Representation of the Solution of the Inhomogeneous Wave Equation in a Half-Strip in the Form of Finite Sum of Addends, Depending on Boundary, Initial Values of the Solution and Right-Hand Side of the Equation

Otar Jokhadze, Sergo Kharibegashvili
A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia
E-mails: ojokhadze@yahoo.com; kharibegashvili@yahoo.com

In a plane of independent variables x and t in the half-strip $D_{\infty}: 0<x<l, t>0$ consider the mixed problem of finding solution $u(x, t)$ of the linear inhomogeneous wave equation of the form

$$
\begin{equation*}
\square u=f(x, t), \quad(x, t) \in D_{\infty}, \tag{1}
\end{equation*}
$$

satisfying the following initial

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad 0 \leq x \leq l, \tag{2}
\end{equation*}
$$

and boundary conditions

$$
\begin{align*}
& u(0, t)=\mu_{1}(t), \quad t \geq 0, \tag{3}\\
& u(l, t)=\mu_{2}(t), \quad t \geq 0, \tag{4}
\end{align*}
$$

where $f, \varphi, \psi, \mu_{i}, i=1,2$, are given functions and u is unknown real function, and $\square:=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}$.
It is easy to see that for

$$
f \in C^{1}\left(\bar{D}_{\infty}\right), \quad \varphi \in C^{2}([0, l]), \quad \psi \in C^{1}([0, l]), \quad \mu_{i} \in C^{2}([0, \infty)), \quad i=1,2,
$$

the necessary conditions for solvability of problem (1)-(4) in the class $C^{2}\left(\bar{D}_{\infty}\right)$ are the following second order agreement conditions

$$
\begin{aligned}
\varphi(0) & =\mu_{1}(0), & \psi(0) & =\mu_{1}^{\prime}(0),
\end{aligned} \mu_{1}^{\prime \prime}(0)-\varphi^{\prime \prime}(0)=f(0,0), ~ 子(l)=\mu_{2}(0), \quad \psi(l)=\mu_{2}^{\prime}(0), \quad \mu_{2}^{\prime \prime}(0)-\varphi^{\prime \prime}(l)=f(l, 0) . ~ \$
$$

Let

$$
m=m(t):=\left[\begin{array}{l}
t \\
\bar{l}
\end{array}\right], \quad t>0
$$

where [•] is an integer part of a real number.
Let us divide the domain $E_{m}: 0<x<l, m l<t<(m+1) l, m=0,1,2, \ldots$, which is a quadrat with vertices in points $A_{m}(0, m l), B_{m}(0,(m+1) l), C_{m}(l,(m+1) l)$ and $D_{m}(l, m l)$ into four rectangular triangles: $E_{m}^{1}:=\Delta A_{m} O_{m} D_{m}, E_{m}^{2}:=\Delta A_{m} O_{m} B_{m}, E_{m}^{3}:=\Delta D_{m} O_{m} C_{m}$ and $E_{m}^{4}:=\Delta B_{m} O_{m} C_{m}$, where point $O_{m}\left(\frac{l}{2},\left(m+\frac{1}{2}\right) l\right)$ is a center of the quadrat E_{m}.

Below we get the representation of the classical solution $u \in C^{2}\left(\bar{D}_{\infty}\right)$ of problem (1)-(4) in the half-strip D_{∞} in the form of finite sum of addends, depending on boundary, initial values of this solution and right-hand side of equation (1).

First let $P=P(x, t) \in E_{0}$. In the triangle E_{0}^{1} due to (2) and the d'Alembert's formula, the equality [7, p. 59]

$$
\begin{align*}
u(x, t)=A_{1}(\varphi, \psi & , f)(x, t) \\
& :=\frac{1}{2}[\varphi(x-t)+\varphi(x+t)]+\frac{1}{2} \int_{x-t}^{x+t} \psi(\tau) d \tau+\frac{1}{2} \int_{\Omega_{x, t}^{1}} f(\xi, \tau) d \xi d \tau, \quad(x, t) \in E_{0}^{1} \tag{5}
\end{align*}
$$

is valid, where $\Omega_{x, t}^{1}$ is the triangle with vertices at the points $(x, t),(x-t, 0)$ and $(x+t, 0)$.
As it is known, for any twice continuously differentiable function v and characteristic to equation (1) rectangle $P P_{1} P_{2} P_{3}$ from its domain of definition the equality [1, p. 173]

$$
\begin{equation*}
v(P)=v\left(P_{1}\right)+v\left(P_{2}\right)-v\left(P_{3}\right)+\frac{1}{2} \int_{P P_{1} P_{2} P_{3}} \square v(\xi, \tau) d \xi d \tau \tag{6}
\end{equation*}
$$

is valid, where P and P_{3}, P_{1} and P_{2} are opposite vertices of this rectangle, and the ordinate of point P is larger than those of the rest points.

Let now $P \in E_{0}^{2}$. Then, using equality (6) for characteristic rectangle with vertices at the points $P(x, t), P_{1}(0, t-x), P_{2}(t, x)$ and $P_{3}(t-x, 0)$, and formula (5) for point $P_{2}(t, x) \in E_{0}^{1}$, in view of (1) and (3) we have

$$
\begin{align*}
& u(x, t)=A_{2}\left(\varphi, \psi, \mu_{1}, f\right)(x, t) \\
& \quad:=\mu_{1}(t-x)+\frac{1}{2}[\varphi(t+x)-\varphi(t-x)]+\frac{1}{2} \int_{t-x}^{t+x} \psi(\tau) d \tau+\frac{1}{2} \int_{\Omega_{x, t}^{2}} f(\xi, \tau) d \xi d \tau, \quad(x, t) \in E_{0}^{2} \tag{7}
\end{align*}
$$

Here $\Omega_{x, t}^{2}$ is the quadrangle $P P_{2}^{*} P_{3} P_{1}$, where $P_{2}^{*}:=(t+x, 0)$.
Analogously, we have

$$
\begin{align*}
u(x, t)= & A_{3}\left(\varphi, \psi, \mu_{2}, f\right)(x, t):=\mu_{2}(x+t-l) \\
& +\frac{1}{2}[\varphi(x-t)-\varphi(2 l-x-t)]+\frac{1}{2} \int_{x-t}^{2 l-x-t} \psi(\tau) d \tau+\frac{1}{2} \int_{\Omega_{x, t}^{3}} f(\xi, \tau) d \xi d \tau, \quad(x, t) \in E_{0}^{3} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
u(x, t)= & A_{4}\left(\varphi, \psi, \mu_{1}, \mu_{2}, f\right)(x, t):=\mu_{1}(t-x)+\mu_{2}(x+t-l) \\
& -\frac{1}{2}[\varphi(t-x)+\varphi(2 l-t-x)]+\frac{1}{2} \int_{t-x}^{2 l-t-x} \psi(\tau) d \tau+\frac{1}{2} \int_{\Omega_{x, t}^{4}} f(\xi, \tau) d \xi d \tau, \quad(x, t) \in E_{0}^{4} \tag{9}
\end{align*}
$$

Here $\Omega_{x, t}^{3}$ is a quadrangle with vertices $P^{3}(x, t), P_{1}^{3}(l, x+t-l), P_{2}^{3}(x-t, 0)$ and $P_{3}^{3}(2 l-x-t, 0)$, while $\Omega_{x, t}^{4}$ is a pentagon with vertices $P^{4}(x, t), P_{1}^{4}(0, t-x), P_{2}^{4}(t-x, 0), P_{3}^{4}(2 l-x-t, 0)$ and $P_{4}^{4}(l, x+t-l)$.

If the point $P_{0}:=P_{0}(x, t) \in E_{m}, m \geq 1$, then denote by $P_{0} M_{1} P_{1} N_{1}$ the characteristic rectangle with respect to equation (1), whose vertices M_{1} and N_{1} lay on the straight lines $x=0$ and $x=l$, respectively, i.e. $M_{1}:=(0, t-x), N_{1}:=(l, t+x-l), P_{1}:=(l-x, t-l)$. Since $P_{1} \in E_{m-1}$, then by
analogy we can consider the characteristic rectangle $P_{1} M_{2} P_{2} N_{2}$, whose vertices M_{2} and N_{2} lay on the straight lines $x=0$ and $x=l$, respectively. Continuing this process we get the characteristic rectangle $P_{i-1} M_{i} P_{i} N_{i}$ with vertices M_{i} and N_{i}, respectively, on the straight lines $x=0$ and $x=l$, and due to $P_{0} \in E_{m}$,

$$
\begin{equation*}
P_{m} \in E_{0}, \tag{10}
\end{equation*}
$$

where $P_{m}=(l-x, t-m l)$ if m is odd, and $P_{m}=(x, t-m l)$ if m is even. At the same time if the point $P_{0} \in E_{m}^{1}\left(E_{m}^{4}\right)$, then $P_{m} \in E_{0}^{1}\left(E_{0}^{4}\right)$ for any m, and if $P_{0} \in E_{m}^{2}\left(E_{m}^{3}\right)$, then $P_{m} \in E_{0}^{3}\left(E_{0}^{2}\right)$ for odd m and $P_{m} \in E_{0}^{2}\left(E_{0}^{3}\right)$ for even m. For the coordinates of the points M_{i} and N_{i} we have

$$
\begin{gathered}
M_{i}=(0, t-x-(i-1) l), \quad N_{i}=(l, t+x-i l), \quad i=1,3,5, \ldots, \\
M_{i}=(0, t+x-i l), \quad N_{i}=(l, t-x-(i-1) l), \quad i=2,4,6,
\end{gathered}
$$

By induction over number m it can be proved the validity of the following representation of the solution $u \in C^{2}\left(\bar{D}_{\infty}\right)$ of problem (1)-(4) in the half-strip D_{∞}

$$
u\left(P_{0}\right)=\sum_{i=1}^{m}(-1)^{i-1}\left[\mu_{1}\left(M_{i}\right)+\mu_{2}\left(N_{i}\right)+\frac{1}{2} \int_{P_{i-1} M_{i} P_{i} N_{i}} f(\xi, \tau) d \xi d \tau\right]+(-1)^{m} u\left(P_{m}\right), \quad P_{0} \in E_{m}
$$

where due to (10) in the case of odd m

$$
u\left(P_{m}\right)= \begin{cases}A_{1}(\varphi, \psi, f)\left(P_{m}\right), & P_{0} \in E_{m}^{1} \\ A_{3}\left(\varphi, \psi, \mu_{2}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{2} \\ A_{2}\left(\varphi, \psi, \mu_{1}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{3} \\ A_{4}\left(\varphi, \psi, \mu_{1}, \mu_{2}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{4}\end{cases}
$$

while for even m

$$
u\left(P_{m}\right)= \begin{cases}A_{1}(\varphi, \psi, f)\left(P_{m}\right), & P_{0} \in E_{m}^{1} \\ A_{2}\left(\varphi, \psi, \mu_{1}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{2} \\ A_{3}\left(\varphi, \psi, \mu_{2}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{3} \\ A_{4}\left(\varphi, \psi, \mu_{1}, \mu_{2}, f\right)\left(P_{m}\right), & P_{0} \in E_{m}^{4}\end{cases}
$$

Here the operators $A_{i}, i=1,2,3,4$ are defined by formulas (5), (7)-(9).
The obtained representation will unconditionally find application during a study of other initialboundary value problems both for linear and nonlinear hyperbolic equations and systems. Let us note that other representations of the solution of problem (1)-(4) in the form of infinite series are given in [1-9].

References

[1] A. V. Bitsadze, Equations of Mathematical Physics. (Russian) Second edition. "Nauka", Moscow, 1982.
[2] A. V. Bitsadze and D. F. Kalinichenko, Collection of Problems on the Equations of Mathematical Physics. (Russian) Second edition. "Nauka", Moscow, 1985.
[3] B. M. Budak, A. A. Samarskii and A. N. Tikhonov, Problems in Mathematical Physics. (Russian) Nauka, Moscow, 1979.
[4] N. S. Koshlyakov, E. B. Gliner and M. M. Smirnov, Equations in Partial Derivatives of Mathematical Physics. (Russian) Vysshaya Shkola, Moscow, 1970..
[5] R. Kurant, Partial Differential Equations. (Russian) Translated from the English by T. D. Ventcel'; edited by O. A. Oleǐni k Izdat. "Mir", Moscow, 1964.
[6] M. M. Smirnov, Problems on the Equations of Mathematical Physics. (Russian) Sixth edition, supplemented. Izdat. "Nauka", Moscow, 1975.
[7] A. N. Tikhonov and A. A. Samarskiǐ, The Equations of Mathematical Physics. (Russian) Izdat. "Nauka", Moscow, 1977.
[8] V. S. Vladimirov, The Equations of Mathematical Physics. (Russian) Fourth edition. "Nauka", Moscow, 1981.
[9] V. S. Vladimirov, A. A. Vasharin, H. H. Karimova, V. P. Mikhailov, U. V. Sidorov and M. I. Shabunin, Problems on the Equations of Mathematical Physics. (Russian) Phyzmatlit, Moscow, 2003.

