On the Well-Posedness of the Cauchy Problem for High Order Ordinary Linear Differential Equations

Besarion Anjafaridze
Sokhumi State University, Tbilisi, Georgia
E-mail: Besaanjafaridze@gmail.com

Malkhaz Ashordia ${ }^{1,2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia;
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
E-mails: ashord@rmi.ge; malkhaz.ashordia@tsu.ge

We consider the question on the well-posedness of the Cauchy problem

$$
\begin{gather*}
u^{(n)}=\sum_{l=1}^{n} p_{l}(t) u^{(l-1)}+p_{0}(t) \text { for } t \in I \tag{1}\\
u^{(i-1)}\left(t_{0}\right)=c_{i 0}(i=1, \ldots, n) \tag{2}
\end{gather*}
$$

where $p_{l} \in L_{l o c}(I ; \mathbb{R})(l=0, \ldots, n), t_{0} \in I$ and $c_{i o} \in \mathbb{R}(i=1, \ldots, n)$, and I is an arbitrary interval from \mathbb{R}.

By $\mathrm{AC}(I ; \mathbb{R})$ we denote the set of all absolutely continuous functions defined on I.
Let $u_{0}\left(u^{(i-1)} \in \mathrm{AC}(I ; \mathbb{R}), i=1, \ldots, n\right)$ be the unique solution of the Cauchy problem $(1),(2)$. Along with problem (1), (2) we consider the sequence of problems

$$
\begin{gather*}
u^{(n)}=\sum_{l=1}^{n} p_{l k}(t) u^{(l-1)}+p_{0 k}(t) \text { for } t \in I \tag{k}\\
u^{(i-1)}\left(t_{k}\right)=c_{i k} \quad(i=1, \ldots, n) \tag{k}
\end{gather*}
$$

$(k=1,2, \ldots)$, where $p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n), t_{k} \in I$ and $c_{i k} \in \mathbb{R}(i=1, \ldots, n ; k=1,2, \ldots)$.
Let

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} t_{k}=t_{0} \tag{3}
\end{equation*}
$$

Definition 1. We say that the sequence $\left(p_{l k}, \ldots, p_{n k}, p_{0 k} ; t_{k}\right)(k=1,2, \ldots)$ belongs to the set $\left.\mathcal{S}\left(p_{1}, \ldots, p_{n}, p_{0} ; t_{0}\right)\right)$ if for every $c_{i 0} \in \mathbb{R}(i=1, \ldots, n)$ and a sequence $c_{i k} \in \mathbb{R}(i=1, \ldots, n$; $k=1,2, \ldots)$, satisfying the condition

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} c_{i k}=c_{i 0} \quad(i=1, \ldots, n) \tag{4}
\end{equation*}
$$

the condition

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} u_{k}^{(i-1)}(t)=u_{0}^{(i-1)}(t) \quad(i=1, \ldots, n) \tag{5}
\end{equation*}
$$

holds uniformly on I, where u_{k} is the unique solution of the Cauchy problem $\left(1_{k}\right),\left(2_{k}\right)$ for any natural k.

Along with equations (1) and $\left(1_{k}\right)(k=1,2, \ldots)$ we consider the corresponding homogeneous equations

$$
\begin{equation*}
u^{(n)}=\sum_{l=1}^{n} p_{l}(t) u^{(i-1)} \text { for } t \in I \tag{0}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{(n)}=\sum_{l=1}^{n} p_{l k}(t) u^{(i-1)} \text { for } t \in I \tag{0k}
\end{equation*}
$$

$(k=1,2, \ldots)$.
If the functions $v_{i}(i=1, \ldots, n)$ are such that $v_{i}^{(l-1)}(i, l=1, \ldots, n)$ are absolutely continuous, then by $w_{0}\left(v_{1}, \ldots, v_{n}\right)(t)=\operatorname{det}\left(\left(v_{i}^{(l-1)}(t)\right)_{i, l=1}^{n}\right)$ we denote so called Wronskiu's determinant, and by $w_{i l}\left(v_{1}, \ldots, v_{n}\right)(t)(i, l=1, \ldots, n)$ we denote a cofactor of the $i l$-element of $w_{0}\left(v_{1}, \ldots, v_{n}\right)$.

Let $u_{l}(l=1, \ldots, n)$ and $u_{l k}(l=1, \ldots, n ; k=1,2, \ldots)$ be the fundamental systems of solutions of the homogeneous systems (1) $)_{0}$) and ($2_{0 k}$) $(k=1,2, \ldots)$, respectively.

Theorem 1. Let $p_{l} \in L_{l o c}(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L_{l o c}(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots), t_{k} \in I$ $(k=0,1, \ldots)$ and $c_{l k} \in \mathbb{R}(l=1, \ldots, n ; k=0,1, \ldots)$ be such that conditions (3), (4) and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \sup _{t \in I, t \neq t_{k}}\left\{\sum_{l=1}^{n}\left|\int_{t_{k}}^{t}\left(p_{l k}(\tau)-p_{l}(\tau)\right) d \tau\right|\left(1+\sum_{l=1}^{n}\left|\int_{t_{k}}^{t}\right| p_{l k}(\tau)-p_{l}(\tau)|d \tau|\right)\right\}=0 \tag{6}
\end{equation*}
$$

hold. Then

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \sup _{t \in I, t \neq t_{k}} \sum_{i=1}^{n}\left|u_{k}^{(i-1)}(t)-u_{0}^{(i-1)}(t)\right|=0 \tag{7}
\end{equation*}
$$

where u_{k} is the unique solution of the Cauchy problem $\left(1_{k}\right),\left(2_{k}\right)$ for any natural k.
Below we give some sufficient conditions, as well necessary and sufficient conditions guaranteeing the inclusion

$$
\begin{equation*}
\left(\left(p_{l k}, \ldots, p_{n k}, p_{0 k} ; t_{k}\right)\right)_{k=1}^{+\infty} \in \mathcal{S}\left(p_{1}, \ldots, p_{n}, p_{0} ; t_{0}\right) . \tag{8}
\end{equation*}
$$

Theorem 2. Let $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and $t_{k} \in I$ ($k=0,1, \ldots$) be such that condition (3) holds. Then inclusion (8) holds if and only if there exists a sequence of functions $h_{i l}, h_{i l k} \in \mathrm{AC}(I ; \mathbb{R})(i, l=1, \ldots, n ; k=0,1, \ldots)$ such that the conditions

$$
\begin{equation*}
\inf \left\{\left|\operatorname{det}\left(\left(h_{i l}(t)\right)_{i, l=1}^{n}\right)\right|: t \in I\right\}>0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \sum_{i, l=1}^{n} \int_{I}\left|h_{i l k}^{\prime}(t)+h_{1 l-1 k}(t) \operatorname{sgn}(l-1)+h_{1 n k}(t) p_{l}(t)\right| d t<+\infty \tag{10}
\end{equation*}
$$

hold, and the conditions

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{i l k}(t)=h_{i l}(t) \quad(i, l=1, \ldots, n) \tag{11}
\end{equation*}
$$

and

$$
\lim _{k \rightarrow+\infty} \int_{t_{k}}^{t} h_{i n k}(\tau) p_{l k}(\tau) d \tau=\int_{t_{0}}^{t} h_{i n}(\tau) p_{l}(\tau) d \tau \quad(i=1, \ldots, n ; l=0, \ldots, n)
$$

hold uniformly on I.

Theorem 3. Let $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L_{l o c}(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and $t_{k} \in I(k=0,1, \ldots)$ be such that condition (3) holds. Then inclusion (8) holds if and only if the conditions

$$
\lim _{k \rightarrow+\infty} u_{l k}^{(i-1)}(t)=u_{l}^{(i-1)}(t) \quad(i, l=1, \ldots, n)
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{a_{*}}^{t} \frac{w_{i n}\left(u_{1 k}, \ldots, u_{n k}\right)(\tau)}{w_{0}\left(u_{1 k}, \ldots, u_{n k}\right)(\tau)} p_{0 k}(\tau) d \tau=\int_{a_{*}}^{t} \frac{w_{i n}\left(u_{1}, \ldots, u_{n}\right)(\tau)}{w_{0}\left(u_{1}, \ldots, u_{n}\right)(\tau)} p_{0}(\tau) d \tau \quad(i=1, \ldots, n) \tag{12}
\end{equation*}
$$

hold uniformly on I.
Theorem 4. Let $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L_{l o c}(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots), t_{k} \in I$ $(k=0,1, \ldots)$ and $c_{l k} \in \mathbb{R}(l=1, \ldots, n ; k=0,1, \ldots)$ be such that the conditions (3), (4) and

$$
\limsup _{k \rightarrow+\infty} \int_{I}\left\|p_{l k}(t)\right\| d t<+\infty \quad(l=1, \ldots, n)
$$

hold, and the condition

$$
\lim _{k \rightarrow+\infty} \int_{t_{k}}^{t} p_{l k}(\tau) d \tau=\int_{t_{0}}^{t} p_{l}(\tau) d \tau \quad(l=0, \ldots, n)
$$

holds uniformly on I. Then condition (5) holds uniformly on I, where u_{k} is the unique solution of the Cauchy problem $\left(1_{k}\right),\left(2_{k}\right)$ for any natural k.
Corollary 1. Let $p_{l} \in L(I ; \mathbb{R})(l=0, \ldots, n), p_{l k} \in L(I ; \mathbb{R})(l=0, \ldots, n ; k=1,2, \ldots)$ and $t_{k} \in I$ ($k=0,1, \ldots$) be such that conditions (3), (4) and (10) hold, and conditions (11) and

$$
\lim _{k \rightarrow+\infty} \int_{t_{k}}^{t} h_{i n k}(\tau) p_{l k}(\tau) d \tau=\int_{t_{0}}^{t} p_{l}^{*}(\tau) d \tau \quad(i=1, \ldots, n ; l=0, \ldots, n)
$$

hold uniformly on I, where $p_{l}^{*} \in L(I ; \mathbb{R})(l=0, \ldots, n) ; h_{i l}, h_{i l k} \in \mathrm{AC}(I ; \mathbb{R})(i, l=1, \ldots, n$; $k=0,1, \ldots)$. Then the inclusion

$$
\left(\left(p_{l k}, \ldots, p_{n k}, p_{0 k} ; t_{k}\right)\right)_{k=1}^{+\infty} \in \mathcal{S}\left(p_{1}-p_{1}^{*}, \ldots, p_{n}-p_{n}^{*}, p_{0}-p_{0}^{*} ; t_{0}\right)
$$

holds.
Remark 1. In Theorem 2 and Corollary 1, without loss of generality we can assume that $h_{i i}(t) \equiv 1$ and $h_{i l}(t) \equiv 0(i \neq l ; i, l=1, \ldots, n)$. So condition (9) is valid evidently.
Remark 2. If $n=2$ in Theorem 3, then condition (12) has the form

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{a_{*}}^{t} \frac{u_{1 k}^{\prime}(\tau) p_{0 k}(\tau)}{u_{1 k}(\tau) u_{2 k}^{\prime}(\tau)-u_{2 k}(\tau) u_{1 k}^{\prime}(\tau)} d \tau=\int_{a_{*}}^{t} \frac{u_{1}^{\prime}(\tau) p_{0}(\tau)}{u_{1}(\tau) u_{2}^{\prime}(\tau)-u_{2}(\tau) u_{1}^{\prime}(\tau)} d \tau \\
& \lim _{k \rightarrow+\infty} \int_{a_{*}}^{t} \frac{u_{1 k}(\tau) p_{0 k}(\tau)}{u_{1 k}(\tau) u_{2 k}^{\prime}(\tau)-u_{2 k}(\tau) u_{1 k}^{\prime}(\tau)} d \tau=\int_{a_{*}}^{t} \frac{u_{1}(\tau) p_{0}(\tau)}{u_{1}(\tau) u_{2}^{\prime}(\tau)-u_{2}(\tau) u_{1}^{\prime}(\tau)} d \tau
\end{aligned}
$$

In the last equalities we can take $u_{2 k}$ instead of $u_{1 k}(k=1,2, \ldots)$, and u_{2} instead of u_{1}.

For the proof we use the well-known concept. It is well-known that if the function u is a solution of problem (1), (2), then the vector-function $x=\left(x_{i}\right)_{i=1}^{n}, x_{i}=u^{(i-1)}(i=1, \ldots, n)$, will be a solution of the Cauchy problem for the linear system of ordinary differential equations

$$
\begin{gathered}
\frac{d x}{d t}=P(t) x+q(t), \\
x\left(t_{0}\right)=c_{0},
\end{gathered}
$$

where the matrix- and vector-functions $P(t)=\left(p_{i l}(t)\right)_{i, l=1}^{n}$ and $q(t)=\left(q_{i}(t)\right)_{i=1}^{n}$ are defined, respectively, by

$$
\begin{aligned}
p_{i l}(t) \equiv 0, \quad p_{i i+1} & \equiv 1 \quad(l \neq i+1 ; i=1, \ldots, n-1 ; l=1, \ldots, n), \\
& p_{n l}(t) \equiv p_{l}(t) \quad(l=1, \ldots, n) ; \\
q_{i}(t) \equiv & 0 \quad(i=1, \ldots, n-1), \quad q_{n}(t) \equiv p_{0}(t),
\end{aligned}
$$

and $c_{0}=\left(c_{i 0}\right)_{i=1}^{n}$.
Analogously, problem $\left(1_{k}\right),\left(2_{k}\right)$ can be rewriten in the form of the last type problem for every natural k. So, using the results contained in [1] and [2], we get the results given above.

References

[1] M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 46(121) (1996), no. 3, 385-404.
[2] M. Ashordia, Sh. Akhalaia and N. Kekelia, On necessary and sufficient conditions for stability of linear systems of generalized ordinary differential equations. Mem. Differential Equations Math. Phys. 46 (2009), 115-128.

