Solvability of the Boundary Value Problem for One Class of Higher-Order Nonlinear Partial Differential Equations

Sergo Kharibegashvili
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: kharibegashvili@yahoo.com

In the Euclidean space \mathbb{R}^{n+1} of the variables $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and t we consider the nonlinear equation of the type

$$
\begin{equation*}
L_{f} u:=\frac{\partial^{2(2 k+1)} u}{\partial t^{2(2 k+1)}}-\Delta^{2} u+f(u, \nabla u)=F(x, t), \tag{1}
\end{equation*}
$$

where f and F are given, and u is an unknown real functions, $\nabla:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right), \Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$, k is a natural number and $n \geq 2$.

For the equation (1) we consider the boundary value problem: find in the cylindrical domain $D_{T}:=\Omega \times(0, T)$, where Ω is a Lipschitz domain in \mathbb{R}^{n}, a solution $u=u(x, t)$ of that equation according to the boundary conditions

$$
\begin{gather*}
\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}}=0, \quad i=0, \ldots, 2 k \tag{2}\\
\left.\quad u\right|_{\Gamma_{T}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{\Gamma_{T}}=0 \tag{3}
\end{gather*}
$$

where $\Gamma_{T}:=\partial \Omega \times(0, T)$ is the lateral face of the cylinder $D_{T}, \Omega_{0}: x \in \Omega, t=0$ and $\Omega_{T}: x \in$ $\Omega, t=T$ are bottom and top bases of this cylinder, respectively, and $\frac{\partial}{\partial \nu}$ is a derivative along the outer normal to the boundary ∂D_{T} of the domain D_{T}. For $T=\infty$ we have $D_{\infty}=\Omega \times(0, \infty)$, $\Gamma_{\infty}=\partial \Omega \times(0, \infty)$.

Note that the linear part of the operator L_{f} from (1), i.e. L_{0} is a hypoelliptic operator.
Below, for function $f=f\left(s_{0}, s_{1}, \ldots, s_{n+1}\right),\left(s_{0}, s_{1}, \ldots, s_{n+1}\right) \in \mathbb{R}^{n+2}$ we assume that

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{n+2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(s_{0}, s_{1}, \ldots, s_{n+1}\right)\right| \leq M+\sum_{i=0}^{n+1} M_{i}\left|s_{i}\right|^{\alpha_{i}} \forall s=\left(s_{0}, s_{1}, \ldots, s_{n+1}\right) \in \mathbb{R}^{n+2} \tag{5}
\end{equation*}
$$

where $M, M_{i}, \alpha_{i}=$ const $>0, i=0,1, \ldots, n+1$.
Denote by $C^{4,4 k+2}\left(\bar{D}_{T}\right)$ the space of continuous functions in \bar{D}_{T} having continuous partial derivatives $\partial_{x}^{\beta} u, \frac{\partial^{l} u}{\partial t^{l}}$ in \bar{D}_{T}, where $\partial_{x}^{\beta}=\frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \ldots \partial x_{n}^{\beta_{n}}}, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right),|\beta|=\sum_{i=1}^{n} \beta_{i} \leq 4 ; l=$ $1, \ldots, 4 k+2$.

Assume

$$
C_{0}^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{4,4 k+2}\left(\bar{D}_{T}\right):\left.u\right|_{\Gamma_{T}}=\left.\frac{\partial u}{\partial \nu}\right|_{\Gamma_{T}}=0,\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{\Omega_{0} \cup \Omega_{T}}=0, i=0, \ldots, 2 k\right\} .
$$

Let $u \in C_{0}^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right)$ be a classical solution of the problem (1), (2), (3). Multiplying both parts of the equation (1) by an arbitrary function $\varphi \in C_{0}^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right)$ and integrating the obtained equation by parts over the domain D_{T}, we obtain

$$
\begin{array}{rl}
-\int_{D_{T}}\left[\frac{\partial^{2 k+1} u}{\partial t^{2 k+1}} \cdot \frac{\partial^{2 k+1} \varphi}{\partial t^{2 k+1}}+\Delta u \cdot \Delta \varphi\right] d x d t+\int_{D_{T}} & f(u, \nabla u) \varphi d x d t \\
& =\int_{D_{T}} F \varphi d x d t \forall \varphi \in C^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right) . \tag{6}
\end{array}
$$

We take the equality (6) as a basis for our definition of the weak generalized solution u of the problem (1), (2), (3).

Introduce the Hilbert space $W_{0}^{2,2 k+1}\left(D_{T}\right)$ as a completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{2,2 k+1}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+\sum_{i, j=1}^{n}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)^{2}+\sum_{i=1}^{2 k+1}\left(\frac{\partial^{i} u}{\partial t^{i}}\right)^{2}\right] d x d t \tag{7}
\end{equation*}
$$

of the classical space $C_{0}^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right)$.
Remark 1. From (7) it follows that if $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$, then $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}\right)$ and $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, \frac{\partial^{l} u}{\partial t^{l}} \in$ $L_{2}\left(D_{T}\right) ; i, j=1, \ldots, n ; l=1, \ldots, 2 k+1$. Here $W_{2}^{m}\left(D_{T}\right)$ is the well-known Sobolev space consisting of the elements of $L_{2}\left(D_{T}\right)$, having generalized derivatives from $L_{2}\left(D_{T}\right)$ up to m-th order inclusively, and $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}$, where the equality $\left.u\right|_{\partial D_{T}}=0$ is understood in the sense of the trace theory. Moreover, when the domain Ω is convex, and therefore the domain D_{T} is also convex, and since the following estimate

$$
\begin{aligned}
\int_{D_{T}}\left[\sum_{i, j=1}^{n}\right. & \left.\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial^{2} u}{\partial x_{i} \partial t}\right)^{2}+\left(\frac{\partial^{2} u}{\partial t^{2}}\right)^{2}\right] d x d t \\
& \leq c \int_{D_{T}}\left[\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\frac{\partial^{2} u}{\partial t^{2}}\right]^{2} d x d t \forall u \in \stackrel{\circ}{C} 2\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}
\end{aligned}
$$

holds with a positive constant c not dependant on u and the domain D_{T}, then from (7) we have continuous embedding of spaces

$$
\begin{equation*}
W_{0}^{2,2 k+1}\left(D_{T}\right) \subset W_{2}^{2}\left(D_{T}\right) \tag{8}
\end{equation*}
$$

Below, we assume that Ω is a convex domain.
Remark 2. As it is known the space $W_{2}^{2}\left(D_{T}\right)$ is continuously and compactly embedded into $L_{p}\left(D_{T}\right)$ for $p<\frac{2(n+1)}{n-3}$ when $n>3$ and for any $p \geq 1$ when $n=2,3$; analogously, the space $W_{2}^{1}\left(D_{T}\right)$ is continuously and compactly embedded into $L_{q}\left(D_{T}\right)$ if $q<\frac{2(n+1)}{n-1}$. Therefore, taking into account continuous embedding of the spaces (8), the inequality (5) and the properties of the Nemytski operators $N_{i}, i=0,1, \ldots, n+1$, acting by formula $N_{i} v=|v|^{\alpha_{i}}$, we get that the nonlinear operator $N: W_{0}^{2,2 k+1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ acting by formula $N u=f(u, \Delta u)$, will be continuous and compact if the nonlinearity exponent α_{i} in the right-hand side of the inequality (5) satisfies the
following inequalities:

$$
\begin{gather*}
1<\alpha_{0}<\frac{n+1}{n-3} \text { for } n>3 ; \quad \alpha_{0}>1 \text { for } n=2,3 \tag{9}\\
1<\alpha_{i}<\frac{n+1}{n-1}, \quad i=1, \ldots, n+1, \quad n \geq 2 \tag{10}
\end{gather*}
$$

Besides, from the above-mentioned remarks it follows that if $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$, then $f(u, \nabla u) \in$ $L_{2}\left(D_{T}\right)$ and for $u_{m} \rightarrow u$ in the space $W_{0}^{2,2 k+1}\left(D_{T}\right)$ we have $f\left(u_{m}, \nabla u_{m}\right) \rightarrow f(u, \nabla u)$ in the space $L_{2}\left(D_{T}\right)$.

Definition 1. Let function f satisfy the conditions (4), (5), (9) and (10); $F \in L_{2}\left(D_{T}\right)$. The function $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$ is said to be a weak generalized solution of the problem (1), (2), (3) if for any $\varphi \in W_{0}^{2,2 k+1}\left(D_{T}\right)$ the integral equality (6) is valid.

Notice that when the conditions (4), (5), (9) and (10) are fulfilled, if $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$ and $\varphi \in W_{0}^{2,2 k+1}\left(D_{T}\right)$, then according to Remark 2 we have $f(u, \nabla u) \in L_{2}\left(D_{T}\right), \varphi \in L_{2}\left(D_{T}\right)$ and the second addend

$$
\int_{D_{T}} f(u, \nabla u) \varphi d x d t
$$

in the left-hand side of the equality (6) is defined correctly.
It is not difficult to verify that if the solution of the problem (1), (2), (3) in the sense of Definition 1 belongs to the class $C_{0}^{4,4 k+2}\left(\bar{D}_{T}, \partial D_{T}\right)$, then it will also be a classical solution of this problem.

Definition 2. Let function f satisfy the conditions (4), (5), (9) and (10); $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right) \forall T>0$. We say that the problem (1), (2), (3) is globally solvable in the class $W_{0}^{2,2 k+1}$ if for any $T>0$ this problem has at least one weak generalized solution $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$ in the sense of Definition 1.

Definition 3. Let function f satisfy the conditions (4), (5), (9) and (10); $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right) \forall T>0$. We say that the problem (1), (2), (3) is locally solvable in the class $W_{0}^{2,2 k+1}$ if there exists a number $T_{0}=T_{0}(F)$ such that for any positive $T<T_{0}$ this problem has at least one weak generalized solution $u \in W_{0}^{2,2 k+1}\left(D_{T}\right)$ in the sense of Definition 1.

It is proved that when the conditions (4), (5), (9) and (10); $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ $\forall T>0$ are fulfilled, then the problem (1), (2),(3) is locally solvable in the class $W_{0}^{2,2 k+1}$ in the sense of Definition 3, and for some additional conditions on the problem's data, in certain cases the problem (1), (2), (3) is locally solvable whereas it is not globally solvable, and in other cases we have a global solvability in the sense of Definition 2.

The case of uniqueness of the solution of this problem in D_{∞} is also considered.

