1, 2)
and Pijk ∈ C(D) (i, j = 0, 1; j, k = 0, 1) such that:

(A0)

0 ≤ P1l(x1, x2) ≤ ρl(x, y, z) ≤ P2l(x1, x2) for (x1, x2, z) ∈ D× R4 (l = 1, 2);

(A1)
P1jk(x1, x2) ≤ ρjk(x1, x2, z) ≤ P2jk(x1, x2) for (x1, x2, z) ∈ D× R4 (j, k = 0, 1);
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(A2) for arbitrary measurable functions pi : D → R (i = 1, 2) and pjk : D → R (j, k = 0, 1)
satisfying the inequalities

P1l(x1, x2) ≤ pl(x, y) ≤ P2l(x1, x2) for (x1, x2, z) ∈ D× R4 (l = 1, 2),

P1jk(x1, x2) ≤ pjk(x1, x2) ≤ P2jk(x1, x2) for (x1, x2, z) ∈ D× R4 (j, k = 0, 1),

problem (10), (20) has only the trivial solution;

(A3)
lim

∥z∥→+∞

q(x1, x2, z)

∥z∥
= 0 uniformly on D.

Then problem (11), (2) has at least one solution.

Consider the linear and quasilinear equations

u(2,2) =
(
p1(x1, x2)u

(1,0)
)(1,0)

+
(
p2(x1, x2)u

(0,1)
)(0,1)

+ p0(x1, x2)u+ q(x1, x2), (12)

u(2,2) =
(
p1(x1, x2, u)u

(1,0)
)(1,0)

+
(
p2(x1, x2, u)u

(0,1)
)(0,1)

+ p0(x1, x2, u) + q
(
x1, x2, u, u

(1,0), u(0,1), u(1,1)
)

(13)

and
u(2,2) =

(
p1(x1, x2)u

(1,0)
)(1,0)

+
(
p2(x1, x2)u

(0,1)
)(0,1)

+ p0(x1, x2, u) + q(x1, x2). (14)

Theorem 3. Let D be an open convex domain with C2 boundary inscribed in Ω such that

D =
{
(x1, x2) ∈ Ω : x1 ∈ (0, ω1), x2 ∈ (γ1(x1), γ2(x1))

}
=

{
(x1, x2) ∈ Ω : x2 ∈ (0, ω2), x1 ∈ (η1(x2), η2(x2))

}
,

where γi ∈ C([0, ω1]) ∩ C2((0, ω1)), ηi ∈ C([0, ω2]) ∩ C2((0, ω2)) (i = 1, 2),

(−1)iγ′′i (x1) ≤ 0 for x1 ∈ (0, ω1) (i = 1, 2),

(−1)iη′′i (x2) ≤ 0 for x2 ∈ (0, ω2) (i = 1, 2),

and
γ1(ξ

∗
1) = 0, γ2(ξ

∗
2) = ω2, η1(ζ

∗
1 ) = 0, η2(ζ

∗
2 ) = ω1

for some ξ∗1 , ξ
∗
2 ∈ [0, ω1] and ζ∗1 , ζ

∗
2 ∈ [0, ω2]. Furthermore, let p1 ∈ C1,0(Ω), p2 ∈ C0,1(Ω),

p0, q ∈ C(Ω), ϕi ∈ C2([0, ω2]), ψi ∈ C2([0, ω1]) (i = 1, 2), and let

p1(x1, x2) ≥ 0, p2(x1, x2) ≥ 0, p0(x1, x2) ≤ 0 for (x1, x2) ∈ D.

Then problem (12), (2) is uniquely solvable, and its solution in a unique way can be continued to a
solution of equation (12) in the domain Ω.

Furthermore, if
(−1)iγ′′i (x1) < 0 for x1 ∈ (0, ω1) (i = 1, 2) (15)

and
(−1)iη′′i (x2) < 0 for x2 ∈ (0, ω2) (i = 1, 2), (16)

then the solution of problem (12), (2) can be continued to a solution of equation (12) in the closed
domain Ω.
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Theorem 4. Let D be an open convex domain same as in Theorem 3, and let p1 ∈ C1,0,1(D×R),
p2 ∈ C0,1,1(D× R), p0 ∈ C(D× R), q ∈ C(D× R4), and a nonnegative number M be such that

p1(x1, x2, z) ≥ 0, p2(x1, x2, z) ≥ 0 for (x1, x2, z) ∈ D× R,
p0(x1, x2, z)z ≤M for (x1, x2, z) ∈ D× R,

lim
∥z∥→+∞

q(x1, x2, z)

∥z∥
= 0 uniformly on D.

Then problem (13), (2) has at least one solution. Moreover, if inequalities (15) and (16) hold, then
every solution of problem (13), (2) belongs to C2,2(D).

Corollary 1. Let D be an open convex domain same as in Theorem 3, let p1 ∈ C1,0(D), p2 ∈
C0,1(D), p0 ∈ C(D× R), q ∈ C(D), and let(

p0(x1, x2, z1)− p0(x1, x2, z1)
)
(z1 − z2) ≤ 0 for (x1, x2, z) ∈ D× R.

Then problem (14), (2) has one and only one solution. Moreover, if inequalities (15) and (16) hold,
then the solution of problem (13), (2) belongs to C2,2(D).

Remark 3. Under the conditions of Theorem 3 the functions p0, p1 and p2 may have arbitrary
growth order with respect to the phase variable. As an example, consider the equation

u(2,2) =
(
eα1(x1,x2)u2

u(1,0)
)(1,0)

+
(
eα2(x1,x2)u3

u(0,1)
)(0,1) − u2n+1

+

2n∑
k=0

βk(x1, x2)u
k +

(
1 + |u|+ |u(1,0)|+ |u(0,1)|+ |u(1,1)|

)1−ε
, (17)

where α1 ∈ C1,0(D), α2 ∈ C0,1(D), βk ∈ C(D) (k = 0, . . . , 2n) are arbitrary functions, n is an
arbitrary positive integer, and ε ∈ (0, 1). By Theorem 4, problem (17), (2) has at least one solution.
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