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Consider a second-order ordinary differential equation of the form

u′′ +
g(t)

uλ
= h(t)uδ + µf(t), (1)

where g, h, f ∈ L(R/TZ), g(t) ≥ 0 for a.e. t ∈ R, g > 0, h < 0, f > 0, λ > 0, δ ∈ (0, 1), and µ ≥ 0
is a parameter.

Throughout we use the following notation.

• C(R/TZ) is a Banach space of T -periodic continuous functions u : R → R endowed with a
norm ∥u∥C = max{|u(t)| : t ∈ [0, T ]}.

• AC1(R/TZ) is a set of T -periodic functions u : R → R such that u and u′ are absolutely
continuous.

• Lp(R/TZ) (p ≥ 1) is a Banach space of T -periodic functions h : R → R that are integrable
with the p-th power on the interval [0, T ] endowed with a norm

∥h∥p =
( T∫

0

|h(s)|p ds
)1/p

.

We write L(R/TZ) instead of L1(R/TZ).

• [x]+ = 1
2 (|x|+ x), [x]− = 1

2 (|x| − x).

• If h ∈ L(R/TZ) then h = 1
T

T∫
0

h(s) ds.
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By a T -periodic solution to (1) we understand a function u ∈ AC1(R/TZ) which is positive and
satisfies the equality (1) for almost every t ∈ R.

Theorem 1. Let [h]+, [f ]+ ∈ Lp(R/TZ) with p ≥ 1. Let, moreover, there exist φ ∈ Lq(R/TZ)
(q ≥ 1) such that1

[h]+(t) + [f ]+(t) ≤ φ(t)g
q−1
q (t) for a.e. t ∈ R

and let

lim
x→t+

t+T/2∫
x

g(s)

(s− t)
λ(2p−1)q

p

ds+ lim
x→t−

x+T∫
t+T/2

g(s)

(t+ T − s)
λ(2p−1)q

p

ds = +∞

be fulfilled for every t ∈ R. Then there exist µ∗ ≥ µ∗ > 0 such that

• Eq. (1) has at least two T -periodic solutions provided µ > µ∗;

• Eq. (1) has at least one T -periodic solution provided µ = µ∗;

• Eq. (1) has no T -periodic solution provided µ ∈ [0, µ∗).

Remark. In the case when h(t) ≤ 0 for a. e. t ∈ R it can be proved that the numbers µ∗ and µ∗
appearing in Theorem 1 coincide.

Before we pass to the proof of Theorem 1, we introduce some definitions and notation.

Definition 1. We say that α, β ∈ AC1(R/TZ) are, respectively, lower and upper functions to the
T -periodic problem for (1), if they are positive and

α′′(t) +
g(t)

αλ(t)
≥ h(t)αδ(t) + µf(t) for a.e. t ∈ R,

resp.
β′′(t) +

g(t)

βλ(t)
≤ h(t)βδ(t) + µf(t) for a.e. t ∈ R.

Definition 2. We say that a lower function α and an upper function β to the T -periodic problem
for (1) are well-ordered if

α(t) ≤ β(t) for t ∈ R.

Definition 3. We say that a lower function α, resp. an upper function β to the T -periodic problem
for (1) is strict if the inequality

α(t) ≤ u(t), resp. u(t) ≤ β(t) for t ∈ R

implies
α(t) < u(t), resp. u(t) < β(t) for t ∈ R

provided u is a T -periodic solution to (1).

Notation. We will write α(t;µ), β(t;µ), or u(t;µ) to emphasize that the lower function α, the
upper function β, or the solution u to the T -periodic problem for (1) corresponds to the particular
parameter µ.

Sketch of the proof of Theorem 1. First we show that every T -periodic solution u to (1) is bounded
from above. In particular, the following assertion holds.

1If q = 1 then we put g
q−1
q (t) = 1 for t ∈ R.
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Lemma 1. There exists a non-decreasing function ρ : R+ → R+ such that for every µ > 0 we have

u(t;µ) < ρ(µ)

provided u is a T -periodic solution to (1).

A condition δ > 0 is essential in the proof of Lemma 1. The next step is a construction of
well-ordered strict lower and upper functions to the T -periodic problem for (1).

Lemma 2. Let the assumptions of Theorem 1 be fulfilled. Then for every µ > 0 there exists a
strict lower function α to the T -periodic problem for (1). Moreover,

α(t;µ) < u(t;µ) for t ∈ R, µ > 0

whenever u is a T -periodic solution to (1).

An important property of the lower functions α(t;µ) appearing in Lemma 2 is that they are
constructed in such a way that

α(t;µ1) ≤ α(t;µ2) for t ∈ R whenever µ1 ≥ µ2.

Lemma 3. For every µ sufficiently large there exists a strict upper function β to the T -periodic
problem for (1) such that

α(t;µ) < β(t;µ) < ρ(µ) for t ∈ R,

where ρ, resp. α are functions appearing in Lemma 1, resp. Lemma 2.

Now the condition δ < 1 is essential in construction of the upper functions β in Lemma 3.

The next step is obvious – for sufficiently large µ we have constructed well-ordered lower and
upper functions α and β. Therefore there exists at least one T -periodic solution u to (1) between
them. Moreover, since α and β are strict, we have

α(t;µ) < u(t;µ) < β(t;µ) for t ∈ R, µ sufficiently large.

Furthermore, if we rewrite T -periodic problem for (1) in an equivalent operator form

u = Mµ[u]

then it follows that the Leray-Schauder degree of the operator I −Mµ over the set

Ωµ
def
=

{
x ∈ C(R/TZ) : α(t;µ) < x(t) < β(t;µ) for t ∈ R

}
is different from zero. More precisley,

dLS(I −Mµ,Ωµ, 0) = 1 for µ sufficiently large. (2)

Thus we have proved the existence of at least one T -periodic solution to (1) in Ωµ (for every µ
sufficiently large), and have established the relation (2).

On the other hand, the following assertion holds.

Lemma 4. Let the assumptions of Theorem 1 be fulfilled. Then there exists µ∗ > 0 such that there
is no T -periodic solution to (1) with µ ∈ [0, µ∗).
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For every µ > 0 we define a set

Ψµ
def
=

{
x ∈ C(R/TZ) : α(t;µ) < x(t) < ρ(µ) for t ∈ R

}
.

Let µ0 be arbitrary but fixed and let, moreover, it be sufficiently large such that

dLS(I −Mµ0 ,Ωµ0 , 0) = 1.

Then, according to Lemma 4 we have

dLS(I −Mµ,Ψµ0 , 0) = 0 for µ ∈ [0, µ∗).

Furthermore, due to the fact that ρ is non-decreasing and α is non-increasing with respect to µ,
from Lemmas 1 and 2 it follows that there is no T -periodic solution to (1) on ∂Ψµ0 for µ ∈ [µ∗, µ0].
Consequently,

dLS(I −Mµ0 ,Ψµ0 , 0) = 0.

Now, in view of Lemma 3 we have Ωµ0 ( Ψµ0 , and so the additive property of the Leray-Schauder
degree results in

dLS(I −Mµ0 ,Ψµ0 \ Ωµ0 , 0) = −1,

i.e., there is another T -periodic solution to (1) in Ψµ0 \ Ωµ0 .
Now define

A
def
=

{
τ > 0 : Eq. (1) has at least two T -periodic solutions for every µ ≥ τ

}
.

Obviously, on account of the above-proven, the set A is nonempty. Moreover, according to Lemma 4,
the set A is bounded from below by µ∗. Put

µ∗ def
= inf A,

and let {µn}+∞
n=1 be a sequence of parameters such that

µn > µ∗ and lim
n→+∞

µn = µ∗.

Obviously, there exist a sequence of T -periodic solutions {u( · ;µn)}+∞
n=1 to (1) (with µ = µn). In

addition, with respect to Lemmas 1 and 2, this sequence of solutions is uniformly bounded and
equicontinuous. Thus, by standard arguments one can prove that there exists also at least one
T -periodic solution to (1) with µ = µ∗. Now the sketch of the proof of Theorem 1 is complete.


