Existence and Multiplicity of Periodic Solutions to Second-Order Differential Equations with Attractive Singularities

José Godoy
Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic; Departamento de Matemáticas, Universidad del Bío-Bio, Concepción, Chile
E-mail: jgodoy@ubiobio.cl

R. Hakl

Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic
E-mail: hakl@ipm.cz

Xingchen Yu

Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic;
School of Mathematics and Statistics, Nanjing University of Information Science and Technology
Nanjing, China
E-mail: yuxingchen0@yeah.net

Consider a second-order ordinary differential equation of the form

$$
\begin{equation*}
u^{\prime \prime}+\frac{g(t)}{u^{\lambda}}=h(t) u^{\delta}+\mu f(t) \tag{1}
\end{equation*}
$$

where $g, h, f \in L(\mathbb{R} / T \mathbb{Z}), g(t) \geq 0$ for a.e. $t \in \mathbb{R}, \bar{g}>0, \bar{h}<0, \bar{f}>0, \lambda>0, \delta \in(0,1)$, and $\mu \geq 0$ is a parameter.

Throughout we use the following notation.

- $C(\mathbb{R} / T \mathbb{Z})$ is a Banach space of T-periodic continuous functions $u: \mathbb{R} \rightarrow \mathbb{R}$ endowed with a norm $\|u\|_{C}=\max \{|u(t)|: t \in[0, T]\}$.
- $A C^{1}(\mathbb{R} / T \mathbb{Z})$ is a set of T-periodic functions $u: \mathbb{R} \rightarrow \mathbb{R}$ such that u and u^{\prime} are absolutely continuous.
- $L^{p}(\mathbb{R} / T \mathbb{Z})(p \geq 1)$ is a Banach space of T-periodic functions $h: \mathbb{R} \rightarrow \mathbb{R}$ that are integrable with the p-th power on the interval $[0, T]$ endowed with a norm

$$
\|h\|_{p}=\left(\int_{0}^{T}|h(s)|^{p} d s\right)^{1 / p}
$$

We write $L(\mathbb{R} / T \mathbb{Z})$ instead of $L^{1}(\mathbb{R} / T \mathbb{Z})$.

- $[x]_{+}=\frac{1}{2}(|x|+x),[x]_{-}=\frac{1}{2}(|x|-x)$.
- If $h \in L(\mathbb{R} / T \mathbb{Z})$ then $\bar{h}=\frac{1}{T} \int_{0}^{T} h(s) d s$.

By a T-periodic solution to (1) we understand a function $u \in A C^{1}(\mathbb{R} / T \mathbb{Z})$ which is positive and satisfies the equality (1) for almost every $t \in \mathbb{R}$.

Theorem 1. Let $[h]_{+},[f]_{+} \in L^{p}(\mathbb{R} / T \mathbb{Z})$ with $p \geq 1$. Let, moreover, there exist $\varphi \in L^{q}(\mathbb{R} / T \mathbb{Z})$ ($q \geq 1$) such that ${ }^{1}$

$$
[h]_{+}(t)+[f]_{+}(t) \leq \varphi(t) g^{\frac{q-1}{q}}(t) \text { for a.e. } t \in \mathbb{R}
$$

and let

$$
\lim _{x \rightarrow t_{+}} \int_{x}^{t+T / 2} \frac{g(s)}{(s-t)^{\frac{\lambda(2 p-1) q}{p}}} d s+\lim _{x \rightarrow t_{-}} \int_{t+T / 2}^{x+T} \frac{g(s)}{(t+T-s)^{\frac{\lambda(2 p-1) q}{p}}} d s=+\infty
$$

be fulfilled for every $t \in \mathbb{R}$. Then there exist $\mu^{*} \geq \mu_{*}>0$ such that

- Eq. (1) has at least two T-periodic solutions provided $\mu>\mu^{*}$;
- Eq. (1) has at least one T-periodic solution provided $\mu=\mu^{*}$;
- Eq. (1) has no T-periodic solution provided $\mu \in\left[0, \mu_{*}\right)$.

Remark. In the case when $h(t) \leq 0$ for a. e. $t \in \mathbb{R}$ it can be proved that the numbers μ^{*} and μ_{*} appearing in Theorem 1 coincide.

Before we pass to the proof of Theorem 1, we introduce some definitions and notation.
Definition 1. We say that $\alpha, \beta \in A C^{1}(\mathbb{R} / T \mathbb{Z})$ are, respectively, lower and upper functions to the T-periodic problem for (1), if they are positive and

$$
\alpha^{\prime \prime}(t)+\frac{g(t)}{\alpha^{\lambda}(t)} \geq h(t) \alpha^{\delta}(t)+\mu f(t) \text { for a.e. } t \in \mathbb{R},
$$

resp.

$$
\beta^{\prime \prime}(t)+\frac{g(t)}{\beta^{\lambda}(t)} \leq h(t) \beta^{\delta}(t)+\mu f(t) \text { for a.e. } t \in \mathbb{R}
$$

Definition 2. We say that a lower function α and an upper function β to the T-periodic problem for (1) are well-ordered if

$$
\alpha(t) \leq \beta(t) \text { for } t \in \mathbb{R} .
$$

Definition 3. We say that a lower function α, resp. an upper function β to the T-periodic problem for (1) is strict if the inequality

$$
\alpha(t) \leq u(t), \text { resp. } u(t) \leq \beta(t) \text { for } t \in \mathbb{R}
$$

implies

$$
\alpha(t)<u(t), \text { resp. } u(t)<\beta(t) \text { for } t \in \mathbb{R}
$$

provided u is a T-periodic solution to (1).
Notation. We will write $\alpha(t ; \mu), \beta(t ; \mu)$, or $u(t ; \mu)$ to emphasize that the lower function α, the upper function β, or the solution u to the T-periodic problem for (1) corresponds to the particular parameter μ.

Sketch of the proof of Theorem 1. First we show that every T-periodic solution u to (1) is bounded from above. In particular, the following assertion holds.

[^0]Lemma 1. There exists a non-decreasing function $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for every $\mu>0$ we have

$$
u(t ; \mu)<\rho(\mu)
$$

provided u is a T-periodic solution to (1).
A condition $\delta>0$ is essential in the proof of Lemma 1. The next step is a construction of well-ordered strict lower and upper functions to the T-periodic problem for (1).

Lemma 2. Let the assumptions of Theorem 1 be fulfilled. Then for every $\mu>0$ there exists a strict lower function α to the T-periodic problem for (1). Moreover,

$$
\alpha(t ; \mu)<u(t ; \mu) \text { for } t \in \mathbb{R}, \quad \mu>0
$$

whenever u is a T-periodic solution to (1).
An important property of the lower functions $\alpha(t ; \mu)$ appearing in Lemma 2 is that they are constructed in such a way that

$$
\alpha\left(t ; \mu_{1}\right) \leq \alpha\left(t ; \mu_{2}\right) \text { for } t \in \mathbb{R} \text { whenever } \mu_{1} \geq \mu_{2}
$$

Lemma 3. For every μ sufficiently large there exists a strict upper function β to the T-periodic problem for (1) such that

$$
\alpha(t ; \mu)<\beta(t ; \mu)<\rho(\mu) \text { for } t \in \mathbb{R}
$$

where ρ, resp. α are functions appearing in Lemma 1, resp. Lemma 2.
Now the condition $\delta<1$ is essential in construction of the upper functions β in Lemma 3.
The next step is obvious - for sufficiently large μ we have constructed well-ordered lower and upper functions α and β. Therefore there exists at least one T-periodic solution u to (1) between them. Moreover, since α and β are strict, we have

$$
\alpha(t ; \mu)<u(t ; \mu)<\beta(t ; \mu) \text { for } t \in \mathbb{R}, \quad \mu \text { sufficiently large. }
$$

Furthermore, if we rewrite T-periodic problem for (1) in an equivalent operator form

$$
u=M_{\mu}[u]
$$

then it follows that the Leray-Schauder degree of the operator $I-M_{\mu}$ over the set

$$
\Omega_{\mu} \stackrel{\text { def }}{=}\{x \in C(\mathbb{R} / T \mathbb{Z}): \alpha(t ; \mu)<x(t)<\beta(t ; \mu) \text { for } t \in \mathbb{R}\}
$$

is different from zero. More precisley,

$$
\begin{equation*}
d_{L S}\left(I-M_{\mu}, \Omega_{\mu}, 0\right)=1 \text { for } \mu \text { sufficiently large. } \tag{2}
\end{equation*}
$$

Thus we have proved the existence of at least one T-periodic solution to (1) in Ω_{μ} (for every μ sufficiently large), and have established the relation (2).

On the other hand, the following assertion holds.
Lemma 4. Let the assumptions of Theorem 1 be fulfilled. Then there exists $\mu_{*}>0$ such that there is no T-periodic solution to (1) with $\mu \in\left[0, \mu_{*}\right)$.

For every $\mu>0$ we define a set

$$
\Psi_{\mu} \stackrel{\text { def }}{=}\{x \in C(\mathbb{R} / T \mathbb{Z}): \alpha(t ; \mu)<x(t)<\rho(\mu) \text { for } t \in \mathbb{R}\}
$$

Let μ_{0} be arbitrary but fixed and let, moreover, it be sufficiently large such that

$$
d_{L S}\left(I-M_{\mu_{0}}, \Omega_{\mu_{0}}, 0\right)=1
$$

Then, according to Lemma 4 we have

$$
d_{L S}\left(I-M_{\mu}, \Psi_{\mu_{0}}, 0\right)=0 \text { for } \mu \in\left[0, \mu_{*}\right)
$$

Furthermore, due to the fact that ρ is non-decreasing and α is non-increasing with respect to μ, from Lemmas 1 and 2 it follows that there is no T-periodic solution to (1) on $\partial \Psi_{\mu_{0}}$ for $\mu \in\left[\mu_{*}, \mu_{0}\right]$. Consequently,

$$
d_{L S}\left(I-M_{\mu_{0}}, \Psi_{\mu_{0}}, 0\right)=0
$$

Now, in view of Lemma 3 we have $\Omega_{\mu_{0}} \subsetneq \Psi_{\mu_{0}}$, and so the additive property of the Leray-Schauder degree results in

$$
d_{L S}\left(I-M_{\mu_{0}}, \Psi_{\mu_{0}} \backslash \Omega_{\mu_{0}}, 0\right)=-1
$$

i.e., there is another T-periodic solution to (1) in $\Psi_{\mu_{0}} \backslash \Omega_{\mu_{0}}$.

Now define

$$
A \stackrel{\text { def }}{=}\{\tau>0: \text { Eq. (1) has at least two } T \text {-periodic solutions for every } \mu \geq \tau\}
$$

Obviously, on account of the above-proven, the set A is nonempty. Moreover, according to Lemma 4, the set A is bounded from below by μ_{*}. Put

$$
\mu^{*} \stackrel{\text { def }}{=} \inf A
$$

and let $\left\{\mu_{n}\right\}_{n=1}^{+\infty}$ be a sequence of parameters such that

$$
\mu_{n}>\mu^{*} \text { and } \lim _{n \rightarrow+\infty} \mu_{n}=\mu^{*}
$$

Obviously, there exist a sequence of T-periodic solutions $\left\{u\left(\cdot ; \mu_{n}\right)\right\}_{n=1}^{+\infty}$ to (1) (with $\left.\mu=\mu_{n}\right)$. In addition, with respect to Lemmas 1 and 2, this sequence of solutions is uniformly bounded and equicontinuous. Thus, by standard arguments one can prove that there exists also at least one T-periodic solution to (1) with $\mu=\mu^{*}$. Now the sketch of the proof of Theorem 1 is complete.

[^0]: ${ }^{1}$ If $q=1$ then we put $g^{\frac{q-1}{q}}(t)=1$ for $t \in \mathbb{R}$.

