Asymptotic Behaviour of \(P_\omega(Y_0,0) \)-Solutions of Second-Order Nonlinear Differential Equations with Regularly and Rapidly Varying Nonlinearities

N. P. Kolun

Military Academy, Odessa, Ukraine
E-mail: nataliiakolun@ukr.net

Consider the differential equation

\[
y'' = \sum_{i=1}^{m} \alpha_i p_i(t) \varphi_i(y),
\]

where \(\alpha_i \in \{-1,1\} \) (\(i = \overline{1,m}, p_i : [a,\omega[\to]0, +\infty[\) (\(i = \overline{1,m} \)) are continuous functions, \(\omega \leq \infty \), \(\varphi_i : \Delta_{Y_0} \to]0, +\infty[\) (\(i = \overline{1,m} \)), where \(\Delta_{Y_0} \) is a one-sided neighborhood of \(Y_0 \), \(Y_0 \) is equal either to zero or \(\pm \infty \), are continuous functions for \(i = \overline{1,l} \) and twice continuously differentiable for \(i = \overline{l+1,m} \), and for each \(i \in \{1,\ldots,l\} \) for some \(\sigma_i \in \mathbb{R} \)

\[
\lim_{y \to Y_0 \atop y \in \Delta_{Y_0}} \frac{\varphi_i(\lambda y)}{\varphi_i(y)} = \lambda^{\sigma_i} \text{ for any } \lambda > 0,
\]

and for each \(i \in \{l+1,\ldots,m\} \)

\[
\varphi_i'(y) \neq 0 \text{ as } y \in \Delta_{Y_0}, \quad \lim_{y \to Y_0 \atop y \in \Delta_{Y_0}} \varphi_i(y) \in]0, +\infty[, \quad \lim_{y \to Y_0 \atop y \in \Delta_{Y_0}} \frac{\varphi_i''(y)}{\varphi_i'(y)} = 1.
\]

It follows from the conditions (2) and (3) that \(\varphi_i \) (\(i = \overline{1,l} \)) are regularly varying functions, as \(y \to Y_0 \), of orders \(\sigma_i \) and \(\varphi_i \) (\(i = \overline{l+1,m} \)) are rapidly varying functions, as \(y \to Y_0 \) (see [4, Introduction, pp. 2, 4]).

Definition. A solution \(y \) of the differential equation (1) is called \(P_\omega(Y_0,\lambda_0) \) – solution, where \(-\infty \leq \lambda_0 \leq +\infty \), if it is defined on some interval \([t_0,\omega[\subset [a,\omega[\) and satisfies the following conditions

\[
\lim_{t \uparrow \omega} y(t) = Y_0, \quad \lim_{t \uparrow \omega} y'(t) = \begin{cases} 0, & \text{either} \\ \pm \infty, & \text{or} \end{cases}, \quad \lim_{t \uparrow \omega} \frac{y''(t)}{y'(t)y(t)} = \lambda_0.
\]

By its asymptotic properties, the class of \(P_\omega(Y_0,\lambda_0) \) – solutions is split into 4 non-intersecting subsets that correspond to the next value of the parameter \(\lambda_0 \)

\[
\lambda_0 \in \mathbb{R} \setminus \{0,1\}, \quad \lambda_0 = 1, \quad \lambda_0 = 0, \quad \lambda_0 = \pm \infty.
\]

The existence conditions of \(P_\omega(Y_0,\lambda_0) \) – solutions of the differential equation (1) and asymptotic representations, as \(t \uparrow \omega \), of such solutions and their first-order derivatives, are established for each of these cases in the case where, for some \(s \in \{1,\ldots,m\} \)

\[
\lim_{t \uparrow \omega} \frac{p_i(t)\varphi_i(y(t))}{p_s(t)\varphi_s(y(t))} = 0 \text{ for all } i \in \{1,\ldots,m\} \setminus \{s\}, \quad (4)
\]
i.e., where the right-hand side of Eq. (1) for each such solution \(y \) is equivalent for \(t \uparrow \omega \) to one term with regularly or rapidly varying nonlinearity (see [1–3]).

In this paper, we formulate the main results obtained for the case \(\lambda_0 = 0 \).

Let

\[
\Delta y_0 = \Delta y_0(b), \quad \text{where} \quad \Delta y_0(b) = \begin{cases} [b, Y_0[& \text{if } \Delta y_0 \text{ is a left neighborhood of } Y_0, \\]Y_0, b] & \text{if } \Delta y_0 \text{ is a right neighborhood of } Y_0, \end{cases}
\]

and the number \(b \) satisfy the inequalities

\[|b| < 1 \quad \text{as } Y_0 = 0 \quad \text{and} \quad b > 1 \quad (b < -1) \quad \text{as } Y_0 = +\infty \quad (Y_0 = -\infty). \]

We set

\[
\nu_0 = \text{sign } b, \quad \nu_1 = \begin{cases} 1, & \text{if } \Delta y_0(b) = [b, Y_0[, \\
-1, & \text{if } \Delta y_0(b) =]Y_0, b]. \end{cases}
\]

\[
\pi_\omega(t) = \begin{cases} t, & \text{if } \omega = +\infty, \\
-t, & \text{if } \omega < +\infty, \end{cases}
\]

\[
J_{1s}(t) = \int_{A_{1s}} p_s(\tau) \, d\tau, \quad J_{2s}(t) = \int_{A_{2s}} J_{1s}(\tau) \, d\tau, \quad J_{3s}(t) = \int_{A_{3s}} \pi_\omega(\tau)p_0(\tau) \, d\tau,
\]

\[
H_s(y) = \int_{B_s} \frac{du}{\varphi_s(u)} , \quad B_s = \begin{cases} b, & \text{if } \int b \, dy = \pm \infty, \\
Y_0, & \text{if } \int b \, dy = \text{const}. \end{cases}
\]

\[
Z_s = \lim_{y \to Y_0} H_s(y),
\]

\[
J_{\varphi}(t) = \int_{A_{\varphi}} p_0(\tau)\varphi_s(H_s^{-1}(\alpha_s J_{3s}(\tau))) \, d\tau, \quad E_s(t) = \alpha_s \pi_\omega^2(t)p_0(\tau)\varphi_s'(H_s^{-1}(\alpha_s J_{3s}(t))),
\]

\[
G_s(t) = \frac{y\varphi_s(y)}{\varphi_s(y)} \bigg|_{y = H_s^{-1}(\alpha_s J_{3s}(t))}, \quad \Phi_s(t) = \frac{y\varphi_s'(y)}{\varphi_s(y)} \bigg|_{y = H_s^{-1}(\alpha_s J_{3s}(t))},
\]

\[
\mu_s = \text{sign } \varphi_s'(y), \quad \gamma_s = \lim_{t \uparrow \omega} \frac{E_s(t)\Phi_s(t)}{G_s(t)} , \quad \psi_s(t) = \int_{t_0}^t \frac{|E_s(\tau)|^2}{\pi_\omega(\tau)} \, d\tau,
\]

where \(s \in \{1, \ldots, m\} \), \(p_0 : [a, \omega[\to]0, +\infty[\) are continuous functions so that \(p_0(t) \sim p_0(t) \) as \(t \uparrow \omega \), every limit of integration \(A_{1s}, A_{2s}, A_{3s}, A_{\varphi} \) is equal to either \(a \) or \(\omega \) and is chosen so that the corresponding integral tends either to \(\pm \infty \), or to zero with \(t \uparrow \omega \), \(t_0 \) is some number of \([a, \omega[\).

Theorem 1. Let \(\sigma_s \neq 1 \) for some \(s \in \{1, \ldots, l\} \) and there exist finite or equal to infinity limit

\[
\lim_{t \uparrow \omega} \pi_\omega(t)J_{1s}(t).
\]

For existence of \(P_\omega(Y_0, 0) \) – solutions of equation (1), satisfied the limit relations (4), it is necessary that the inequalities

\[
\alpha_s\nu_0(1 - \sigma_s)J_{2s}(t) > 0, \quad \alpha_s\nu_1\pi_\omega(t) < 0 \quad \text{as } t \in]a, \omega[.
\]
and conditions
\[
\alpha_s \lim_{t \uparrow \omega} J_{2s}(t) = Z_s, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J_{1s}(t)}{J_{2s}(t)} = -1, \quad \lim_{t \uparrow \omega} \frac{J_{2s}^2(t)}{p_s(t) J_{2s}(t)} = 0, \tag{6}
\]
\[
\lim_{t \uparrow \omega} \frac{p_i(t) \varphi_i(H_s^{-1}(\alpha_s J_{2s}(t)))}{p_s(t) \varphi_s(H_s^{-1}(\alpha_s J_{2s}(t)))} = 0 \quad \text{for all } i \in \{1, \ldots, l\} \setminus \{s\}, \tag{7}
\]
\[
\lim_{t \uparrow \omega} \frac{p_i(t) \varphi_i(H_s^{-1}(\alpha_s J_{2s}(t))(1 + \delta_i))}{p_s(t) \varphi_s(H_s^{-1}(\alpha_s J_{2s}(t)))} = 0 \quad \text{for all } i \in \{l + 1, \ldots, m\}
\]
hold, where \(\delta_i\) are arbitrary numbers of a one-sided neighborhood of zero. Moreover, for each of such solutions the following asymptotic representations hold
\[
y(t) = H_s^{-1}(\alpha_s J_{2s}(t))[1 + o(1)] \quad \text{at} \quad t \uparrow \omega, \tag{8}
\]
\[
y'(t) = \frac{J_{1s}(t) H_s^{-1}(\alpha_s J_{2s}(t))}{(1 - \sigma_s) J_{2s}(t)} [1 + o(1)] \quad \text{at} \quad t \uparrow \omega. \tag{9}
\]

Theorem 2. Let \(\sigma_s \neq 1\) for some \(s \in \{1, \ldots, l\}\), conditions (5)–(7) hold and
\[
\lim_{t \uparrow \omega} \frac{p_i(t) \varphi_i(H_s^{-1}(\alpha_s J_{2s}(t)(1 + u)))}{p_s(t) \varphi_s(H_s^{-1}(\alpha_s J_{2s}(t)))} = 0 \quad \text{for all } i \in \{l + 1, \ldots, m\}
\]
uniformly with respect to \(u \in [-\delta, \delta]\) for any \(0 < \delta < 1\). Then the differential equation (1) has \(P_\omega(Y_0, 0)\) – solutions that admit the asymptotic representations (8) and (9). Moreover, if \(\alpha_s \nu_0(1 - \sigma_s) \pi_\omega(t) < 0\) as \(t \in]a, \omega[, \) there is a one-parameter family of such solutions in case \(\omega = +\infty\) and two-parameter family in case \(\omega < +\infty\).

Theorem 3. Let for some \(s \in \{l + 1, \ldots, m\}\) the function \(p_s\) might be representable in the form
\[
p_s(t) = p_{0s}(t)[1 + r_s(t)], \quad \text{where} \quad \lim_{t \uparrow \omega} r_s(t) = 0, \tag{10}
\]
\(p_{0s} : [a, \omega[\rightarrow]0, +\infty[\) is a continuously differentiable function, \(r_s : [a, \omega[\rightarrow]-1, +\infty[\) is a continuous function, and let the conditions
\[
\frac{\varphi_s(y) \varphi'_i(y)}{\varphi'_s(y) \varphi_i(y)} = O(1) \quad (i = l + 1, m) \quad \text{for} \quad y \rightarrow Y_0 \tag{11}
\]
hold. Then, for the existence of \(P_\omega(Y_0, 0)\) – solutions of the differential equation (1) satisfying conditions (4), it is necessary that, there exist finite or equal to infinity limit
\[
\lim_{t \uparrow \omega} \frac{\pi_\omega(t) \varphi'_s(t)}{J_{\varphi_s}(t)},
\]
and the conditions
\[
\alpha_s \nu_1 \pi_\omega(t) < 0, \quad \alpha_s \mu_s J_{3s}(t) > 0 \quad \text{as} \quad t \in]a, \omega[, \tag{12}
\]
\[
-\alpha_s \lim_{t \uparrow \omega} J_{3s}(t) = Z_s, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J'_{\varphi_s}(t)}{J_{\varphi_s}(t)} = -1, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega^2(t) p_{0s}(t) \varphi_s(H_s^{-1}(\alpha_s J_{3s}(t)))}{H_s^{-1}(\alpha_s J_{3s}(t))} = 0, \tag{13}
\]
\[
\lim_{t \uparrow \omega} \frac{p_i(t) \varphi_i(H_s^{-1}(\alpha_s J_{3s}(t))))}{p_s(t) \varphi_s(H_s^{-1}(\alpha_s J_{3s}(t)))} = 0 \quad \text{for all } i \in \{1, \ldots, m\} \setminus \{s\}
\]
be satisfied. Moreover, each such solutions has the asymptotic representations
\[
y(t) = H_s^{-1}(\alpha_s J_{3s}(t))[1 + o(1) G_s(t)] \quad \text{at} \quad t \uparrow \omega, \tag{15}
\]
\[
y'(t) = -\alpha_s \pi_\omega(t) p_{0s}(t) \varphi_s(H_s^{-1}(\alpha_s J_{3s}(t)))[1 + o(1)] \quad \text{at} \quad t \uparrow \omega. \tag{16}
\]
Theorem 4. Let for some $s \in \{l + 1, \ldots, m\}$ the conditions (10), (11), (12)–(14) be satisfied and
\[
\lim_{t \uparrow \omega} \frac{\pi_\omega(t) J'_s(t)}{J_{s_3}(t)} = \eta_s, \quad \text{where } \eta_s \in \mathbb{R}.
\]
Then:

1) if $\eta_s > 0$ or $\eta_s = 0$ and $\alpha_s \mu_s = 1$, the differential equation (1) has a one-parameter family of $P_\omega(Y_0, 0)$ – solutions with the asymptotic representations (15) and (16);

2) if $\eta_s < 0$ or $\eta_s = 0$ and $\alpha_s \mu_s = -1$, there is a two-parameter family of $P_\omega(Y_0, 0)$ – solutions which admit the asymptotic representations (15), (16) in case $\omega = +\infty$ and there is at least one such solution in case $\omega = +\infty$.

Theorem 5. Let for some $s \in \{l + 1, \ldots, m\}$ the function p_s be representable in the form (10), let conditions (11), (12)–(14) hold, and let the limits (which are finite or equal to $\pm \infty$)
\[
\lim_{t \uparrow \omega} \frac{\pi_\omega(t) J''_{s}(t)}{J''_{s}(t)}, \quad \lim_{y \to Y_0} \frac{(\varphi'(y))' (\varphi'(y))^2}{\varphi'(y)^2}, \quad \lim_{t \uparrow \omega} \frac{E_s(t) \Phi_s(t)}{G_s(t)}, \quad \lim_{t \uparrow \omega} \psi''_s(t) \psi_2(t)
\]
exist. Then:

1) if $\alpha_s \mu_s = 1$, the differential equation (1) has a one-parameter family of $P_\omega(Y_0, 0)$ – solutions which admit the asymptotic representations (15) and (16) and are such that their derivatives satisfy the asymptotic relation
\[
y'(t) = -\alpha_s \pi_\omega(t) p_{0s}(t) \varphi_s(H_s^{-1}(-\alpha_s J_{s_3}(t))) \left[1 + |E_s(t)|^{-\frac{1}{2}} o(1)\right] \quad \text{at } t \uparrow \omega;
\]

2) if $\alpha_s \mu_s = -1$ and
\[
\gamma_s \neq \frac{1}{3}; \quad \lim_{t \uparrow \omega} \psi_s(t) r_s(t) = 0, \quad \lim_{t \uparrow \omega} \psi_s^2(t) \left[r_s(t) + 2 + \frac{\pi_\omega(t) J''_{s}(t)}{J''_{s}(t)}\right] = 0,
\]
\[
\lim_{t \uparrow \omega} \frac{\psi_s(t)}{E_s(t)} = 0 \quad \text{at } \gamma_s = 0, \quad \lim_{t \uparrow \omega} \psi_s^2(t) \sum_{i=1}^{m} p_i(t) \varphi_i(H_s^{-1}(-\alpha_s J_{s_3}(t))) = 0,
\]

the differential equation (1) has a $P_\omega(Y_0, 0)$ – solution with asymptotic representations
\[
y(t) = H_s^{-1}(-\alpha_s J_{s_3}(t)) \left[1 + \frac{o(1)}{G_s(t) \psi_s(t)}\right] \quad \text{at } t \uparrow \omega,
\]
\[
y'(t) = -\alpha_s \pi_\omega(t) p_{0s}(t) \varphi_s(H_s^{-1}(-\alpha_s J_{s_3}(t))) \left[1 + |E_s(t)|^{-\frac{1}{2}} \psi_s^{-1}(t) o(1)\right] \quad \text{at } t \uparrow \omega.
\]

Moreover, there exists a two-parameter family of such solutions in case when $\gamma_s \in (0, 1/3)$ or $\gamma_s = 0$ and $\alpha_s \nu_1 = 1$.

References

