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Consider a second-order ordinary differential equation of the form

o+ 2 a4 s (), 1)

where g, h, f € L(R/TZ), g(t) >0 forae. tc R, g>0,h<0, f>0,A>0,5€(0,1),and u >0
is a parameter.
Throughout we use the following notation.

o C(R/TZ) is a Banach space of T-periodic continuous functions u : R — R endowed with a
norm |jul|c = max{|u(t)| : ¢t € [0,T]}.

o ACYHR/TZ) is a set of T-periodic functions u : R — R such that u and u’ are absolutely
continuous.

o« LP(R/TZ) (p > 1) is a Banach space of T-periodic functions i : R — R that are integrable
with the p-th power on the interval [0, 7] endowed with a norm

nmu=<jmwww§”5
0

We write L(R/TZ) instead of L'(R/T7Z).

o [a+ =5 (2] +2), [2]- = 5 (J2] - 2).

T
o If he L(R/TZ) then h = % [ h(s)ds.
0
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By a T-periodic solution to (1) we understand a function u € AC'(R/TZ) which is positive and
satisfies the equality (1) for almost every ¢ € R.

Theorem 1. Let [h]+,[f]+ € LP(R/TZ) with p > 1. Let, moreover, there exist p € LI(R/TZ)
(¢ > 1) such that!

g—1

(A4 (1) + [Fl+(8) < p(t)g @ (t) fora.e. teR

and let
t4+T/2 z+T

: 9(s) .
$]i)r?+ A(2p—1)g ds + xlgg A(2p—1)q
o (s— P T2 (t+T—s) »

be fulfilled for every t € R. Then there exist u* > . > 0 such that
e Eq. (1) has at least two T-periodic solutions provided p > p*;
e Eq. (1) has at least one T-periodic solution provided p = p*;
e Eq. (1) has no T-periodic solution provided p € [0, ).

Remark. In the case when h(t) <0 for a. e. t € R it can be proved that the numbers p* and f.
appearing in Theorem 1 coincide.

Before we pass to the proof of Theorem 1, we introduce some definitions and notation.

Definition 1. We say that o, 3 € AC(R/TZ) are, respectively, lower and upper functions to the
T-periodic problem for (1), if they are positive and

> h(t)a® (t) + pf(t) for ae. teR,

resp.

g(t)
BA(t)
Definition 2. We say that a lower function « and an upper function S to the T-periodic problem
for (1) are well-ordered if

B"(t) + < h(t)B°(t) + puf(t) for ae. t € R.

a(t) < B(t) for t € R.

Definition 3. We say that a lower function «, resp. an upper function 5 to the T-periodic problem
for (1) is strict if the inequality

a(t) <wu(t), resp. u(t) < B(t) for t € R

implies
a(t) <wu(t), resp. u(t) < p(t) for t e R

provided u is a T-periodic solution to (1).

Notation. We will write «(t; u), B(t; 1), or u(t; ) to emphasize that the lower function «, the
upper function (3, or the solution u to the T-periodic problem for (1) corresponds to the particular
parameter u.

Sketch of the proof of Theorem 1. First we show that every T-periodic solution u to (1) is bounded
from above. In particular, the following assertion holds.

—1
f ¢ = 1 then we put qu(t) =1forteR.
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Lemma 1. There exists a non-decreasing function p : Ry — Ry such that for every p > 0 we have

u(t; p) < p(p)
provided u is a T-periodic solution to (1).

A condition § > 0 is essential in the proof of Lemma 1. The next step is a construction of
well-ordered strict lower and upper functions to the T-periodic problem for (1).

Lemma 2. Let the assumptions of Theorem 1 be fulfilled. Then for every p > 0 there exists a
strict lower function « to the T-periodic problem for (1). Moreover,

alt;p) <u(t;u) for teR, p>0
whenever u is a T-periodic solution to (1).

An important property of the lower functions a(t; ) appearing in Lemma 2 is that they are
constructed in such a way that

at; ) < aft; pe) for t € R whenever pg > po.

Lemma 3. For every p sufficiently large there exists a strict upper function 8 to the T-periodic
problem for (1) such that

altyp) < Bt u) < p(u) for t €R,

where p, resp. « are functions appearing in Lemma 1, resp. Lemma 2.

Now the condition § < 1 is essential in construction of the upper functions g in Lemma 3.

The next step is obvious — for sufficiently large u we have constructed well-ordered lower and
upper functions o and . Therefore there exists at least one T-periodic solution u to (1) between
them. Moreover, since « and § are strict, we have

alt;p) <u(t;p) < B(t;u) for t € R, u sufficiently large.
Furthermore, if we rewrite T-periodic problem for (1) in an equivalent operator form
u = M[u]

then it follows that the Leray-Schauder degree of the operator I — M, over the set

0, Y {2 € CR/TZ) : alt;p) < x(t) < B(t; p) for t € R}
is different from zero. More precisley,
drs(I — M,,$,,0) =1 for p sufficiently large. (2)

Thus we have proved the existence of at least one T-periodic solution to (1) in €, (for every p
sufficiently large), and have established the relation (2).

On the other hand, the following assertion holds.

Lemma 4. Let the assumptions of Theorem 1 be fulfilled. Then there exists px > 0 such that there
is no T-periodic solution to (1) with p € [0, ).
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For every p > 0 we define a set
U, Y e e CR/TZ) : alt;p) < 2(t) < p(u) for t € R,
Let pg be arbitrary but fixed and let, moreover, it be sufficiently large such that
drs(d — My, 8,,,0) = 1.
Then, according to Lemma 4 we have
drs(I — M, ¥,,,0) =0 for p € [0, ).

Furthermore, due to the fact that p is non-decreasing and « is non-increasing with respect to p,
from Lemmas 1 and 2 it follows that there is no T-periodic solution to (1) on 0V, for pu € [us, po)-
Consequently,

drs(I — My, \IIM():O) =0.

Now, in view of Lemma 3 we have Q,, C ¥, and so the additive property of the Leray-Schauder

=

degree results in
drs(L — My, Vo \ Qug,0) = —1,

i.e., there is another T-periodic solution to (1) in W, \ €.

Now define
A" {7 >0: Eq. (1) has at least two T-periodic solutions for every y > 7}.

Obviously, on account of the above-proven, the set A is nonempty. Moreover, according to Lemma 4,
the set A is bounded from below by p.. Put

w ©f inf A,

and let {1, } 2] be a sequence of parameters such that

*

pn > p and  lim p, = pt.
n——+o00

Obviously, there exist a sequence of T-periodic solutions {u(-;u,)}125 to (1) (with u = p,). In
addition, with respect to Lemmas 1 and 2, this sequence of solutions is uniformly bounded and
equicontinuous. Thus, by standard arguments one can prove that there exists also at least one
T-periodic solution to (1) with x4 = p*. Now the sketch of the proof of Theorem 1 is complete.



