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In a plane of independent variables x and t in the half-strip D∞ : 0 < x < l, t > 0 consider the
mixed problem of finding solution u(x, t) of the linear inhomogeneous wave equation of the form

�u = f(x, t), (x, t) ∈ D∞, (1)

satisfying the following initial

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (2)

and boundary conditions

u(0, t) = µ1(t), t ≥ 0, (3)
u(l, t) = µ2(t), t ≥ 0, (4)

where f , φ, ψ, µi, i = 1, 2, are given functions and u is unknown real function, and � := ∂2

∂t2
− ∂2

∂x2 .
It is easy to see that for

f ∈ C1(D∞), φ ∈ C2([0, l]), ψ ∈ C1([0, l]), µi ∈ C2([0,∞)), i = 1, 2,

the necessary conditions for solvability of problem (1)–(4) in the class C2(D∞) are the following
second order agreement conditions

φ(0) = µ1(0), ψ(0) = µ′1(0), µ′′1(0)− φ′′(0) = f(0, 0),

φ(l) = µ2(0), ψ(l) = µ′2(0), µ′′2(0)− φ′′(l) = f(l, 0).

Let
m = m(t) :=

[ t
l

]
, t > 0,

where [·] is an integer part of a real number.
Let us divide the domain Em : 0 < x < l, ml < t < (m + 1)l, m = 0, 1, 2, . . . , which is a

quadrat with vertices in points Am(0,ml), Bm(0, (m + 1)l), Cm(l, (m + 1)l) and Dm(l,ml) into
four rectangular triangles: E1

m := ∆AmOmDm, E2
m := ∆AmOmBm, E3

m := ∆DmOmCm and
E4

m := ∆BmOmCm, where point Om( l2 , (m+ 1
2)l) is a center of the quadrat Em.

Below we get the representation of the classical solution u ∈ C2(D∞) of problem (1)–(4) in the
half-strip D∞ in the form of finite sum of addends, depending on boundary, initial values of this
solution and right-hand side of equation (1).
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First let P = P (x, t) ∈ E0. In the triangle E1
0 due to (2) and the d’Alembert’s formula, the

equality [7, p. 59]

u(x, t) = A1(φ,ψ, f)(x, t)

:=
1

2

[
φ(x− t) + φ(x+ t)

]
+

1

2

x+t∫
x−t

ψ(τ) dτ +
1

2

∫
Ω1

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E1
0 (5)

is valid, where Ω1
x,t is the triangle with vertices at the points (x, t), (x− t, 0) and (x+ t, 0).

As it is known, for any twice continuously differentiable function v and characteristic to equation
(1) rectangle PP1P2P3 from its domain of definition the equality [1, p. 173]

v(P ) = v(P1) + v(P2)− v(P3) +
1

2

∫
PP1P2P3

� v(ξ, τ) dξ dτ (6)

is valid, where P and P3, P1 and P2 are opposite vertices of this rectangle, and the ordinate of
point P is larger than those of the rest points.

Let now P ∈ E2
0 . Then, using equality (6) for characteristic rectangle with vertices at the points

P (x, t), P1(0, t − x), P2(t, x) and P3(t − x, 0), and formula (5) for point P2(t, x) ∈ E1
0 , in view of

(1) and (3) we have

u(x, t) = A2(φ,ψ, µ1, f)(x, t)

:= µ1(t− x) +
1

2

[
φ(t+ x)− φ(t− x)

]
+

1

2

t+x∫
t−x

ψ(τ) dτ +
1

2

∫
Ω2

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E2
0 . (7)

Here Ω2
x,t is the quadrangle PP ∗

2P3P1, where P ∗
2 := (t+ x, 0).

Analogously, we have

u(x, t) = A3(φ,ψ, µ2, f)(x, t) := µ2(x+ t− l)

+
1

2

[
φ(x− t)− φ(2l − x− t)

]
+

1

2

2l−x−t∫
x−t

ψ(τ) dτ +
1

2

∫
Ω3

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E3
0 , (8)

and

u(x, t) = A4(φ,ψ, µ1, µ2, f)(x, t) := µ1(t− x) + µ2(x+ t− l)

− 1

2

[
φ(t− x) + φ(2l − t− x)

]
+

1

2

2l−t−x∫
t−x

ψ(τ) dτ +
1

2

∫
Ω4

x,t

f(ξ, τ) dξ dτ, (x, t) ∈ E4
0 . (9)

Here Ω3
x,t is a quadrangle with vertices P 3(x, t), P 3

1 (l, x+ t− l), P 3
2 (x− t, 0) and P 3

3 (2l− x− t, 0),
while Ω4

x,t is a pentagon with vertices P 4(x, t), P 4
1 (0, t − x), P 4

2 (t − x, 0), P 4
3 (2l − x − t, 0) and

P 4
4 (l, x+ t− l).

If the point P0 := P0(x, t) ∈ Em, m ≥ 1, then denote by P0M1P1N1 the characteristic rectangle
with respect to equation (1), whose vertices M1 and N1 lay on the straight lines x = 0 and x = l,
respectively, i.e. M1 := (0, t− x), N1 := (l, t+ x− l), P1 := (l− x, t− l). Since P1 ∈ Em−1, then by
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analogy we can consider the characteristic rectangle P1M2P2N2, whose vertices M2 and N2 lay on
the straight lines x = 0 and x = l, respectively. Continuing this process we get the characteristic
rectangle Pi−1MiPiNi with vertices Mi and Ni, respectively, on the straight lines x = 0 and x = l,
and due to P0 ∈ Em,

Pm ∈ E0, (10)

where Pm = (l− x, t−ml) if m is odd, and Pm = (x, t−ml) if m is even. At the same time if the
point P0 ∈ E1

m(E4
m), then Pm ∈ E1

0(E
4
0) for any m, and if P0 ∈ E2

m(E3
m), then Pm ∈ E3

0(E
2
0) for

odd m and Pm ∈ E2
0(E

3
0) for even m. For the coordinates of the points Mi and Ni we have

Mi = (0, t− x− (i− 1)l), Ni = (l, t+ x− il), i = 1, 3, 5, . . . ,

Mi = (0, t+ x− il), Ni = (l, t− x− (i− 1)l), i = 2, 4, 6, ,̇.

By induction over number m it can be proved the validity of the following representation of the
solution u ∈ C2(D∞) of problem (1)–(4) in the half-strip D∞

u(P0) =

m∑
i=1

(−1)i−1

[
µ1(Mi) + µ2(Ni) +

1

2

∫
Pi−1MiPiNi

f(ξ, τ) dξ dτ

]
+ (−1)mu(Pm), P0 ∈ Em,

where due to (10) in the case of odd m

u(Pm) =


A1(φ,ψ, f)(Pm), P0 ∈ E1

m,

A3(φ,ψ, µ2, f)(Pm), P0 ∈ E2
m,

A2(φ,ψ, µ1, f)(Pm), P0 ∈ E3
m,

A4(φ,ψ, µ1, µ2, f)(Pm), P0 ∈ E4
m,

while for even m

u(Pm) =


A1(φ,ψ, f)(Pm), P0 ∈ E1

m,

A2(φ,ψ, µ1, f)(Pm), P0 ∈ E2
m,

A3(φ,ψ, µ2, f)(Pm), P0 ∈ E3
m,

A4(φ,ψ, µ1, µ2, f)(Pm), P0 ∈ E4
m.

Here the operators Ai, i = 1, 2, 3, 4 are defined by formulas (5), (7)–(9).
The obtained representation will unconditionally find application during a study of other initial-

boundary value problems both for linear and nonlinear hyperbolic equations and systems. Let us
note that other representations of the solution of problem (1)–(4) in the form of infinite series are
given in [1–9].
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