Boundary Value Problems for Systems of Difference-Algebraic Equations

Sergey Chuiko, Yaroslav Kalinichenko, Nikita Popov
Donbass State Pedagogical University, Slavyansk, Ukraine
E-mails: chujko-slav@inbox.ru; chujko-slav@ukr.net

We investigate the problem of finding bounded solutions [2, 3, 5]

$$
z(k) \in \mathbb{R}^{n}, \quad k \in \Omega:=\{0,1,2, \ldots, \omega\}
$$

of linear Noetherian $(n \neq v)$ boundary value problem for a system of linear difference-algebraic equations [2,5]

$$
\begin{equation*}
A(k) z(k+1)=B(k) z(k)+f(k), \quad \ell z(\cdot)=\alpha, \quad \alpha \in \mathbb{R}^{v} ; \tag{1}
\end{equation*}
$$

here $A(k), B(k) \in \mathbb{R}^{m \times n}$ are bounded matrices and $f(k)$ are real bounded column vectors,

$$
\ell z(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{v}
$$

is a linear bounded vector functional defined on a space of bounded functions. We assume that the matrix $A(k)$ is, generally speaking, rectangular: $m=n$. It can be square but singular. The problem of finding bounded solutions $z(k)$ of a boundary value problem for a linear non-degenerate

$$
\operatorname{det} B(k) \neq 0, \quad k \in \Omega
$$

system of first-order difference equations

$$
z(k+1)=B(k) z(k)+f(k), \quad \ell z(\cdot)=\alpha \in \mathbb{R}^{v}
$$

was solved by A. A. Boichuk [2]. Thus, the boundary value problem (1) is a generalization of the problem solved by A. A. Boichuk. We investigate the problem of finding bounded solutions to linear Noetherian boundary value problem for a system of linear difference-algebraic equations (1) in case

$$
1 \leq \operatorname{rank} A(k)=\sigma_{0}, \quad k \in \Omega .
$$

As it is known $[1,10]$, any $(m \times n)$-matrix $A(k)$ can be represented in a definite basis in the form

$$
A(k)=R_{0}(k) \cdot J_{\sigma_{0}} \cdot S_{0}(k), \quad J_{\sigma_{0}}:=\left(\begin{array}{cc}
I_{\sigma_{0}} & O \\
O & O
\end{array}\right)
$$

here, $R_{0}(k)$ and $S_{0}(k)$ are nonsingular matrices. The nonsingular change of the variable

$$
y(k+1)=S_{0}(k) z(k+1)
$$

reduces system (1) to the form [11]

$$
\begin{equation*}
A_{1}(k) \varphi(k+1)=B_{1}(k) \varphi(k)+f_{1}(k) ; \tag{2}
\end{equation*}
$$

Under the condition [10], when matrices $A_{1}^{+}(k) B_{1}(k)$ and column vectors $A_{1}^{+}(k) f_{1}(k)$, are bounded and also

$$
\begin{equation*}
P_{A^{*}}(k) \neq 0, \quad P_{A_{1}^{*}}(k) \equiv 0 \tag{3}
\end{equation*}
$$

we arrive at the problem of construction of solutions of the linear difference-algebraic system

$$
\begin{equation*}
\varphi(k+1)=A_{1}^{+}(k) B_{1}(k) \varphi(k)+\mathfrak{F}_{1}\left(k, \nu_{1}(k)\right), \quad \nu_{1}(k) \in \mathbb{R}^{\rho_{1}} \tag{4}
\end{equation*}
$$

here,

$$
\mathfrak{F}_{1}\left(k, \nu_{1}(k)\right):=A_{1}^{+}(k) f_{1}(k)+P_{A_{\varrho_{1}}}(k) \nu_{1}(k),
$$

$\nu_{1}(k) \in \mathbb{R}^{\rho_{1}}$ is an arbitrary bounded vector function, $A_{1}^{+}(k)$ is a pseudoinverse (by Moore-Penrose) matrix [3]. In addition, $P_{A_{1}^{*}(k)}$ is a matrix-orthoprojector [3]:

$$
P_{A_{1}^{*}}(k): \mathbb{R}^{\sigma_{0}} \rightarrow \mathbb{N}\left(A_{1}^{*}(k)\right)
$$

$P_{A_{\rho_{1}}}(k)$ is an $\left(\rho_{0} \times \rho_{1}\right)$-matrix composed of ρ_{1} linearly independent columns of the $\left(\rho_{0} \times \rho_{0}\right)$-matrixorthoprojector:

$$
P_{A_{1}}(k): \mathbb{R}^{\rho_{0}} \rightarrow \mathbb{N}\left(A_{1}(k)\right)
$$

By analogy with the classification of pulse boundary-value problems $[3,6,7]$ we say in the (3), provided that the matrices $A_{1}^{+}(k) B_{1}(k)$ and column vectors $A_{1}^{+}(k) f_{1}(k)$ are bounded, that, for the linear difference-algebraic system (1), the first-order degeneration holds. Thus, the following lemma is proved [11].

Lemma 1. For the first-order degeneration difference-algebraic system (1) having a solution of the form

$$
z\left(k, c_{\rho_{0}}\right)=X_{1}(k) c_{\rho_{0}}+K\left[f(j), \nu_{1}(j)\right](k), \quad c_{\rho_{0}} \in \mathbb{R}^{\rho_{0}} ;
$$

which depends on an arbitrary continuous vector-function $\nu_{1}(k) \in \mathbb{R}^{\rho_{1}}$, where $X_{1}(k)$ is a fundamental matrix, $K\left[f(j), \nu_{1}(j)\right](k)$ is the generalized Green operator of the Cauchy problem for the linear difference-algebraic system (1).

Denote the vector

$$
\nu_{1}(k):=\Psi_{1}(k) \gamma, \quad \gamma \in \mathbb{R}^{\theta}
$$

here, $\Psi_{1}(k) \in \mathbb{R}^{\rho_{1} \times \theta}$ is an arbitrary bounded full rank matrix. Generalized Green operator of the Cauchy problem for the linear difference-algebraic system (1) of the form

$$
K\left[f(j), \nu_{1}(j)\right](k)=K[f(j)](k)+K\left[\Psi_{1}(j)\right](k) \gamma
$$

here,

$$
\left.K\left[\Psi_{1}(j)\right](k):=S_{0}^{-1}(k-1) P_{D_{\rho_{0}}} \mathcal{K}\left[\Psi_{1}(s)\right)\right](k)
$$

and

$$
\begin{aligned}
& \mathcal{K}\left[\Psi_{1}(j)\right](0):= 0, \quad \mathcal{K}\left[\Psi_{1}(j)\right](1):=P_{A_{\rho_{1}}}(0) \Psi_{1}(0) \\
& \mathcal{K}\left[\Psi_{1}(j)\right](2):= \\
& A_{1}^{+}(1) B_{1}(1) \mathcal{K}\left[\Psi_{1}(j)\right](1)+P_{A_{\rho_{1}}}(1) \Psi_{1}(1), \ldots, \\
& \mathcal{K}\left[\Psi_{1}(j)\right](k+1):=A_{1}^{+}(k) B_{1}(k) \mathcal{K}\left[\Psi_{1}(j)\right](k)+P_{A_{\rho_{1}}}(k) \Psi_{1}(k) .
\end{aligned}
$$

Denote the matrix

$$
\mathcal{D}_{1}:=\left\{Q_{1} ; \ell K\left[\Psi_{1}(j)\right](\cdot)\right\} \in \mathbb{R}^{v \times\left(\rho_{0}+\theta\right)}
$$

Substituting the general solution of the system of linear difference-algebraic equations (1) into the boundary condition (1), we arrive at the linear algebraic equation

$$
\begin{equation*}
\mathcal{D}_{1} \check{c}=\alpha-\ell K\left[A^{+}(j) f(j)\right](\cdot), \quad \check{c}:=\operatorname{col}\left(c_{\rho_{0}}, \gamma\right) \in \mathbb{R}^{\rho_{0}+\theta} \tag{5}
\end{equation*}
$$

Equation (5) is solvable iff

$$
\begin{equation*}
P_{\mathcal{D}_{1}^{*}}\{\alpha-\ell K[f(j)](\cdot)\}=0 \tag{6}
\end{equation*}
$$

Here, $P_{\mathcal{D}_{1}^{*}}$ is a matrix-orthoprojector:

$$
P_{\mathcal{D}_{1}^{*}}: \mathbb{R}^{v} \rightarrow \mathbb{N}\left(\mathcal{D}_{1}^{*}\right)
$$

In this case, the general solution of equation (5)

$$
\check{c}=\mathcal{D}_{1}+\{\alpha-\ell K[f(j)](\cdot)\}+P_{\mathcal{D}_{1}} \delta, \quad \delta \in \mathbb{R}^{\rho_{0}+\theta}
$$

determines the general solution of the boundary-value problem (1)

$$
\begin{aligned}
z(k, \delta)=\left\{X_{1}(k) ; K\left[\Psi_{1}(j)\right](k)\right\} \mathcal{D}_{1}^{+}\{\alpha- & \ell K[f(j)](\cdot)\} \\
& +K[f(j)](k)+\left\{X_{1}(k) ; K\left[\Psi_{1}(j)\right](k)\right\} P_{\mathcal{D}_{1}} \delta
\end{aligned}
$$

Here, $P_{\mathcal{D}_{1}}$ is a matrix-orthoprojector:

$$
P_{\mathcal{D}_{1}}: \mathbb{R}^{\rho_{0}+\theta} \rightarrow \mathbb{N}\left(\mathcal{D}_{1}\right)
$$

Thus the following theorem is valid.
Theorem 1. The problem of finding bounded solutions of a system of linear difference-algebraic equations (1) in the case of first-order degeneracy, under condition (3), in the case of first-order degeneracy for a fixed full rank bounded matrix $\Psi_{1}(k)$, has a solution of the form

$$
z\left(k, c_{\rho_{0}}\right)=X_{1}(k) c_{\rho_{0}}+K\left[f(j), \nu_{1}(j)\right](k), c_{\rho_{0}} \in \mathbb{R}^{\rho_{0}}
$$

Under condition (6) and only under it, the general solution of the difference-algebraic boundary value problem (1)

$$
z\left(k, c_{r}\right)=X_{r}(k) c_{r}+G\left[f(j) ; \Psi_{1}(j) ; \alpha\right](k), \quad c_{r} \in \mathbb{R}^{r}
$$

is determined by the Green operator of a difference-algebraic boundary value problem (1)

$$
G\left[f(j) ; \Psi_{1}(j) ; \alpha\right](k):=K[f(j)](k)+\left\{X_{1}(k) ; K\left[\Psi_{1}(j)\right](k)\right\} \mathcal{D}_{1}^{+}\{\alpha-\ell K[f(j)](\cdot)\}
$$

The matrix $X_{r}(k)$ is composed of r linearly independent columns of the matrix

$$
\left\{X_{1}(k) ; K\left[\Psi_{1}(j)\right](k)\right\} P_{\mathcal{D}_{1}}
$$

Under condition $P_{\mathcal{D}_{1}^{*}} \neq 0$, we say that the difference-algebraic boundary-value problem (1) in the case of first-order degeneracy is a critical case, and vice versa: under condition $P_{Q_{1}^{*}} \neq 0, P_{\mathcal{D}_{1}^{*}}=0$, we say that the difference-algebraic boundary-value problem (1) is reduced to the non-critical case.

The proposed scheme of studies of difference-algebraic boundary-value problems can be transferred analogously to $[2-4,9]$ onto nonlinear difference-algebraic boundary-value problems. On the other hand, in the case of nonsolvability, the difference-algebraic boundary-value problems can be regularized analogously $[8,12]$.

Acknowledgement

This work was supported by the State Fund for Fundamental Research. State registration number 0115U003182.

References

[1] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps. Volume 1. Classification of Critical Points, Caustics and Wave Fronts; Volume 2. Monodromy and Asymptotics of Integrals. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2012.
[2] A. A. Boichuk, Boundary value problems for systems of difference equations. (Russian) Ukraïn. Mat. Zh. 49 (1997), no. 6, 832-835; translation in Ukrainian Math. J. 49 (1997), no. 6, 930-934 (1998).
[3] A. A. Boichuk, A. M. Samoilenko, Generalized Inverse Operators and Fredholm BoundaryValue Problems. Translated from the Russian by P. V. Malyshev and D. V. Malyshev. VSP, Utrecht, 2004.
[4] A. A. Boichuk, A. M. Samoilenko, Generalized Inverse Operators and Fredholm BoundaryValue Problems. Second edition. Translated from the Russian by Peter V. Malyshev. Inverse and Ill-posed Problems Series, 59. De Gruyter, Berlin, 2016.
[5] S. L. Campbell, Limit behavior of solutions of singular difference equations. Linear Algebra Appl. 23 (1979), 167-178.
[6] S. M. Chuiko, The Green operator for a boundary value problem with impulse action. (Russian) Dokl. Akad. Nauk, Ross. Akad. Nauk 379 (2001), no. 2, 170-172; translation in Dokl. Math. 64 (2001), no. 1, 41-43.
[7] S. M. Chuiko, A generalized Green operator for a boundary value problem with impulse action. (Russian) Differ. Uravn. 37 (2001), no. 8, 1132-1135; translation in Differ. Equ. 37 (2001), no. 8, 1189-1193.
[8] S. M. Chuiko, On the regularization of a linear Noetherian boundary value problem using a degenerate impulsive action. (Russian) Nelīñı̈̆n̄̄ Koliv. 16 (2013), no. 1, 133-144; translation in J. Math. Sci. (N.Y.) 197 (2014), no. 1, 138-150.
[9] S. Chuiko, Nonlinear matrix differential-algebraic boundary value problem. Lobachevskii J. Math. 38 (2017), no. 2, 236-244.
[10] S. M. Chuiko, On reducing the order in a differential-algebraic system. (Russian) Ukr. Mat. Visn. 15 (2018), no. 1, 1-17; translation in J. Math. Sci. (N.Y.) 235 (2018), no. 1, 2-14.
[11] S. M. Chuiko, E. V. Chuiko, Ya. V. Kalinichenko, Boundary value problems for a systems difference-algebraic equation. J. Math. Sci. (N.Y.), 2019 (to appear).
[12] A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems. Translated from the Russian. Preface by translation editor Fritz John. Scripta Series in Mathematics. V. H. Winston \& Sons, Washington, D.C.: John Wiley \& Sons, New York-Toronto, Ont.--London, 1977.

