On Existence of Quasi-Periodic Solutions to a Nonlinear Higher-Order Differential Equation

I. Astashova
Lomonosov Moscow State University,
Moscow State University of Economics, Statistics and Informatics, Moscow, Russia
E-mail: ast@diffiety.ac.ru

1 Introduction
The paper is devoted to the existence of oscillatory and non-oscillatory quasi-periodic, in some sense, solutions to the higher-order Emden–Fowler type differential equation
\[y^{(n)} + p_0 |y|^k \text{sgn} y = 0, \quad n > 2, \quad k \in \mathbb{R}, \quad k > 1, \quad p_0 \neq 0. \]
(1)
A lot of results about the asymptotic behavior of solutions to (1) are described in detail in [1]. Results about the existence of solutions with special asymptotic behavior are contained in [2]–[8].

2 On Existence of Quasi-Periodic Oscillatory Solutions
Put
\[\alpha = \frac{n}{k - 1}. \]
(2)

Theorem 1. For any integer \(n > 2 \) and real \(k > 1 \) there exists a non-constant periodic function \(h(s) \) such that for any \(p_0 > 0 \) and \(x^* \in \mathbb{R} \) the function
\[y(x) = p_0^{\frac{1}{k-1}} (x^* - x)^{-\alpha} h(\log(x^* - x)), \quad -\infty < x < x^* \]
(3)
is a solution to equation (1).

Corollary 1. For any integer even \(n > 2 \) and real \(k > 1 \) there exists a non-constant periodic function \(h(s) \) such that for any \(p_0 > 0 \) and \(x^* \in \mathbb{R} \) the function
\[y(x) = p_0^{\frac{1}{k-1}} (x - x^*)^{-\alpha} h(\log(x - x^*)), \quad x^* < x < \infty \]
(4)
is a solution to equation (1).

Corollary 2. For any integer odd \(n > 2 \) and real \(k > 1 \) there exists a non-constant periodic function \(h(s) \) such that for any \(p_0 < 0 \) and \(x^* \in \mathbb{R} \) the function
\[y(x) = |p_0|^{\frac{1}{k-1}} (x^* - x)^{-\alpha} h(\log(x^* - x)), \quad x^* < x < \infty \]
(5)
is a solution to equation (1).

3 On Existence of Positive Solutions with Non-power Asymptotic Behavior
The existence of such non-oscillatory solutions was also proved.
For equation (1) with \(p_0 = -1 \) it was proved [4] that for any \(N \) and \(K > 1 \) there exist an integer \(n > N \) and \(k \in \mathbb{R} \) such that \(1 < k < K \) and equation (1) has a solution of the form
\[y = (x^* - x)^{-\alpha} h(\log(x^* - x)), \]
(6)
where \(\alpha \) is defined by (2) and \(h \) is a positive periodic non-constant function on \(\mathbb{R} \).
A similar result was also proved [4] about Kneser solutions, i.e. those satisfying \(y(x) \to 0 \) as \(x \to \infty \) and \((-1)^j y^{(j)}(x) > 0 \) for \(0 \leq j < n \). Namely, if \(p_0 = (-1)^{n-1} \), then for any \(N \) and \(K > 1 \) there exist an integer \(n > N \) and \(k \in \mathbb{R} \) such that \(1 < k < K \) and equation (1) has a solution of the form
\[
y(x) = (x - x_*)^{-\alpha} h(\log(x - x_*)),
\]
where \(h \) is a positive periodic non-constant function on \(\mathbb{R} \).

Still it was not clear how large \(n \) should be for the existence of that type of positive solutions.

Theorem 2 ([8]). If \(12 \leq n \leq 14 \), then there exists \(k > 1 \) such that equation (1) with \(p_0 = -1 \) has a solution \(y(x) \) such that
\[
y^{(j)}(x) = (x^* - x)^{-\alpha - j} h_j(\log(x^* - x)), \quad j = 0, 1, \ldots, n - 1,
\]
where \(\alpha \) is defined by (2) and \(h_j \) are periodic positive non-constant functions on \(\mathbb{R} \).

Remark. Computer calculations give approximate values of \(\alpha \). They are, with the corresponding values of \(k \), as follows:
- if \(n = 12 \), then \(\alpha \approx 0.56, k \approx 22.4 \);
- if \(n = 13 \), then \(\alpha \approx 1.44, k \approx 10.0 \);
- if \(n = 14 \), then \(\alpha \approx 2.37, k \approx 6.9 \).

Corollary 3 ([8]). If \(12 \leq n \leq 14 \), then there exists \(k > 1 \) such that equation (1) with \(p_0 = (-1)^{n-1} \) has a Kneser solution \(y(x) \) satisfying
\[
y^{(j)}(x) = (x - x_0)^{-\alpha - j} h_j(\log(x - x_0)), \quad j = 0, 1, \ldots, n - 1,
\]
with periodic positive non-constant functions \(h_j \) on \(\mathbb{R} \).

Acknowledgement

The work was partially supported by the Russian Foundation for Basic Researches (Grant 11-01-00989).

References

