Reading: [Simon], Chapter 21, p. 505-522.

1 Concave and convex functions

1.1 Convex Sets

Definition 1 A set X C R" is called convex if given any two points x’, x" €
X the line segment joining ' and x completely belongs to X, in other words
for each t € [0, 1] the point

vt = (1—t)a" +ta”

is also in X for every t € [0,1].

The intersection of convex sets is convex.
The union of convex sets is not necessarily convex.

Let X C R". The convex hull of X is defined as the smallest convex set
that contain X.

The convex hull of X consists of all points which are convexr combinations
of some points of X

CHX)={yeR":y= Ztixi, r; € X, Zti =1}

1.2 Concave and Convex Function

A function f is concave if the line segment joining any two points on the
graph is never above the graph. More precisely

Definition 2 A function f : S C R™ — R defined on a convex set S 1is
concave if given any two points x’',x" € S we have

(1 —=t)f(=") +tf(a") < f((A =)' + ta")

for any t € [0,1].
f s called strictly concave if

(1= ) (@) +tf(&") < F((1 = t)a’ +ta").

Definition 3 A function f:S C R" — R is convex if given any two points
', 2" € S we have

(1 =t)f(=") +tf(a") = fF((A = )2’ + ta")

for any t € [0,1].
f is called strictly convex if

(1 —t)f(') +tf(2") > f((1—t)a" +ta").



Roughly speaking concavity of a function means that the graph is above
chord.

It is clear that if f is concave then —f is convex and vice versa.

Theorem 1 A function f : S C R* — R is concave (convez) if and only
if its restriction to every line segment of R" is concave (convex) function of
one variable.

Theorem 2 If f is a concave (convez) function then a local mazimizer (min-
imizer) is global.
1.2.1 Characterization in Terms of Graphs

Given a function f: S C R™ — R defined on a convex set S.
The hypograph of f is defined as the set of points (z,y) € S X R lying on
or bellow the graph of the function:

hyp f={(z,y): z €8, y< f(x)}.

Similarly, the epigraph of f is defined as the set of points (x,y) € S x R lying
on or above the graph of the function:

epi f={(v,y): v €5, y> f(r)}

Theorem 3 (a) A function f: S C R" — R defined on a convex set S is
concave if and only if its hypograpf hyp f is convex.

(b) A function f: S C R* — R defined on a convex set S is convex if
and only if its epigraph epi f is convez.

Proof of (a). Let (z1,91), (x2,y2) € hyp f, let us show that
(wt, yt) = (txr + (1 — t)aa, tyr + (1 = t)y2) € hyp f.

ye = tyr + (1 = t)yo <tf(z1) + (1= 1) f(w2) < f(tzr + (1 —t)xa) = f(24).

1.2.2 Characterization in Terms of Level Sets

Given a function f: S C R® — R defined on a convex set S.
Take any number K € R.
The upper contour set Uy of f is defined as

Uk ={z €5, f(z) > K}.
Similarly, the lower contour set Ly of f is defined as

Lg={z €S, f(z) <K}



Theorem 4 (a) Suppose a function f : S C R" — R defined on a convex
set S is concave. Then for every K the upper contour set Uk s either empty
or a convex set.

(b) If f is convex, then for every K the lover contour set Lk 1is either
empty or a convex set.

Proof. Let us prove only (a).
Let 21, x5 € Uy, let us show that x; = tz1 4+ (1 — t)xg € Uk:

flzy) = ftaer + (1 —t)ag) > tf(xy) + (1 =) f(z2) > tK 4+ (1 —t)K = K.
Remark. Notice that this is only necessary condition, not sufficient: con-
sider the example f(z) = ¢e® or f(z) = 3.

1.2.3 Examples of Concave Functions

Theorem 5 Suppose fi, ..., fn are concave (convez) functions and a; > 0, ...,
0, then the linear combination

F:a1f1—|— —|—6Lnfn

is concave (convex).

Proof.

F((1 =tz +ty) =X aifi(1 =)o +ty) > Xai[(1 — 1) fi(x) + 1fi(y)] =
1 —t)XTaif(x) +tXafily) = (1 =1)F(z) +tF(y).

A function of the form f(z) = f(z1, 29, ..., 2n) = ao + @121 + agz2 + ... +
an,x, is called affine function ( if ag = 0, it is a linear function).

Theorem 6 An affine function is both concave and convez.

Proof. The theorem follows from previous theorem and following easy to
prove statements:

(1) The function f(z1,...,x,) = x; is concave and convex;

(2) The function f(z1,...,x,) = —x; is concave and convex;

(3) The constant function f(z1,...,z,) = a is concave and convex.

Theorem 7 A concave monotonic transformation of a concave function is
itself concave.

Proof. Let f : R® — R be a concave function and g : R — R be concave
and increasing, then

(go /il =tz +ty) =
g(f(A=t)x +ty) = g((L =) f(x) +tf(y)) = (1 —t)g(f(z)) +tg(f(y)) =
(I =1)(go f)(x)) +tlgo f)y)),

a, >



here the first inequality holds since f is concave and g is increasing, and the
second inequality holds since ¢ is concave.

Remark. Note that just monotonic transformation of a concave function is
not necessarily concave: consider, for example f(z) =z and g(z) = 2.

Thus the concavity of a function is not ordinal, it is cardinal property.
Economic Example

Suppose production function f(z) is concave and the cost function c(x) is
convez. Suppose also p is the positive selling price. Then the profit function

m(x) = pf(x) + (—c(2))

is concave as a linear combination with positive coefficients of concave func-
tions. Thus a local maximum of profit function is global in this case (see
bellow).

1.3 Calculus Criteria for Concavity
For one variable functions we have the following statements

1. A C* function f : U C R — R is concave if and only if its first derivative
f'(x) is decreasing function.

2. A C? function f : U C R — R is concave if and only if its second derivative
f(x) is <0.

In n-variable case usually instead of f’(z) we consider the Jacobian (gra-
dient) Df(z) and instead of f”(x) we consider the hessian D?f(x).

It is not clear how to generalize the above statements 1 and 2 to n-variable
case since the statement ” D f(z) (which is a vector) is decreasing function”
has no sense as well as " D?f(z) (which is a matrix) is positive”.

Let us reformulate the statements 1 and 2 in the following forms:

1’. A C! function f: U C R — R is concave if and only if

fly) = fl2) < flx)(y — )

for all z,y € U.
Hint: Observe that for concave f(x) and z < y one has

fly) = f(x)

fla) = RO

> f'(y).

2. A C? function f : U C R — R is concave if and only if the one variable
quadratic form Q(y) = f”(x) - y? is negative semidefinite for all z € U.

Hint: Observe that the quadratic form Q(y) = f”(z) - ¥* is negative
semidefinite if and only if the coefficient f”(x) < 0.
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Now we can formulate the multi-variable generalization of 1:

Theorem 8 A C*' function f : U C R® — R is concave if and only if

fly) = flz) < Df(x)(y — x),
for all x,y € U, that is

F) = F@) S 2L @ =2+ o+ @) — )

Similarly f is convex if and only if

fly) — f(x) > Df(z)(y — z).

Remember that concavity of a function means that the graph is above
chord?” Now we can say

Roughly speaking concavity of a function means that the tangent is
above graph.

From this theorem follows

Corollary 1 Suppose f is concave and for some xo, y € U we have

Df(xo)(y — x0) <0,

then f(y) < f(xo) for THIS y.
Particularly, if directional derivative of f at xq in any feasible direction
18 monpositive, i.€.

Dy f(0) = Df(20)(y = 20) <0
for ALL y € U, then z¢ is GLOBAL max of f in U.

Indeed, since of concavity of f we have

f(y) = f(wo) < Df(x0)(y — 20) <0.

The following theorem is the generalization of 2:

Theorem 9 A C? function f : U C R — R defined on a convex open set
U is

(a) concave if and only if the Hessian matriz D*f(x) is negative semidef-
inite for all x € U;

(b) strictly concave if the Hessian matriz D?f(x) is negative definite for
all x € U;

(c) convez if and only if the Hessian matriz D*f(z) is positive semidefi-
nite for all x € U;

(d) strictly convez if the Hessian matriz D?f(z) is positive definite for
all x € U;



Remark. Note that the statement (b) (and (d) too) is not "only if”: If f is

strictly concave then the Hessian is not necessarily negative definite for ANY

x. Analyze, for example f(z) = —a%.

Let us recall criteria for definiteness of matrix in terms of principal minors:

(1) A matrix H is positive definite if and only if its n leading principal
minors are > (.

(2) A matrix H is negative definite if and only if its n leading principal
minors alternate in sign so that all odd order ones are < 0 and all even
order ones are > 0.

(3) A matrix H is positive semidefinite if and only if its 2" — 1 principal
minors are all > 0.

(4) A matrix H is negative semidefinite if and only if its 2" — 1 principal
minors alternate in sign so that odd order minors are < 0 and even order
minors are > 0.

Example. Let us determine the definiteness of the matrix ( (1) 8 >

Its first order principal minors are
M, =1, M;=0,
and the only second order principal minor is
My = 0.

We are in the situation (3), so our matrix is positive semidefinite. Note that
corresponding quadratic form is Q(z,y) = y2.

Example. Let f(z,y) = 2z —y — 2® + 22y — 3. Its Hessian is

(2 %)

which is constant (does not depend on (z,y)) and negative semidefinite. Thus
f is concave.
Example. Consider the function f(z,y) = 2zy. Its Hessian is

(16)

Since the only second order principal minor is —1 < 0 the matrix ix indefinite,
thus f is neither concave nor convex.



Example. Consider the Cobb-Douglas function f(z,y) = cz®y® with a, b, ¢ >
0 in the first orthant z > 0, y > 0.
Its hessian is

ala — ex®2yb  abex®1yb~1
abex® 1yt (b — 1)cxtyb2

The principal minors of order 1 of this matrix are
M, = a(a — Vex®2yb, M| = b(b— 1)cay’?
and the only principal minor of order 2 is
My = abex® 2y 2(1 — (a +b)).

When this function is concave? For this the Hessian must be negative
semidefinite. This happens when all principal minors of degree 1 M; and M]
are < 0 and (only) principal minor of degree 2 My is > 0.

Recall that we work in the first orthant > 0, y > 0, and a,b,c > 0.

If our f(x,y) = ca®y® exhibits constant or decreasing return to scale (CRS
or DRS), that is a + b < 1, then clearly a < 0, b < 0, and we have thus the
Cobb-Douglas function is concave if and M; < 0, M] <0, My > 0, thus f
is concave.

Remark. So we have shown that if a Cobb-Douglas function f(z,y) = cz%y’
is CRS or DRS, it is concave. But can it be convex?

1.4 Concave Functions and Optimization

Concavity of a function replaces the second derivative test to separate local
max, min or saddle, moreover, for a concave function a critical point which
is local max (min) is global:

Theorem 10 Let f: U C R™ — R be concave (convex) function defined on
a convex open set U. If x* is a critical point, that is D f(x*) = 0, then it is
global maximizer (minimizer).

Proof. Since Df(xz*) = 0 from the inequality
fly) = @) < Df@a")(y —27) =0

follows f(y) < f(z*) for all y € U.
The next result is stronger, it allows to find maximizer also on the bound-
ary of U if it is not assumed open:

Theorem 11 Let f : U C R™ — R be concave function defined on a convex
set U. If x* is a point, which satisfies

Df(z*)(y —2") <0
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for each y € U, then x* is a global maximizer of f on U.
Similarly, if f is convex and

Df(z)(y—=") 20
for each y € U, then x* is a global minimizer of f on U.

Proof. From
fly) = f@*) < Df(x")(y —2") <0
follows f(y) < f(z*) for all y € U.

Remark. Here is an example of global maximizer which is not a critical
point: Suppose f : R — R is an increasing and convex function on [a, b].
Then f/'(b)(x —b) <0 for all x € [a,b]. Thus b is global maximizer of f on
la, b].

Lagrange Case

Consider the problem
mazr  f(xi,....,x,) st. hi(z)=c¢, i=1,.., k.

As we know if z* = (z7,...,2}) is a maximizer, then there exist u* =
(ui, ..., pi) such that (x*, p*) satisfies Lagrange conditions Df(z*) — p* -
Dh(z*) =0 and h;(z*) = ¢, i =1,.., k.

This is the sufficient condition for a global maximum:

Theorem 12 Suppose f is concave, each h; is convex, (x*, u*) satisfies La-
grange conditions and each p; > 0. Then x* is a global maximizer.

KKT Case

Consider the problem

max  f(x1,....,2,) st gi(x) <¢, i=1,.. k.

*

As we know if z* = (z7,...,2}) is a maximizer, then there exist \* =
(A7, ..., AL) such that (*, \*) satisfies KKT conditions D f(z*)—\*-Dg(z*) =,
/\i : (hz(l'* - CZ'> = O, 1= ]., ceey k?, /\Z Z 0, gZ(ZE*) = Gy, 1= 1,2, ceey k.

This is the sufficient condition for a global maximum:

Theorem 13 Suppose f is concave, each g; is convex, and (z*, \*) satisfies
KKT conditions. Then x* is a global maximizer.



Example. Consider a production function y = g(z1, ..., ¥, ), where y denotes
output, z = (z1,...,z,) denotes the input bundle, p denotes the price of
output and w; is the cost per unit of input 7. Then the cost function is

C(x) = wixy + ... + wWyy,
and the profit function is

m(z) = pg(z) — C(z).

Our first claim is that if ¢ is concave, then 7 is concave too: C'(z), as a linear
function, is convex, then —C'(x) is concave, besides pg(z) is concave too since
p > 0, then 7(z) = pg(x) + (—C(x)) is concave.

The first order condition gives

On(x) _ 9g(x)

Since of concavity this condition is necessary and sufficient to be interior

maximizer. This means that the maximizer of profit is the value of  where

marginal revenue product pég—? equals to the factor price w; for each input.

1.5 Quasiconcave Functions

Recall the property of a concave function f: for each K the lower level set
Lg ={z, f(z) < K}

is concave.
This property is taken as the definition of quasiconcave function:

Definition 1. A function f(z) defined on a convex subset U C R" is quasi-
concave if

L ={z: f(z) < K}

is a convex set for any constant K.

Similarly, f is quasiconvex if
Uk ={z: f(z) 2 K}
is a convex set for any constant K.

Definition 2. A function f(z) defined on a convex subset U C R" is quasi-
concave if

[tz + (1 =t)y) = min(f(x), f(y))
for each z,y € U and ¢ € [0, 1].



Similarly, f is quasiconvex if

ftr + (1 =t)y) < max(f(x), f(y))-

Remark. Concavity implies, but is not implied by quasiconcavity. Indeed,
the function f(z) = 23 is quasiconcave (and quasiconvex) but not concave
(and convex).

Remark. Besides f s quasiconcave f and only if —f is quasiconvex.

Theorem 14 Definition 1 and Definition 2 are equivalent.

Proof. (a) Def. 1 = Def. 2.
Given:

Uk ={z, f(z) = K}

1S a convex set.
Prove:

[tz + (1 =t)y) = min(f(z), f(y))-

Indeed, take K = min(f(x), f(y)), suppose this min is f(z). Then K =
flx) < f(x),so x € Uk, and K = f(z) < f(y), so y € Uk. Then, since of
convexity of U we have tx + (1 —t)y € Uk, that is K < f(tx + (1 —t)y).

(b) Def. 2 = Def. 1.
Given:

fte + (1 = t)y) > min(f(z), f(y))-
Prove:

UK:{xv f(m)zK}

is a convex set.
Indeed, suppose z,y € Uk, that is f(z) > K, f(y) > y. We want to
prove that f(tz + (1 —t)y) € Uk, i.e. f(tx+ (1 —t)y) > K. Indeed, assume

min(f(x), f(y)) = f(x), then

[tz + (1 =ty = min(f(z), f(y)) = f(z) = K.

Theorem 15 A monotonic transformation gf of a quasiconcave function f
18 itself quasiconcave.

Proof. Take any K € R. Since g is monotonic, there exists K’ € R such
that K = g(K'). Then

U(gf) ={z, 9f(x) = K} ={z, gf =2 g(K')} ={=, f(x) = K'} = Uk/(f)
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1S a convex set.

Remark. Thus the quasiconcavity is ordinal property (recall, the concavity
is cardinal: a monotonic transformation of concave is not necessarily concave,
for example f(x) = z is concave, g(x) = x3 is monotonically increasing, but
g(f(x)) = 23 is not concave).

In particular a monotonic transformation of concave is quaziconcave. But
there exists quaziconcave function which is not monotonic transformation of
a concave function.

Example. Every Cobb-Douglas function F(zq,x9) = Aalzd, p,q > 0 is
quasiconcave:

(a) As we know an DRS (Decreasing Return to Scale) Cobb-Douglas
function such as f(z1,x2) = x}/?’xé/g concave.

(b) An IRS (Increasing Return to Scale) Cobb-Douglas function, such as

xf/ 3353/ % is quasiconcave. Indeed, IRS Cobb-Douglas is monotonic transfor-

mation of DRS Cobb-Douglas:
0 = @l

1/3 2

xf/%i/?’ = g(f(z1,x2) where f(x1,29) = 2] I2/3 and g(z) = 2%.

SO

Example. Any CES function Q(x,y) = (az” + byr)%, a,b>0 0<r<1
is quasiconcave: Q(z,y) = gq(z,y) where q(z,y) = (az” + by") is a concave
function because it is positive linear combination of concave functions, and
q(z) = =+ is monotonic transformation.

Example. Any increasing function f : R — R is quasiconcave (and quasi-
convex):

Uk ={z, f(z) > K} = [f 'K, +00)

1S a convex set.

Example. Each function f : R' — R! which monotonically rises until it
reaches a global maximum and the monotonically decrease, such as f(z) =
—22, is quasiconcave: Uy is convex.
1.5.1 Calculus Criterion for Quasiconcavity
F' is quasiconcave if and only if
Fly) = F(z) = DF(z)(y—x)=0.
F' is quasiconvex if and only if

Fy) < Flx) = DF(x)(y—u)>0.
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Exercises

1. By drawing diagrams, determine which of the following sets is convex.

(a) {(z,y) ry=e€"}. (0){(z,y) 1y =€} (o) {(zv,y) : 2y > 1,0 >0,y > 0}.

2. Determine the definiteness of the following symmetric matrices

(o) (o) () (69)
(o) Go) () ()

3. For each of the following functions, determine which, if any, of the
following conditions the function satisfies: concavity, strict concavity, con-
vexity, strict convexity. (Use whatever technique is most appropriate for each
case.)

=x+y—e —etY

4. Let f(xy,23) = 23 — 1179 + 23 + 331 — 229 + 1. Is f convex, concave,
or neither?

5. Prove that any homogenous function on (0, 4+00) is either concave or
convex.

6. Suppose that a firm that uses 2 inputs has the production function
f(x1,25) = 122'/32'/2 and faces the input prices (p1, p2) and the output price
q. Show that f is concave for xy > 0 and x5 > 0, so that the firm’s profit is
concave.

7. Let f(xy,22) = 23 + 222 + 22129 + (1/2)23 — 8711 — 275 — 8. Find the
range of values of (z1,z5) for which f is convex, if any.

8. Determine the values of a (if any) for which the function

22% + 2wz + 2ayz + 22°
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is concave and the values for which it is convex.

9. Show that the function f(w,z,y,2) = —w?+ 2wz — 22 — y* + 4yz — 2*
is not concave.

Homework

Exercise 21.2¢ from [Simon], Exercise 21.12 from [Simon], Exercise 21.18
from [Simon], Exercise 3f, Exercise 6.
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Short Summary
Concave and Convex

Convex set X CR": o/, 2" € X = ' =(1—-1t)2' +t2" € X.

Convex hull CH(X)={ye R":y =Y tx;, z; € X, Y t;=1}.

Convex function f : S C R* — R: 2/, 2" € § = (1—t)f(2')+tf(2") <
f((1 —t)x’ +ta”), i.e. graph is above chord.

Hypograph: hyp f ={(z,y): x €S, y < f(z)}. f is concave iff hyp f
is convex.

Epigraph: epi f = {(z,y): €S, y > f(x)}. f is convex iff epi f is
convex.

Upper contour set: Uy = {z € S, f(z) > K}.If f is concave then Ux
Is convex.

Lower contour set: Ux = {x € S, f(z) < K}. If f is convex then Uy,
is convex.

Calculus Criteria
C' function f: U C R™ — R is concave iff f(y) — f(z) < Df(z)(y — z).
C? function f: U C R™ — R is concave iff D?f(z) < 0.

Concavity and Optimization
If fis concave and D(z*) = 0 then z* is global max.
If f is concave and D f(z*)(y — 2*) < 0 for Vy then z* is global max.

Quaziconcavity
f quasiconcave if Ux = {z : f(z) > K}, VK. Equivalently

flte + (1 =t)y) = min(f(z), f(y)), Vzy, tel01].

Concavity - cardinal, quasiconcavity - ordinal.
Calculus Criterion
F' is quasiconcave iff

Fly) =2 F(z) = DF(x)(y —x) =0
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