Dirichlet type Problem in a Smooth Convex Domain for Quasilinear Hyperbolic Equations of Fourth Order

Tariel Kiguradze, Reemah Alhuzally
Florida Institute of Technology, Melbourne, USA
E-mails: tkigurad@fit.edu; ralhuzally2015@my.fit.edu

Let $\Omega=\left(0, \omega_{1}\right) \times\left(0, \omega_{2}\right)$ be an open rectangle, and let \mathbf{D} be an orthogonally convex open domain with C^{2} boundary inscribed in Ω such that

$$
\begin{aligned}
\mathbf{D} & =\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{1} \in\left(0, \omega_{1}\right), x_{2} \in\left(\gamma_{1}\left(x_{1}\right), \gamma_{2}\left(x_{1}\right)\right)\right\} \\
& =\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{2} \in\left(0, \omega_{2}\right), x_{1} \in\left(\eta_{1}\left(x_{2}\right), \eta_{2}\left(x_{2}\right)\right)\right\},
\end{aligned}
$$

where $\gamma_{i} \in C\left(\left[0, \omega_{1}\right]\right) \cap C^{2}\left(\left(0, \omega_{1}\right)\right), \eta_{i} \in C\left(\left[0, \omega_{2}\right]\right) \cap C^{2}\left(\left(0, \omega_{2}\right)\right)(i=1,2)$, and

$$
\gamma_{1}\left(\xi_{1}^{*}\right)=0, \quad \gamma_{2}\left(\xi_{2}^{*}\right)=\omega_{2}, \quad \eta_{1}\left(\zeta_{1}^{*}\right)=0, \quad \eta_{2}\left(\zeta_{2}^{*}\right)=\omega_{1}
$$

for some $\xi_{1}^{*}, \xi_{2}^{*} \in\left[0, \omega_{1}\right]$ and $\zeta_{1}^{*}, \zeta_{2}^{*} \in\left[0, \omega_{2}\right]$.
In the domain \mathbf{D} consider the problem

$$
\begin{gather*}
u^{(2,2)}=p_{1}\left(x_{1}, x_{2}\right) u^{(2,0)}+p_{2}\left(x_{1}, x_{2}\right) u^{(0,2)}+\sum_{j=0}^{1} \sum_{k=0}^{1} p_{j k}\left(x_{1}, x_{2}\right) u^{(j, k)}+q\left(x_{1}, x_{2}\right), \tag{1}\\
u\left(\eta_{i}\left(x_{2}\right), x_{2}\right)=\varphi_{i}\left(x_{2}\right) \quad(i=1,2) ; \quad u^{(2,0)}\left(x_{1}, \gamma_{i}\left(x_{1}\right)\right)=\psi_{i}^{\prime \prime}\left(x_{1}\right) \quad(i=1,2), \tag{2}
\end{gather*}
$$

where

$$
u^{(j, k)}\left(x_{1}, x_{2}\right)=\frac{\partial^{j+k} u}{\partial x_{1}^{j} \partial x_{2}^{k}},
$$

$p_{i} \in C(\overline{\mathbf{D}})(i=1,2), p_{j k} \in C(\overline{\mathbf{D}})(j, k=0,1), q \in C(\overline{\mathbf{D}}), \phi_{i} \in C^{2}\left(\left[0, \omega_{2}\right]\right), \psi_{i} \in C^{2}\left(\left[0, \omega_{1}\right]\right)(i=1,2)$, $C^{m, n}(\overline{\mathbf{D}})$ is the Banach space of functions $u: \overline{\mathbf{D}} \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(i, j)}$ $(i=0, \ldots, m ; j=0, \ldots, n)$, with the norm

$$
\|u\|_{C^{m, n}(\overline{\mathbf{D}})}=\sum_{j=0}^{m} \sum_{k=0}^{n}\left\|u^{(j, k)}\right\|_{C(\overline{\mathbf{D}})},
$$

and $\overline{\mathbf{D}}$ is the closure of the set \mathbf{D}.
Problem (1), (2) was studied in [1-3]. The Dirichlet problem for higher order linear hyperbolic equations in a rectangular domain was studied in [4].

Along with problem (1),(2) consider its corresponding homogeneous problem

$$
\begin{gather*}
u^{(2,2)}=p_{1}\left(x_{1}, x_{2}\right) u^{(2,0)}+p_{2}\left(x_{1}, x_{2}\right) u^{(0,2)}+\sum_{j=0}^{1} \sum_{k=1}^{1} p_{j k}\left(x_{1}, x_{2}\right) u^{(j, k)}, \tag{0}\\
u\left(\eta_{i}\left(x_{2}\right), x_{2}\right)=0 \quad(i=1,2) ; \quad u^{(2,0)}\left(x_{1}, \gamma_{i}\left(x_{1}\right)\right)=0 \quad(i=1,2) . \tag{0}
\end{gather*}
$$

By a solution of problem (1), (2) we understand a classical solution, i.e., a function $u \in C^{2,2}(\mathbf{D}) \cap$ $C^{2,0}(\overline{\mathbf{D}})$ satisfying equation (1) and boundary conditions (2) everywhere in \mathbf{D} and $\partial \mathbf{D}$, respectively.

Theorem 1. Let $p_{i} \in C(\bar{\Omega})(i=1,2), p_{j k} \in C(\bar{\Omega})(j, k=0,1), q \in C(\bar{\Omega}), \phi_{i} \in C^{2}\left(\left[0, \omega_{2}\right]\right)$, $\psi_{i} \in C^{2}\left(\left[0, \omega_{1}\right]\right)(i=1,2)$, and let

$$
p_{1}\left(x_{1}, x_{2}\right) \geq 0, \quad p_{2}\left(x_{1}, x_{2}\right) \geq 0 \text { for }\left(x_{1}, x_{2}\right) \in \mathbf{D} .
$$

Then problem (1), (2) has the Fredholm property, i.e.:
(i) problem $\left(1_{0}\right),\left(2_{0}\right)$ has a finite dimensional space of solutions;
(ii) problem (1), (2) is uniquely solvable if and only if problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution.

Furthermore, every solution of problem (1), (2) in a unique way can be continued to a solution of equation (1) in the domain Ω.

Remark 1. Orthogonal convexity of the domain D is very important and cannot be relaxed. Indeed, in the domain

$$
D=\left\{\left(x_{1}, x_{2}\right): x_{1} \in(0,4), x_{2} \in\left(\gamma\left(x_{1}\right), 2\right)\right\},
$$

where

$$
\gamma(x)= \begin{cases}e^{\frac{1}{(x-1)(x-3)}} & \text { for } x \in(1,3) \\ 0 & \text { for } x \in[0,1] \cup[3,4]\end{cases}
$$

consider the problem

$$
\begin{gather*}
u^{(2,2)}=0, \tag{3}\\
\left.u\right|_{\partial \mathbf{D}}=0 ;\left.\quad u^{(2,0)}\right|_{\partial \mathbf{D}}=1 . \tag{4}
\end{gather*}
$$

Notice that the function $y=\gamma(x)$ belongs to $C^{\infty}([0,4])$, it is increasing on the interval $[1,2]$ and it is decreasing on the interval $[2,3]$. It is easy to show that

$$
\eta_{1}(y)=2-\sqrt{1+\ln ^{-1}(y)}
$$

is the function inverse to $\gamma(x)$ on the interval [1, 2], and

$$
\eta_{2}(y)=2+\sqrt{1+\ln ^{-1}(y)}
$$

is the function inverse to $\gamma(x)$ on the interval $[2,3]$.
It is clear that the only possible solution of problem (3), (4) is a solution of the problem

$$
\begin{align*}
& u^{(2,0)}=1, \tag{5}\\
& \left.u\right|_{\partial \mathbf{D}}=0 . \tag{6}
\end{align*}
$$

Problem (5), (6) has the unique solution

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}\left(x_{1}-\eta_{1}\left(x_{2}\right)\right)}{2} & \text { for } x_{1} \in[0,2), x_{2} \in\left[0, e^{-1}\right) \\ \frac{\left(x_{1}-\eta_{2}\left(x_{2}\right)\right)\left(x_{1}-4\right)}{2} & \text { for } x_{1} \in(2,4], x_{2} \in\left[0, e^{-1}\right) . \\ \frac{x_{1}\left(x_{1}-4\right)}{2} & \text { for } x_{1} \in[0,4], \quad x_{2} \in\left(e^{-1}, 2\right]\end{cases}
$$

One can easily see that $u\left(x_{1}, x_{2}\right)$ is not a classical solution of problem (3),(4), since it is discontinuous along the line segment $0 \leq x_{1} \leq 4, x_{2}=e^{-1}$.

Remark 2. C^{2} smoothness of the boundary of the domain \mathbf{D} is very important and cannot be relaxed. Indeed, let $\alpha \in[1,2)$ be an arbitrary number,

$$
\gamma_{i}\left(x_{2}\right)=1+(-1)^{i} \sqrt{1-\left|x_{2}-1\right|^{\alpha}}(i=1,2)
$$

and

$$
\eta_{i}\left(x_{1}\right)=1+(-1)^{i} x_{1}^{\frac{1}{\alpha}}\left(2-x_{1}\right)^{\frac{1}{\alpha}} \quad(i=1,2)
$$

In the domain

$$
\begin{aligned}
\mathbf{D} & =\left\{\left(x_{1}, x_{2}\right): x_{1} \in(0,2), x_{2} \in\left(1-x_{1}^{\frac{1}{\alpha}}\left(2-x_{1}\right)^{\frac{1}{\alpha}}, 1+x_{1}^{\frac{1}{\alpha}}\left(2-x_{1}\right)^{\frac{1}{\alpha}}\right)\right\} \\
& =\left\{\left(x_{1}, x_{2}\right): x_{2} \in(0,2), x_{1} \in\left(1-\sqrt{1-\left|x_{2}-1\right|^{\alpha}}, 1+\sqrt{1-\left|x_{2}-1\right|^{\alpha}}\right)\right\}
\end{aligned}
$$

consider the problem

$$
\begin{gather*}
u^{(2,2)}=0 \tag{7}\\
u\left(\eta_{i}\left(x_{2}\right), x_{2}\right)=0 \quad(i=1,2) ; \quad u^{(2,0)}\left(x_{1}, \gamma_{i}\left(x_{1}\right)\right)=2 \quad(i=1,2) \tag{8}
\end{gather*}
$$

It is clear that the only possible solution of problem $(7),(8)$ is a solution of the problem

$$
\begin{align*}
u^{(2,0)} & =2 \tag{9}\\
u\left(\eta_{i}\left(x_{2}\right), x_{2}\right) & =0 \quad(i=1,2) \tag{10}
\end{align*}
$$

Problem $(9),(10)$ has the unique solution

$$
\begin{aligned}
& u\left(x_{1}, x_{2}\right)=\left(x_{1}-1-\sqrt{1-\left|x_{2}-1\right|^{\alpha}}\right)\left(x_{1}-1+\sqrt{1-\left|x_{2}-1\right|^{\alpha}}\right) \\
&=\left(x_{1}-1\right)^{2}-1+\left|x_{2}-1\right|^{\alpha}=x_{1}^{2}-2 x_{1}+\left|x_{2}-1\right|^{\alpha}
\end{aligned}
$$

However, $u^{(0,2)}\left(x_{1}, x_{2}\right)$ is discontinuous along the line segment $0 \leq x_{1} \leq 2, x_{2}=1$, since $\alpha \in[1,2)$. Thus, problem (7), (8) is not solvable in classical sense due to the fact that the boundary $\partial \mathbf{D}$ is not C^{2} smooth at points $(0,1)$ and $(2,1)$.

Consider the quasilinear equation

$$
\begin{align*}
u^{(2,2)} & =\rho_{1}\left(x_{1}, x_{2}, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right) u^{(2,0)}+\rho_{2}\left(x_{1}, x_{2}, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right) u^{(0,2)} \\
& +\sum_{j=0}^{1} \sum_{k=0}^{1} \rho_{j k}\left(x_{1}, x_{2}, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right) u^{(j, k)}+q\left(x_{1}, x_{2}, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right) \tag{11}
\end{align*}
$$

where $\rho_{i}\left(x_{1}, x_{2}, \mathbf{z}\right)(i=1,2), \rho_{j k}\left(x_{1}, x_{2}, \mathbf{z}\right)(j, k=0,1)$ and $q\left(x_{1}, x_{2}, \mathbf{z}\right)$ are continuous functions on $\overline{\mathbf{D}} \times \mathbb{R}^{4}$, and $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.

Theorem 2. Let $\rho_{i} \in C\left(\overline{\mathbf{D}} \times \mathbb{R}^{4}\right)(i=1,2), \rho_{j k} \in C\left(\overline{\mathbf{D}} \times \mathbb{R}^{4}\right)(j, k=0,1), q \in C\left(\overline{\mathbf{D}} \times \mathbb{R}^{4}\right)$, $\phi_{i} \in C^{2}\left(\left[0, \omega_{2}\right]\right), \psi_{i} \in C^{2}\left(\left[0, \omega_{1}\right]\right)(i=1,2)$, and let there exist functions $P_{i l} \in C(\overline{\mathbf{D}})(i, l=1,2)$ and $P_{i j k} \in C(\overline{\mathbf{D}})(i, j=0,1 ; j, k=0,1)$ such that:
$\left(\mathrm{A}_{0}\right)$

$$
0 \leq P_{1 l}\left(x_{1}, x_{2}\right) \leq \rho_{l}(x, y, \mathbf{z}) \leq P_{2 l}\left(x_{1}, x_{2}\right) \text { for } \quad\left(x_{1}, x_{2}, \mathbf{z}\right) \in \overline{\mathbf{D}} \times \mathbb{R}^{4} \quad(l=1,2)
$$

$\left(\mathrm{A}_{1}\right)$

$$
P_{1 j k}\left(x_{1}, x_{2}\right) \leq \rho_{j k}\left(x_{1}, x_{2}, \mathbf{z}\right) \leq P_{2 j k}\left(x_{1}, x_{2}\right) \text { for }\left(x_{1}, x_{2}, \mathbf{z}\right) \in \overline{\mathbf{D}} \times \mathbb{R}^{4} \quad(j, k=0,1)
$$

(A_{2}) for arbitrary measurable functions $p_{i}: \overline{\mathbf{D}} \rightarrow \mathbb{R}(i=1,2)$ and $p_{j k}: \overline{\mathbf{D}} \rightarrow \mathbb{R}(j, k=0,1)$ satisfying the inequalities

$$
\begin{gathered}
P_{1 l}\left(x_{1}, x_{2}\right) \leq p_{l}(x, y) \leq P_{2 l}\left(x_{1}, x_{2}\right) \text { for }\left(x_{1}, x_{2}, \mathbf{z}\right) \in \overline{\mathbf{D}} \times \mathbb{R}^{4} \quad(l=1,2) \\
P_{1 j k}\left(x_{1}, x_{2}\right) \leq p_{j k}\left(x_{1}, x_{2}\right) \leq P_{2 j k}\left(x_{1}, x_{2}\right) \text { for }\left(x_{1}, x_{2}, \mathbf{z}\right) \in \overline{\mathbf{D}} \times \mathbb{R}^{4} \quad(j, k=0,1)
\end{gathered}
$$

problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution;
$\left(\mathrm{A}_{3}\right)$

$$
\lim _{\|\mathbf{z}\| \rightarrow+\infty} \frac{q\left(x_{1}, x_{2}, \mathbf{z}\right)}{\|\mathbf{z}\|}=0 \quad \text { uniformly on } \overline{\mathbf{D}} .
$$

Then problem (11), (2) has at least one solution.
Consider the linear and quasilinear equations

$$
\begin{align*}
u^{(2,2)}= & \left(p_{1}\left(x_{1}, x_{2}\right) u^{(1,0)}\right)^{(1,0)}+\left(p_{2}\left(x_{1}, x_{2}\right) u^{(0,1)}\right)^{(0,1)}+p_{0}\left(x_{1}, x_{2}\right) u+q\left(x_{1}, x_{2}\right) \tag{12}\\
u^{(2,2)}= & \left(p_{1}\left(x_{1}, x_{2}, u\right) u^{(1,0)}\right)^{(1,0)} \\
& +\left(p_{2}\left(x_{1}, x_{2}, u\right) u^{(0,1)}\right)^{(0,1)}+p_{0}\left(x_{1}, x_{2}, u\right)+q\left(x_{1}, x_{2}, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right) \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
u^{(2,2)}=\left(p_{1}\left(x_{1}, x_{2}\right) u^{(1,0)}\right)^{(1,0)}+\left(p_{2}\left(x_{1}, x_{2}\right) u^{(0,1)}\right)^{(0,1)}+p_{0}\left(x_{1}, x_{2}, u\right)+q\left(x_{1}, x_{2}\right) . \tag{14}
\end{equation*}
$$

Theorem 3. Let \mathbf{D} be an open convex domain with C^{2} boundary inscribed in Ω such that

$$
\begin{aligned}
\mathbf{D} & =\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{1} \in\left(0, \omega_{1}\right), x_{2} \in\left(\gamma_{1}\left(x_{1}\right), \gamma_{2}\left(x_{1}\right)\right)\right\} \\
& =\left\{\left(x_{1}, x_{2}\right) \in \Omega: x_{2} \in\left(0, \omega_{2}\right), x_{1} \in\left(\eta_{1}\left(x_{2}\right), \eta_{2}\left(x_{2}\right)\right)\right\},
\end{aligned}
$$

where $\gamma_{i} \in C\left(\left[0, \omega_{1}\right]\right) \cap C^{2}\left(\left(0, \omega_{1}\right)\right), \eta_{i} \in C\left(\left[0, \omega_{2}\right]\right) \cap C^{2}\left(\left(0, \omega_{2}\right)\right)(i=1,2)$,

$$
\begin{aligned}
& (-1)^{i} \gamma_{i}^{\prime \prime}\left(x_{1}\right) \leq 0 \text { for } x_{1} \in\left(0, \omega_{1}\right) \quad(i=1,2), \\
& (-1)^{i} \eta_{i}^{\prime \prime}\left(x_{2}\right) \leq 0 \text { for } x_{2} \in\left(0, \omega_{2}\right) \quad(i=1,2),
\end{aligned}
$$

and

$$
\gamma_{1}\left(\xi_{1}^{*}\right)=0, \quad \gamma_{2}\left(\xi_{2}^{*}\right)=\omega_{2}, \quad \eta_{1}\left(\zeta_{1}^{*}\right)=0, \quad \eta_{2}\left(\zeta_{2}^{*}\right)=\omega_{1}
$$

for some $\xi_{1}^{*}, \xi_{2}^{*} \in\left[0, \omega_{1}\right]$ and $\zeta_{1}^{*}, \zeta_{2}^{*} \in\left[0, \omega_{2}\right]$. Furthermore, let $p_{1} \in C^{1,0}(\bar{\Omega})$, $p_{2} \in C^{0,1}(\bar{\Omega})$, $p_{0}, q \in C(\bar{\Omega}), \phi_{i} \in C^{2}\left(\left[0, \omega_{2}\right]\right), \psi_{i} \in C^{2}\left(\left[0, \omega_{1}\right]\right)(i=1,2)$, and let

$$
p_{1}\left(x_{1}, x_{2}\right) \geq 0, \quad p_{2}\left(x_{1}, x_{2}\right) \geq 0, \quad p_{0}\left(x_{1}, x_{2}\right) \leq 0 \quad \text { for }\left(x_{1}, x_{2}\right) \in \mathbf{D} .
$$

Then problem (12), (2) is uniquely solvable, and its solution in a unique way can be continued to a solution of equation (12) in the domain Ω.

Furthermore, if

$$
\begin{equation*}
(-1)^{i} \gamma_{i}^{\prime \prime}\left(x_{1}\right)<0 \text { for } x_{1} \in\left(0, \omega_{1}\right) \quad(i=1,2) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{i} \eta_{i}^{\prime \prime}\left(x_{2}\right)<0 \text { for } x_{2} \in\left(0, \omega_{2}\right) \quad(i=1,2), \tag{16}
\end{equation*}
$$

then the solution of problem (12), (2) can be continued to a solution of equation (12) in the closed domain $\bar{\Omega}$.

Theorem 4. Let \mathbf{D} be an open convex domain same as in Theorem 3, and let $p_{1} \in C^{1,0,1}(\overline{\mathbf{D}} \times \mathbb{R})$, $p_{2} \in C^{0,1,1}(\overline{\mathbf{D}} \times \mathbb{R})$, $p_{0} \in C(\overline{\mathbf{D}} \times \mathbb{R}), q \in C\left(\overline{\mathbf{D}} \times \mathbb{R}^{4}\right)$, and a nonnegative number M be such that

$$
\begin{gathered}
p_{1}\left(x_{1}, x_{2}, z\right) \geq 0, \quad p_{2}\left(x_{1}, x_{2}, z\right) \geq 0 \text { for }\left(x_{1}, x_{2}, z\right) \in \overline{\mathbf{D}} \times \mathbb{R}, \\
p_{0}\left(x_{1}, x_{2}, z\right) z \leq M \text { for }\left(x_{1}, x_{2}, z\right) \in \overline{\mathbf{D}} \times \mathbb{R}, \\
\lim _{\|\mathbf{z}\| \rightarrow+\infty} \frac{q\left(x_{1}, x_{2}, \mathbf{z}\right)}{\|\mathbf{z}\|}=0 \text { uniformly on } \overline{\mathbf{D}} .
\end{gathered}
$$

Then problem (13), (2) has at least one solution. Moreover, if inequalities (15) and (16) hold, then every solution of problem (13), (2) belongs to $C^{2,2}(\overline{\mathbf{D}})$.

Corollary 1. Let \mathbf{D} be an open convex domain same as in Theorem 3, let $p_{1} \in C^{1,0}(\overline{\mathbf{D}}), p_{2} \in$ $C^{0,1}(\overline{\mathbf{D}}), p_{0} \in C(\overline{\mathbf{D}} \times \mathbb{R}), q \in C(\overline{\mathbf{D}})$, and let

$$
\left(p_{0}\left(x_{1}, x_{2}, z_{1}\right)-p_{0}\left(x_{1}, x_{2}, z_{1}\right)\right)\left(z_{1}-z_{2}\right) \leq 0 \text { for }\left(x_{1}, x_{2}, z\right) \in \overline{\mathbf{D}} \times \mathbb{R} .
$$

Then problem (14), (2) has one and only one solution. Moreover, if inequalities (15) and (16) hold, then the solution of problem (13), (2) belongs to $C^{2,2}(\overline{\mathbf{D}})$.

Remark 3. Under the conditions of Theorem 3 the functions p_{0}, p_{1} and p_{2} may have arbitrary growth order with respect to the phase variable. As an example, consider the equation

$$
\begin{align*}
u^{(2,2)} & =\left(e^{\alpha_{1}\left(x_{1}, x_{2}\right) u^{2}} u^{(1,0)}\right)^{(1,0)}+\left(e^{\alpha_{2}\left(x_{1}, x_{2}\right) u^{3}} u^{(0,1)}\right)^{(0,1)}-u^{2 n+1} \\
& +\sum_{k=0}^{2 n} \beta_{k}\left(x_{1}, x_{2}\right) u^{k}+\left(1+|u|+\left|u^{(1,0)}\right|+\left|u^{(0,1)}\right|+\left|u^{(1,1)}\right|\right)^{1-\varepsilon}, \tag{17}
\end{align*}
$$

where $\alpha_{1} \in C^{1,0}(\overline{\mathbf{D}}), \alpha_{2} \in C^{0,1}(\overline{\mathbf{D}}), \beta_{k} \in C(\overline{\mathbf{D}})(k=0, \ldots, 2 n)$ are arbitrary functions, n is an arbitrary positive integer, and $\varepsilon \in(0,1)$. By Theorem 4, problem (17), (2) has at least one solution.

References

[1] T. Kiguradze, On the correctness of the Dirichlet problem in a characteristic rectangle for fourth order linear hyperbolic equations. Georgian Math. J. 6 (1999), no. 5, 447-470.
[2] T. Kiguradze, On the Dirichlet problem in a characteristic rectangle for fourth order linear singular hyperbolic equations. Georgian Math. J. 6 (1999), no. 6, 537-552.
[3] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem for fourth-order linear hyperbolic equations. Nonlinear Anal. 49 (2002), no. 2, Ser. A: Theory Methods, 197-219.
[4] T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem in a characteristic rectangle for higher order linear hyperbolic equations. Nonlinear Anal. 50 (2002), no. 8, Ser. A: Theory Methods, 1153-1178.

