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Systems of nonlinear partial differential equations are describing many real processes. The
present note is devoted to one of such mathematical model arising in the investigation of the vein
formation in leaves of higher plants and is represented as the two-dimensional nonlinear partial
differential system [7]:
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where U = U(x, y, t), V = V (x, y, t), W = W (x, y, t) are unknown functions defined on the domain
Q = Ω × [0, T ] = [0, 1] × [0, 1] × [0, T ], T = Const > 0 and G, H are known functions of their
arguments.

In Q we consider initial-boundary value problems for (1) and for the following parabolic type
regularization of system (1):
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with the first type boundary conditions for U , Uε and the second type boundary conditions for Vε

and Wε. In (2) we assume that ε = Const > 0.
Some properties of the solutions of initial-boundary problems for systems (1) and (2) are studied.
The convergence of the solution of initial-boundary value problem of the regularized system (2)

as ε → 0 to corresponding solution of model (1) in the norm of the space L2(Ω) is discussed.
For building approximate solutions of considered problems two different approaches are used.

Both belong to the so-called decomposition methods [8]. The first approach is a decomposition
method based on the variable directions difference scheme [1] and the second approach is based on
averaged model [8]. The stability and convergence of these schemes are analyzed.

The one-dimensional (1) type system at first has been investigated in [2] and multi-dimensional
one in [3,4]. For a brief overview of some research devoted to (1), (2), and relative models we refer
to the papers [5, 6].
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