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We consider the initial boundary-value problem for the 1D cubic-nonlinear modified Burgers’
equation with source term

∂u

∂t
+ (u)2

∂u

∂x
− µ

∂2u

∂x2
= f, (x, t) ∈ Q := [0; 1]× [0;T ], (1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ Ω, (2)

where Ω := [0; 1], and the parameter µ = const > 0.
A three-level finite difference scheme is constructed and investigated. Two-level scheme is used

to find the values of unknown function on the first level. For each new level the obtained algebraic
equations are linear with respect to the values of the unknown function.

Assume that a solution of this problem belongs to the fractional-order Sobolev spaces W k
2 (Q),

k > 2, whose norms and seminorms are denoted by a ∥ · ∥Wk
2 (Q) and | · |Wk

2 (Q), respectively.
The finite domain Q is divided into rectangular grid by the points (xi, tj) = (ih, jτ), i =

0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and temporal mesh
sizes, respectively.

Let

ω =
{
xi : i = 0, 1, . . . , n

}
, ω =

{
xi : i = 1, 2, . . . , n− 1

}
, ω+ =

{
xi : i = 1, 2, . . . , n

}
.

The value of mesh function U at the node (xi, tj) is denoted by U j
i , that is, U(ih, jτ) = U j

i .
For the sake of simplicity sometimes we will use notations without subscripts: U j

i = U , U j+1
i = Û ,

U j−1
i = Ǔ . Moreover, let

U
0
=

U1 + U0

2
, U

j
=

U j+1 + U j−1

2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:

(Ui)x =
Ui − Ui−1

h
, (Ui)◦x =

1

2h
(Ui+1 − Ui−1), (Ui)xx =

Ui+1 − 2Ui + Ui−1

h2
,

(U)t =
Û − Ǔ

2τ
, t = τ, 2τ, . . . , (U0)t =

U1 − U0

τ
.
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Let H0 be the set of functions defined on the mesh ω and equal to zero at x = 0 and x = 1. On
H0 we define the following inner product and norm:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.

Let, moreover,
(U, V ] =

∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2.

We need the following averaging operators for functions defined on Q:

Sv :=
1

τ

τ∫
0

v(x, ζ) dζ, t = 0, Sv :=
1

2τ

t+τ∫
t−τ

v(x, ζ) dζ, t = τ, 2τ, . . . ,

P̂v :=
1

h

x+h∫
x

v(ξ, t) dξ, x = 0, h, . . . , Pv :=
1

h2

x+h∫
x−h

(h− |x− ξ|)v(ξ, t) dξ, x = h, 2h, . . . .

Notice that
S ∂v

∂t
= vt, P ∂2v

∂x2
= vxx.

We approximate problem (1), (2) with the help of the difference scheme:

LU j
i = F j

i , i = 1, 2, . . . , n− 1, j = 0, 1, . . . J − 1, (3)
U j
0 = U j

n = 0, j = 0, 1, . . . J, U0
i = φ(xi), i = 0, 1, . . . , n, (4)

where
F = Pf, LU := Ut +

1

4
ΛU − µUxx, ΛU := (U)2U ◦

x
+ ((U)2U)◦

x
.

Theorem 1. The finite difference scheme (3), (4) is uniquely solvable.

The proof of this theorem is based on partial summation formulas and the following identities(
Y V◦

x
+ (Y V )◦

x
, V

)
= 0, (V◦

x
, V ) = 0, if V ∈ H0

as well.
Let Z := U − u, where u is the exact solution of problem (1), (2), and U is the solution of

the finite difference scheme (3), (4). Substituting U = Z + u into (3), (4), we obtain the following
problem for the error Z:

(Zj)t − µ(Zj)xx = −1

4
(ΛU j − Λuj) + Ψj , j = 0, 1, 2, . . . , (5)

Z0 = 0, Zj
0 = Zj

n = 0, j = 0, 1, 2, . . . (6)

where
Ψ := F − Lu.

Let
Bj := ∥Zj∥2 + ∥Zj−1∥2, j = 1, 2, . . . .
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Lemma 1. For a solution of problem (5), (6) the following relations are valid

B1 ≤ ∥τΨ0∥2, (7)

Bj+1 ≤ c1B
1 + c2τ

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . . (8)

In order to determine the rate of convergence of the finite difference scheme (3), (4) with the
help of Lemma 1, it is sufficient to estimate the terms on the right-hand side of (7), (8). For
this, we use a particular case of the Dupont–Scott approximation theorem [4] and it represents a
generalization of Bramble–Hilbert lemma [3] (see, e.g. [1, 2, 5]).

Theorem 2. Let the exact solution of the initial-boundary value problem (1), (2) belong to W k
2 (Q),

2 < k ≤ 3. Then the convergence rate of the finite difference scheme (3), (4) is determined by the
estimate

∥U j − uj∥ ≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q),

where c = c(u) denotes a positive constant, independent of h and τ .
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